Skip to main content

Full text of "Proceedings of the eighth Pacific Science Congress of the Pacific Science Association : held at the University of the Philippines, Diliman, Quezon City, 16th to 28th November 1953"

See other formats


KEMiwos 


PROCEEDINGS 


EIGHTH PACIFIC SCIENCE CONGRESS 
PACIFIC SCIENCE ASSOCIATION 


1953 


VOLUME III. 
OCEANOGRAPHY 


Published by the 
NATIONAL RESEARCH COUNCIL OF THE PHILIPPINES 
NIVERSITY OF THE PHILIPPINES’. 
QUEZON CITY, PHILIPPINES 
A ite 1957 


Given in Loving Memory of 


Raymond Braislin Montgomery 
Scientist, R/V Atlantis maiden voyage 
2 July - 26 August, 1931 
AK KK KK KK 
Woods Hole Oceanographic Institution 
Physical Oceanographer 
1940-1949 
Non-Resident Statf 
1950-1960 
Visiting Committee 
1962-1963 
Corporation Member 
1970-1980 
KKK KKK 
Faculty, New York University 
1940-1944 
Faculty, Brown University 
1949-1954 
Faculty, Johns Hopkins University 
1954-1961 © 
Professor of Oceanography, 
Johns Hopkins University 
1961-1975 


¢ bebePOO TOEO O 


i 


Denar’ 


pees 
PARE 
as 


‘Nil 
BAY 


CAN ee heal 
HOUMA PE 


ny 
ae At 


} 
yoni ann 
i ; TECH 
Cs ae i i Dy X bits 
DS a 


PROCEEDINGS 


OF THE 


EIGHTH PACIFIC SCIENCE CONGRESS 


OF THE 


PACIFIC SCIENCE ASSOCIATION © — 


Held at the University of the Philippines 
Diliman, Quezon City / 
16th to 28th November 1953 6 = 


UNDER THE AUSPICES 
OF THE 
NATIONAL RESEARCH COUNCIL OF THE PHILIPPINES 
AND THE 
REPUBLIC OF THE PHILIPPINES 


VOLUME III 
OCEANOGRAPHY 
fo 


NATIONAL ee HReGERCHL OF THE PHILIPPINES 
nace te a THE PHILIPPINES 
QUEZON CITY, PHILIPPINES 


1957 


EigutTH PaAciric SCIENCE CONGRESS 


FourTH FAR-EASTERN PREHISTORY CONGRESS 


COMMITTEE ON PUBLICATION AND DOCUMENTATION 


Chairman: Dean PATROCINIO VALENZUELA 
Co-Chairman: Prof. GABRIEL A. BERNARDO 


Dr. Jose P. BANTUG 
Prof. H. OTLEY BEYER 
Mr. PAUL BIERSTEIN 

Dr. JesusA A. CONCHA 
Mr. Haroitp CONKLIN 
Mrs. ARACELI P. GAFFUD 
Mrs. Pirar A. HALLAZGO 


Prof. Socorro P. 


Dr. ArcHre Hess 

Mrs. Luz B. LARDIZABAL 
Mr. E. ArsENIoO MANUEL 
Mrs. Rosario MENDOZA 
Dr. GILBERT S. PEREZ 
Mr. RaMON SAMANIEGO 
Mr. JosE ‘TEVEs 

VILLA 


i 
ae lige 


een 


uh 
ees 


CONTENTS 
VeLUME Jil 
OCEANOGRAPHY 


Resolutions Adopted in the Eighth Pacific Science Congress Concerning 
OCeanoomap ly aascreber wh Matree mentor eaten steel repent ey cance er. seatat ci aeal seeee Minas 


Report of the Standing Committee on Oceanography of the Pacific. 
By Thomas G. Thompson and John P. Tully. 
Part I. General Statements and Recommendations ............. 
Part II. A Summary of Pacific Oceanography, 1949-1953 ...... 


Part III. Reports on Activities of Specific Countries on Research 
OrraniZation sens) o:c)cl2ds POU Relay AS UET tats aU sc: ee, mE 


DIVISIONAL DISCUSSIONS: PROBLEMS IN THE DEVELOP- 
MENT OF METEOROLOGY AND OCEANOGRAPHY 
TN EGE ae A CHG Ceo, ocerparepe eatery episye ss Lies 
SYMPOSIUM ON EXPLOITATION AND UTILIZATION 
OF PRODUCTS FROM THE SEA 


HSEOCCeCIN Se SM mEt eee oe Wek! ee mabe Sy EEE Se ee Ey i 
ibiologicaleOceanosraphy. By Wi. Aur Clemens) ja. 5.5.6s,- 2 o2eens shen. 
A New Approach to the Study of Marine Resources—the California 
Cooperative Oceanic Fisheries Investigations. By Robert C. Miller 
Nourishment of Central Pacific Stocks of Tuna by the Equatorial Cir- 
culationa system sBy Oscars Hs Setter: iti. e alse ee 
Development and Conservation of the Tuna Fisheries of the Pacific. 
By Milner B. Schaefer 


Recent Studies on Tunas and Marlins in Japan. By Hiroshi Nakamura 
and Yoshio Hiyama 


0. 0'9%0 0) ORONO 0 DOGS OPO" oO 0 DiS 6) 9o°0 Gioo%D Of O10 OO. b O00 onoO 


o/t s)he le) (oko) jelelelielie fel esialie) (sie eek eiie}iahie) a) leleife"\s)ehiene) ejeheils| efullceve levee 


Are the World-wide Declines in Sardine Catches Related? By John C. 
Marr and James E. Bohlke 


The Products of the Sea and Their Exploitation and Utilization in Pa- 
kistan. By M. R. Khan 
Some Factors Bearing on the Utilization of Marine Products of the 
West Coast of Canada. By Neal M. Carter 
Fabrication, Definition et Reglementation de la Sauce de Poisson -Viet- 
namienne “Nuoc-Mam.” Par J. Guillerm et A. Vialard-Goudou .. 
Studies on Agar-Agar in Japan. By T. Yanagawa and K. Tanii .... 
A Report on the Studies Made in Japan on Pearl Culture. By Yoshiichi 


ole: ishe hey el aiie) ole) eve ehelie/aoyieileljie’ isi keh a, ehejie! ee) 0 jeletieei-e! felte 


00000 0000 O00 66 30 0’ Os0o 090 6-5 050.5 dlolo.o Oe c.O ono 


IVEAGS UT gy ctees es cspae OO seep. halt, orale ieeeeaaes cece eed re eae atorcke 
Fundamental Studies on the Fish Lamp. By N. Y. Kawamoto ...... 
Coaction in Lamp-Communities. By Hiroshi Maeda ................. 


The Hake Fisheries off the West Coast of Chile. By Erik M. Poulsen 


PAGE 


115 


116 
121 


126 


131 


149 


165 


183 


189 


200 


208 
215 


225 
229 
234 
241 


Report on the Algae of the Chilean Seas. By Hector Etcheverry-Daza 


The Hisheries of ‘Chile:) By B: s4#:Osonio-Mafallls)..02... .see eee 
Preliminary List of Chilean Fishes and their Vernacular Names. 
By Fernando ‘de *Bueny 3... Suen ae ee eit ee eles eras uc. « Merutonaiore 


Edible Shellfish of the Chilean Coast. By Francisco Reveros-Zuniga .. 


Notes on the Commercially Important Fishes of Chile. By Parmenio 
Be SVATIOZ. CS) 2 larreerataoe snes Soo Sea ee a ia, a fae oA Tle rR ee RU 


Oceanographical and Fisheries Research in India. By N. K. Panikkar 
Oceanography and Fisheries. By G. L. Kesteven ................... 


Factors in the Utilization of Canada’s Pacific Marine Resources. By J. 
Tu: Hart: parte se oacc ast aoe. AS es BO 


Poisonous Fishes and their Relationship to Marine Food Resources in 
the Pacific: Area. ) By, Bruce |W... Halstead) ccen eee eet 


Some Aspects of Fisheries Problems in the South Pacific Area. By A. 
He SORE KHOOMN Sette cP eee teen crm ance cel eta Smt eusnc tars Nace meet ance enon 


SYMPOSIUM ON MARINE PROVINCES IN THE 
INDO-PACIFIC REGION 


Awardees ot. the WINTIS COL Subvyentionsas ss eae eee ee en 
PTOCCECIMES: se oic eyes eiove ale eearel ay seo or cual cities Sea aneiiy eikewals els elt nee Re cine actin aa 


The Nature and Evolution of the Hawaiian Inshore Fish Fauna. 
By: Wilhlam A. Gosline. 3. acces cccctm mee copa natal oy age pn ane crates eee ee rae 


Marine Provinces of the Indo-West Pacific. By A. W. B. Powell . 


An Outline of the Distribution of Pacific Deep-Sea Animals. By Anton 
Bers Bruun’. & ois sccyecs ke lece lib ells oa) ae toyhe «Sau seen ey ae SRNR 5 RI 


Deep-Water Biological Provinces of the Indo-Pacific. By Rolf L. Bolin 


Some Outlines of Plankton Concentration in the Eastern and Tropical 
Pacific. aby ~Martin yw. Johnson jc.0- ear soe lee ei eae 


Distributional Provinces of Marine Bryozoa in the Indo-Pacific Region. 
By, Yaichiro; Okadavandy Shizuo Mawatan, 43532 9.ere ee oe 


The Distribution of Polychaetes within the Indo-Pacific. By G. A. Knox 


A New Approach to the Distribution of Fishes in the Indo-West Pacific 
Area... By. Leonard :P. ‘Schultz. choc. coin eee es oe ee 
The Zoogeographical Distribution of the Indo-Pacific Littoral Holo- 
thurioidea.. By Jose S..Domantay hae. are. eee cere ate tele cher 
Distribution of Marine Fishes in South East Asian Waters. By J. D. 
FY. \WHardenberg tiny ..f) 3% tees. eh, SASS 2 eR RR ORES eet 
An Analysis of the Pelagic Bird Faunas of the Indo-Pacific Oceans. 


By/-Dauke Serventy flac) let. My iat Sh Sa, WAR eksoots clon, Se wee 
Some Distribution Patterns Represented by the Marine Algae of Nha- 
trane BayisVaetnam. 7 By Ea ValesDawsoml.rie is -liirsto eee 


Some Problems on Marine Biogeographical Micro-Provinces Surrounding 
Japan. By Tadasige Habe, Tokubei Kuroda, and Denzaburo Miyadi 


li 


PAGE 
246 
253 


266 
280 


287 
294 
303 


314 
321 


301 


337 
338 


347 
359 


365 
373 


379 


391 
403 


413 
417 
457 
461 
489 


493° 


The Marine Mollusca of the Kermadec Islands in Relation to Molluscan 


Faunas in South West Pacific. By R. K. Dell .................. 
The Geographical Variation of Early Embryenic Processes in Marine 
Eggs. By Alexander Wolsky .......+2- 22.6 esecee sees teenies 


SYMPOSIUM ON GENERAL CIRCULATION IN THE PACIFIC 
IPYVOCECOINES) o.48 Sa eee ts oes et oa hi oh) CE clots ensers 


A Theoretical Study on the General Circulation of the Pacific Ocean. 
By LO IBGE ey ae tes op oe PAC O MOS me coo sno mae PHnaeo AIbO pao moe 


A Contribution to the Theory of Upwelling and Coastal Currents. 
IRy Joy IehiCe keen gash ooloamhd oma bocnb soo gag moms s Mods 6 con 6.55 


Surface Waters Off the Canadian Pacific Coast. By J. P. Tully and 
eae Ati DOC 25 |e oe coe Soul ee RRA De OREN Oh MER. aE Ae 


Circulation Near the Washington Coast. By Clifford A. Barnes and 
Robert aGasPaquetten. actarevs coeur aes mooteeperetrret a att oar 


U.S. Navy Contributions to the Study of Pacific Circulation. By John 
Lyman 


On the Variation of the Kuroshio Near the Japan Islands. By D. Shoji 
andy. pSuddeda «45 mone enmrkie Al. Sede. Es aall. Shad) 8 PAE 


Sedimentation in the Deep Sea. By Hans Pettersson ................ 
Some Characteristics of Sea Water Structure. By John P. Tully .. 


On the Circulation in the North Pacific in Relation, to Pelagic Fish- 
Cesar yo Vier elaintal key WIGAN ar recca tosis cscs ie hve peiemenees sue a oe oes 


The Topography of the Sea Surface in the Region of the Philippines. 
By Herbert W. Graham 


Recent Oceanographic Exploration in the North and Equatorial Pacific 
Ocean | Ve VWiaEVenbiss NVOOSbERTR ASIF eS « sche ods cs aus had aed on 


Basin Waters of South California. (Abstract) By K. O. Emery .... 


An Oceanographic Model of Puget Sound. By Clifford A. Barnes, 
Johnet tincolngand. MaurticesRattray voice ase Funes Onis ene 
Daily Seawater Observations on the Pacific Coast of Canada. By H. 
Ain’ -L IOUS EPR iS Bite ie Oreo ae oc ecics CHR Ret Oe Ree CRE near grin en ek ee 


A Study of Local Variability in Marine Sediments. By Richard G. 
Bader 


Secular Variation of the Annual Mean Sea Level Along the Japanese 
Coasts. IBy Wilememiaeneny OKRA G Oho ogg mee cia to De mee > Comer 


Submarine Canyon Investigations. (Title only) By Francis P. Shepard 
Surface Temperature and Salinity in the Southwest Pacific Ocean. 


(CAlbarrpmce)) | 1Byy ID Wile (GeneaeIe ohooh bu choo coomod ou dado an adgicoS 
Secular Trends at East Australian Coastal Stations: 1942-1952. By 
ID) Ap TRG yo) a ores eum aot erie ea ee eee eee Rae cme Coren ERO cero o.ccn chai o-cbo'o. 
Recent Developments in Tidal and Tidal Current Measurements. Con- 
imibution trom the U.S. Coast and Geodetic) Survey ..-2-5-..:.....- 


On the Minimum Oxygen Layer in the North Pacific Ocean. By Takeo 
TREAT ONO ena cea te eee Ole orcear aot Fi sieiin sal atone oh ooo carck arocio Gini Ren ERO 


A Study on the Property of the Coastal Water Around Hachijo Islands. 
By Yasuo Miyake, Y. Sugiura and K. Kameda 
On the Oceanographical Conditions of the Sea near the Fixed Point, 
153°E, 39°N, in the North Pacific Ocean. By M. Nakano, M. Koi- 
zumi and J. Fukuoka 


elivjcele:lehteieltetiotiaWel « (0) ofiee) e eniehiel ©) eloleniel cle el(e/> els, teg.w ties (oatiol =tslke 


Distribution of Copper and Zine in Sea Water. By Yoshimi Morita .. 


Abnormal Summers in the Peruvian Coastal Current. By Erwin 
Schweigger 


S} elllaftel'e! «| eiiel ie veh ene Jeliehienisfielohejle)ie) iejve ulielielte’ 0° 0) Te)ie)\e. = 1a) =) eee! ef el lejsa) (ole ene) when arae, 


Quantitative Determination of Tungsten and Molybdenum in Sea Water. 
By Masayoshi Ishibashi, Tsunebobu Shigematsu and Yasuharu Na- 
kagawa 


‘ei iv,-s! (otto! ie) sinless) \e: 0) cel 9] /e: e' \e) ejlevielie] lo}eiie) elie! fee oli) ofjeleiveisel/ecalle jeje) J /6)e),") lia; omen ilomememe 


A Study on Temperature and Salinity of the Surrounding Waters of 
Taiwan. By Chu Tsu-Yao 


Cee SC eC ee 


On the Fluctuation of the Kurosiwo and the Oyasiwo. By T. Nan’niti 


A Report on the Oceanographical Observations in the Antarctic Ocean 
Carried Out on Board the Japanese Whaling Fleet During the 
Years 1946-1952. (Abstract) By Masao Hanzawa and Takeo 
A LSiG Tcl cb kok: Waeey x apes CN Ue gir WY ts inate or a’ Sey Ey eae ep rd er me PRIA ME 41S ALANA 16 (0,0 

A New Japanese G. E. K. By Suda, Kuroda-Masao, D. Shoji and Sawa- 
yanagi-Fumiwo 


ee fel fej ce te) ferte;le\te) ee) ©) (efiejjej le «lo. feuje (e eisel ieee te: jalie .efie,1@! ase) ie) 1ei1e) oe) (0/16! (e!n0)/1 8110), @) 


PAGE 


[Note: The other papers in Oceanography and those of Zoology are included 


in Volume III A.] 


lv 


OCEANOGRAPHY 


Organizing Chairman: Dr. D. V. VitLapotip, Director, Bureau of 
Fisheries, Manila. 
Secretary: Mr. ‘TEoporo G. Mecta, Bureau of Fisheries, Manila.* 


RESOLUTIONS ADOPTED IN THE EIGHTH PACIFIC SCIENCE 
CONGRESS CONCERNING OCEANOGRAPHY 


STANDING COMMITTEES 


5. That the Standing Committees on Meteorology of the Pacific, 
Oceanography of the Pacific, Pacific Entomology, Pacific Conservation, 
Museums in Pacific Research, Soil and Land Classification in the Pacific 
Area, Forest Resources of the Pacific Area, Crop Improvement in the 
Pacific Area, Animal Improvement in the Pacific Area, aearopology 
and Social Sciences in the Pacific be continued. 


JOINT DIVISIONAL RESOLUTIONS 


I. Geology, Oceanography and Meteorology 

The Congress notes the efforts now being made to provide for the 
establishment of an international geophysical institute in the Hawaiian 
Islands as a center for the investigation of problems related to the chem- 
istry, physics and mathematics of the earth, sea and atmosphere and their 
roles in Pacific environmental relationships. 

The Congress believes that an institute in the sense envisaged 
would greatly improve the opportunities for investigation of important 
geophysical problems. 


DIVISIONAL RESOLUTIONS 


Oceanography 

1. ‘The Congress notes with interest that the oceanographers attend- 
ing the Eighth Pacific Science Congress propose to establish an Oceano- 
graphic Institute of the Pacific. 


* Present address: Bureau of Agricultural Extension, DANR, Manila. 


1 


2 EIGHTH PACIFIC SCIENCE CONGRESS 


2. ‘The Congress strongly supports the proposal, recently examined 
by the special UNESCO meeting of consultants on oceanography, to 
create a legally constituted inter-governmental organization for oceano- 
graphic research in the Indo-Pacific region. 

3. The Congress urges member countries (a) to exert every means 
to develop research programs upon which may be based sound policies 
for increased development and wise use of marine resources, (b) to de- 
velop the fullest international cooperation in the management of marine 
resources so that they may be maintained permanently. 

4. The Congress draws attention to the following types of ocean- 
ographic study which can be maintained at a small cost, and whose re- 
sults when correlated with other available data can provide large re- 
turns: (a) Daily observations of surface sea water temperature and sa- 
linity which can be made at light-stations, and by commercial shipping 
lines. “The work may be extended to daily observations of the nutrient 
and respiratory elements, and the state of the sea. (b) Study of specific 
organisms of academic or economic interest in the locality. There are 
many species which have been taxonomically described, but whose life 
history, habits and economic value are unknown. 

5. The Congress commends the excellent research work of the Bu- 
reau of Fisheries of the Philippines and respectfully suggests to the Gov- 
ernment of the Republic of the Philippines that it explore the possibili- 
ties of establishing further oceanographic and fish culture research 
through the provision of extended facilities. 


REPORT OF THE STANDING COMMITTEE ON 
OCEANOGRAPHY OF THE PACIFIC 


Prepared by 


THomas G. THOMPSON,! Chairman; and 
Joun P. TuLty,? Secretary 


PART I 


GENERAL STATEMENTS AND RECOMMENDATIONS 


The greatest impetus given to the science of oceanography in the 
past few years, other than man’s unquenchable thirst for new knowl- 
edge, has been the desire to increase the food resources of the world 
which have their origin in the sea. Prior to World War II only a rela- 
tively few countries were concerned with the study of oceanography, 
even though all of the Pacific Science Congresses have continually 
stressed the importance of exploring and exploiting the seas as a source 
of food, in order to feed rapidly growing and sometimes hungry popu- 
lations. The necessity for looking to the sea, which covers about 
seventy per cent of the surface of the earth, as a source for additional 
food is now being realized by many political leaders, and other far-seeing 
individuals in many countries. For the Pacific area this has been espe- 
cially significant since the 7th Pacific Science Congress. Stressed also 
is the importance of collaboration for research, conservation and the 
free exchange of scientific information. 

The seas may be searched far and wide, shallow and deep to find 
the habitats of the fish. This is the historical method. Fish are where 
you find them. ‘This method is not very efficient for the fish are here 
today and somewhere else tomorrow. 

If dependence is to be made upon the fisheries for an assured food 
supply, the optimum conditions for each particular fishery must be 
known as well as when and where such conditions will occur. The 
adaption of proper and economical fishing methods for the different 
fisheries in various areas must receive detailed attention and study, al- 
though the metheds of the commercial fisheries are not in the realm 
of oceanography. 

The oceanographer reasons that the fish will seek those parts of 
the sea where the food of the fish is most plentiful, where optimum 


1 Professor of Oceanography, University of Washington, Seattle 5, Washington, U.S.A. 
* Oceanographer in Charge, Pacific Oceanographic Group, Nanaimo, B.C., Canada. 


9 
>) 


4 EIGHTH PACIFIC SCIENCE CONGRESS 


conditions of fertility occur for production of such food, and where 
the climate of the sea is most suitable. In other words, the oceanog- 
rapher must provide information as to the nature and extent of the 
best pastures and the most desirable sea climate. With such oceano- 
graphic information, expressed in the form of charts, the commercial 
fisherman can function economically and efficiently. This oceano- 
graphic method is in sharp contrast to the so-called historical or hunting 
method. 

As an example of the oceanographic method, it is deemed desirable 
to outline its application to recent tuna investigations. ‘The tuna prefer 
ocean waters where the temperatures are higher than 15°C. and the 
salinity is greater than 32°/,.. The tuna also require a plentiful supply 
of smaller fish on which to feed. ‘These small fish are plankton feeders 
and are found in regions of upwelling near the continental coasts, or 
around islands, or in some of the ocean currents. These regions of 
upwelling supply the necessary nutrient material which is essential to 
plankton growth. Tuna are found in the broad tropical belt of the 
ocean and can be expected to migrate into some parts of the temperate 
regions during the summer months. The search for tuna is narrowed 
to salubrious climates which are well stocked with plankton feeders. 
Thus the assumption may be made that if the conditions suitable for 
plankton are known in the warmer seas, there tuna will be found. 
Hence the oceanographic conditions of the plankton are studied in order 
to find the tuna. 

In this oceanographic approach some progress has been made. It 
is known that the basic focds are the respiratory elements, oxygen and 
carbon dioxide and the various nutrient salts such as nitrates, phos- 
phates, silicates, etc. ; 

The respiratory elements are plentiful everywhere in the upper 
100 meters of the ocean, but the nutrients are often depleted, except 
in the regions of upwelling, where they are replenished from the cool 
depths. Physical oceanographic studies indicate that such regions occur 
along the coast lines, and around the islands. Here the phyto-plankton 
is plentiful, and provides food for the zooplankton, which in turn feeds 
the small fishes on which the tuna feed. Evidently tuna should occur 
in the warm waters on the lee side of coasts and in the vicinity of up- 
welling in the equatorial currents. ‘This has been found to be generally 
true. However, they also occur in many parts of the open ocean where 
plankton and the plankton feeders are sparse, and so the simple theory 
of the food chain is not the only explanation of the fishery. 

Recently it has been learned that great concentrations of plankton 
exist in the cold water below the thermocline, over all the known seas. 
This plankton layer is deepest in the tropics and shallowest in the arctic 


REPORT ON OCEANOGRAPHY 5 


and antarctic and it sinks by day and rises at night. This deep plank- 
ton layer contains many sizable forms of euphausiids and small fishes, 
and it is suspected that some of the tuna feed there. If the plankton 
rise above the thermocline into the warm layers, it would be invading 
the habitat of the tuna, and they could feed on it. If the plankton 
rose only to the thermocline, but not through it, it is possible that the 
tuna would find it. They could make forays into the colder waters, 
and return to the upper warm waters between feedings. But if the 
plankton is always well below the thermocline it may be doubtful if 
the tuna would find it. 

Oceanographic data should designate the areas where the deep 
plankton rise to or through the thermocline. Echo sounders reveal the 
depths at which the plankton layer exists and also indicate the possible 
presence of tuna. New types of gear for deep fishing need to be devel- 
oped or some method devised for luring the fish within the range of 
existing gear. 

This is the oceanographic method. ‘Yo learn the requirements of 
the fish; to determine when, where, and how these occur; and then to 
seek the fish in the most likely places, at most suitable times, and where 
necessary develop methods of detection and fishing. ‘The last steps are 
simple, when the biology and oceanography are complete, as shown by 
the investigations of the Conseil Permanent pour l|’Exploration de la 
Mer, in the North Sea. 

This reasoning would be sufficient if extensive knowledge of the 
plankton were known as well as many details concerning the properties 
and characteristics of the waters. For most of the Pacific this knowl- 
edge is very incomplete. One is confronted with the threefold task of 
exploring the ocean for tuna, solving the living habits of plankton and 
charting the properties and characteristics of the water masses. 

During the span of the Pacific Science Association, since 1924, the 
Pacific Ocean has been explored. Many oceanographic expeditions have 
defined the water masses, charted the currents, recognized the properties 
of the water, and studied the fish and the plankton. The major water 
masses, the principal currents, and the generally productive and unpro- 
ductive areas are known. However, detailed knowledge is very meager. 
The cycles of temperature, salinity, and productivity, the variations in 
currents, the migration routes and fluctuations of the fisheries are the 
present concern. 

Research in oceanography is expensive. It requires expensive ships, 
expensive equipment, highly-trained personnel and a large operational 
investment. ‘The specialized agencies of the United Nations have real- 
ized this and the Food and Agriculture Organization has during the 
past five years sponsored the Indo-Pacific Fisheries Council, an associa- 


6 EIGHTH PACIFIC SCIENCE CONGRESS . 


tion of 16 member governments of South and East Asia, while UNESCO 
has, besides providing substantial grants-in-aid to enable plankton work- 
ers to attend the forthcoming Symposium to be held in connection with 
the 5th IPFC meeting in Bangkok, convened, jointly with FAO, the 
meeting of consultants held immediately prior to this Congress to study 
the feasibility of promoting a co-operative international oceanographic 
project for the Indo-Pacific region. It will therefore be seen that there 
is a tendency for a banding together by many countries of the Pacific 
area for the study of the sea. Nations that have been dependent solely 
upon their land resources are now studying their fisheries and exploring 
their seas, while those nations that have pioneered in oceanographic 
research have increased their efforts many fold. 

At the first meetings of the Pacific Science Association in New Zea- 
land, the report of the chairman of the Standing Committee on Oceanog- 
raphy consisted largely of a review of the principal advances that had 
been made in instrumentation. ‘The countries of the Pacific were be- 
ginning to recover from devastating war and the universities and gov- 
ernmental research agencies were still in the process of readjustment or 
reorganization. Compared to the present situation little could be said 
at that time about research accomplishments or planned programs of 
research. 

In most countries oceanography is undertaken by the senior govern- 
ment, in the Fisheries or the equivalent department, with close coopera- 
tion of the navy, and the hydrographic and meteorological services. 
In practically every case the work is directed by a National Committee 
representing the services, the allocation of effort, resources and _per- 
sonnel. ‘The outstanding exception is the United States, where oceano- 
graphic efforts are divided amongst a number of independent agencies, 
with the universities now tending to play the major role. 

One of the important resolutions of the 7th Congress was one 
urging the establishment of centers for oceanographic education and 
research in the Pacific area. At the present time such institutions exist 
in Canada, Hawaii, Japan, and the United States, with full university 
connection, where contact with experts of all the sciences which can 
be applied to the study of the sea is possible, and where full library 
facilities are available. At these universities are oceanographic institu- 
tions or academic departments of oceanography. ‘These centers are pro- 
viding the initiative, inspiration and encouragement necessary to develop 
young men for the task of advancing oceanographic knowledge. This 
trend toward the establishment of oceanographic centers in universities 
is evidenced in other countries of the Pacific area. 


REPORT ON OCEANOGRAPHY th 


The greatest deterrent to the development of oceanography at 
present is the lack of trained personnel. With the growth of the cen- 
ters of oceanography the problem of personnel will gradually be solved. 

All the peoples of the Pacific are dependent upon the sea, yet the 
average person is wholly ignorant of this medium. ‘There should be 
established in the schools and universities of the several nations elemen- 
tary courses dealing with oceanography. Such courses would be purely 
of an informative and cultural nature and presented in order to give a 
general knowledge of the oceans and the many organisms contained 
therein to the occasional student so that he would be inspired to resume 
further studies in one of the fields of oceanography. 

Since the war many feliowships have been made available which 
enable students to study in countries other than their own. Experience 
to date indicates that these fellowships create potentialities for better 
international understanding than any other system yet devised. ‘This 
Congress should go on record as urging the establishment of further 
fellowships, particularly in the several phases of oceanography. 

A standing committee of the Pacific Science Association usually con- 
sists of six to ten members. ‘The chairman is appointed by the President 
of the association and has the power tc act and name the members of 
his committee. He works in cooperation with the chairman of the 
local organizing committee in the preparation of programs and plans 
for a forthcoming Pacific Science Congress and with the secretariat on 
other matters. This general plan of operation has many desirable 
features. 

In forming the Standing Committee on Oceanography there are 
many factors to be considered, chief among which are to secure a proper 
representation of the various specialities in oceanography and a saatis- 
factory geographic distribution of the members. In selecting the mem- 
bership of the committee the chairman has sought the advice of many 
colleagues. He has received suggestions from representatives of govern- 
mental organizations, and some oceanographers, eager to further the 
advances of oceanography, have volunteered their services. Sometime 
ago the chairman saw the advisability of sub-dividing the committee in 
order to insure a better specialization of geographic representation. 
The Standing Committee on Oceanography at present consists of 32 
members, which includes the chairman, the secretary and three sub- 
committees of ten members each. The subcommittees cover the fields 
of physical oceanography, oceanic biology and the fisheries, and each 
subcommittee is headed by a chairman. 

As the result of experience in forming the present committee, cor- 
respondence with several members of the committee and with oceanog- 
raphers not affiliated with it, the chairman and the secretary have 


8 EIGHTH PACIFIC SCIENCE CONGRESS 


become convinced of the desirability of forming an oceanographic so- 
ciety of the Pacific. It is suggested that such a society be part of the 
Pacific Science Association and its meetings would be an integral part 
of a Pacific Science Congress. ‘The officers and executive committee of 
such a society, elected by popular vote of the membership, would func- 
tion for the association in much the same manner as the present stand- 
ing committee. “Through membership in such a society every oceanog- 
rapher would have a voice and the privilege of active participation. 
The present standing committee may be criticized as being more or less 
of a closed system. More than twice the numbers now comprising the 
Standing Committee were recommended for or volunteered for member- 
ship. Then again there are a number of young men just beginning 
their careers in oceanography who would undoubtedly profit by affilia- 
tion with such an organization. This would also be true of oceano- 
graphers who are citizens of nations where scientists are relatively few. 
Such a society could sponsor a much needed oceanographic publication 
for the entire Pacific area, provided funds could be obtained, in which 
oceanographers could publish the results of their finding. Here also 
would appear information of current activities, periodic abstracts of out- 
standing articles published elsewhere and a current bibliography. It is 
recommended that such an organization be considered by this Congress. 

The 7th Pacific Science Congress meeting in Auckland and Christ- 
church, had a marked catalytic effect on oceanographic research in New 
Zealand, and those who came from afar to attend the Congress learned 
much from their New Zealand colleagues. It was an education to 
have seen this delightful country and to have been received so generously 
by its charming people. It is hoped that the oceanographers of the 
Philippines will receive a similar stimulus and those that have come 
from afar will be inspired by seeing the Philippines and meeting with 
the citizens of the country which has played a major role in recent his- 
tory. 

It seems fitting for the chairman and the secretary of the Standing 
Committee on Oceanography to express their appreciation for the excel- 
lent cooperation received from all members of the committee. It has 
been a real pleasure working with Dr. D. V. Villadolid, chairman of 
the local organizing committee on oceanography and also chairman of 
the subcommittee on fisheries. Through his untiring efforts an excel- 
lent program has been organized and it promises to surpass even those 
of previous congresses. ‘To Dr. Villadolid and his associates the Stand- 
ing Committee expresses its profound thanks and appreciation for their 
many efforts. 


REPORT ON OCEANOGRAPHY 9 


PART II 
A SUMMARY OF PACIFIC OCEANOGRAPHY, 1949-1953 


Prepared by 


Tuomas G. THompson, Chairman; and JouN P. TuLty, Secretary 


An attempt will be made to summarize briefly some of the activities 
and results of oceanographic research since 1949 as reported by the mem- 
bers of the Standing Committee. This summary will be augmented, in 
some cases, by more detailed reports outlining the programs and accom- 
plishments of a specific country or research organization, and are given 
as Part III of this report. However, much of the important research 
that has been conducted will be presented to the congress in the sympo- 
sia that have been organized under the direction of members of the 
Standing Committee on Oceanography, and the Philippines Organizing 
Committee. 


AUSTRALIA 


The hydrological cycles in the sea around Australia have been stu- 
died, the surface and water masses in the Tasman Sea have been identi- 
fied, and the oceanography of some Australian estuaries have been re- 
lated to the productivity of oysters. Regular observations between Aus- 
tralia and Antarctica, and at Macquarie and Heard Islands, have been 
made. A source of deep, very saline water has been found by the Dis- 
covery Expedition in the ‘Tasman Sea, which appears to move eastward 
counter to the circumpolar drift. 

A number of oceanographic cruises to 100 miles of the southwest 
coast were taken in the Fisheries Research Vessel ““Warren’’ to examine 
the properties of the water. The R.R.V. Discovery II examined the 
properties along the five lines of the southern coast. Surface observations 
are being secured fortnightly from Australia to New Zealand by the 
regular passenger ship 1.S.M.V. Wanganella. 

‘The temperature and salinity characteristics of the surface Tasman 
Sea water masses have been determined, and their seasonal variation in 
position will be followed in the future, particularly as they affect coast- 
al waters. 

A contribution to the knowledge of estuarine hydrology has been 
conducted by D. J. Rockford and the work is being continued by de- 
tailed dynamic and productivity studies of selected estuaries. This re- 
search is primarily directed toward oyster production. 

The Australian National Antarctic Research Expedition has main- 
tained physical and biological research stations at Macquarie and Heard 


10 EIGHTH PACIFIC SCIENCE CONGRESS 


Islands since 1948. Hydrological and biological programs have been 
carried out, and oceanographic observations have been made between 
Australia and the Islands, each year, by the relief vessels. “The Expedi- 
tion is to be extended to the Antarctic mainland in the Australian sector. 

The biological oceanographic studies have been concerned with de- 
veloping the unutilized or little utilized aquatic organisms. This includes 
the discovery of the stocks, fishing tests, life histories, and identification 
of tuna, clupeoids, carangids, and archibenthic fishes, as well as help 
surveys. 

The Division of Fisheries of the Commonwealth Scientific and In- 
dustrial Research Organization carries out a research program in Hy- 
drology and Planktology at its Cronulla headquarters, and at five field 
stations. “This work includes sampling at various coastal stations in 
eastern and western Australia, which has revealed the hydrological cycles 
at various latitudes, and a long term trend in the properties and produc- 
tivity in Eastern Australian waters. 

In the fisheries, studies have been made of stock identification, life 
histories, natural fluctuation, and effects of fishing. ‘These fisheries in- 
clude barracuda, salmon, humpback whale, western crayfish, sea mullet, 
scallop, school shark, tiger flathead, white bait, and other indigenous 
fishes. 

Considerable work has also been done on the acclimatization and 
culture of rock, pearl and Japanese oysters, the introduction of fresh- 
water trout, and the enrichment of inland waters. Estuarine ecology 
has received some attention with a view to increasing fish production. 

No institution in Australia gives special training in oceanography, 
but the Department of Zoology in a few Universities gives lectures on 
marine organisms and ecology; and there are small research projects on 
marine animals for post graduate students. 


CANADA 

A series of surveys has been undertaken for about 500 miles of the 
coast to examine the currents and the properties of the water to a depth 
of 1000 metres. This area of British Columbia is where the North Paci- 
fic drift divides, part flowing north to form the Alaska gyral and part 
south to form the California current. Coupled with the Marine Life 
Research Surveys off the coast of the United States, this work provides 
for the first time a realistic picture of the detail of this great divergence 
which has been recognized for a long time. The currents are weak (less 
than 10 miles per day) and mostly eddies. 

The salinity structure is definite and appears to be permanent. 
There is an upper zone of low salinity water to about 100 metres depth, 
a deep zone of greater salinity, separated by a boundary or transition 


REPORT ON OCEANOGRAPHY 11 


layer of ten to 100 metres thickness. In late winter the temperature 
stratification is similar to the salinity. When the surface waters are 
heated in the spring a warm layer is formed which gradually deepens 
and becomes more marked as the season advances. When autumn cool- 
ing occurs the warm layer loses heat, but continues to deepen until it 
coincides with the salicline in late winter. This area is being continual- 
ly monitored by regular bathythermograph observations from the 
weather ship on Station Peter. 

The principal interest is in the coastal waters and the many bays, 
sounds, inlets and straits which are the dominant feature of the Pacific 
coast. ‘The area is divided into natural regions. Each region 1s sur- 
veyed at frequent intervals throughout a year or more, uatil the prop- 
erties of the water and the mechanisms of circulation, and their sea- 
sonal variations are revealed. These are then related to daily observa- 
tions of surface sea water temperature, weather and run-off that are be- 
ing made concurrently around the coasts. These daily observations then 
serve as continuing indices of the oceanographic conditions. Both the 
oceanographic conditions and the daily observations have been success- 
fully related to some of the fisheries. 

The prediction and control of industrial and domestic pollution in 
coastal areas had become a major oceanographic concern. As new indus- 
tries are established their effect on fisheries is forecast and the disposal 
of sewage adjusted to avoid harmful pollution. 

This work is under the direction of the Joint Committee on Ocea- 
nography in Canada, which all government departments interested in 
the sea, pool their requirements and resources. The Committee directs 
the work of a group on the Atlantic Coast and another group on the 
Pacific Coast, in physical and chemical oceanography. The Fisheries Re- 
search Board of Canada operates five stations studying fisheries and two 
stations studying the utilization of marine products. In addition there 
are a number of National and International Groups conducting ocean- 
ographic and fisheries research in particular areas, and on particular 
problems. 

The charting of coastal waters and forecasting of tides and tidal 
currents is done by the Hydrographic Service. 

The Institute of Oceanography at the University of British Colum- 
bia is the only place where Oceanography is formally recognized, al- 
though a number of universities conduct sea researches. The Institute 
offers post-graduate courses in the application of the various sciences 
in the sea leading to advanced degrees in those sciences. 

Publication is provided in the Journal of Fisheries Research Board 
of Canada, and a manuscript series from each oceanographic group and 
the Institute of Oceanography. 


12 EIGHTH PACIFIC SCIENCE CONGRESS 


CHINA 


In spite of tremendous difficulties there are some observations of 
sea water temperature, and some fisheries studies being made. ‘There are 
plans to establish a research center for fisheries and oceanography which 
will unite all the work. 


DENMARK 


The Galathea Expedition fished in the bottoms of the Kermadec, 
Solomon, Banda, Java and Philippine deeps and found a variety of ani- 
mals and live bacterial cultures right down to 10,000 metres depth. Tem- 
perature and salinity samples were also taken, and production of organic 
matter was studied by means of Carbon 14. 


FOOD AND AGRICULTURE ORGANIZATION OF THE 

UNITED NATIONS 

This organization sponsored the creation of the Indo-Pacific Fish- 
eries Council. It is evident that oceanographic research in the tropical 
regions of Asia has been scanty. The lack of knowledge in the Western 
Pacific and Indian Oceans is one of the largest gaps in the scientific 
exploration of the earth. ‘The Indo-Pacific Fisheries Council has under- 
taken to promote the exploration and utilization of the fisheries of this 
region by member governments. Oceanography is an essential feature 
of the program. Australia, India, Indonesia, Japan, New Caledonia and 
the Philippines have conducted oceanographic programs in their own 
coastal waters. The Galathea Expedition from Denmark explored some 
of the waters of the Indian and Western Pacific waters, particularly the 
great depths. However, it seems that no organization is ready to under- 
take the over-all sustained exploration and research which is required 
to exploit the potential food supplies in these seas. The Indo-Pacific 
Fisheries Council proposes that all the countries in the area coordinate 
their efforts and pool their results so that each may profit from the work 
of all. A meeting which some of you attended was held a few days ago 
to discuss this project. If such a plan can be put into effect, it may well 
equal the excellent work of the Conseil Permanent pour I’Exploration 
de la Mer, and add materially to the food resources of southeastern Asia. 
The growing interest in oceanographic research by the countries of the 
south and southwest Pacific and the activities of the Indo-Pacific region 
seem most promising. 


GREAT BRITAIN 


Trom October, 1951, to January, 1952, the Royal Research Ship Dis- 
covery II made oceanographic surveys between Australia and Antarctica. 
The primary object of this work was to fill in the gaps left by the pre- 


REPORT ON OCEANOGRAPHY 13 


war survey of the Discovery Committee. “The properties of the water 
and the plankton were observed. It appears that there may be a source 
of deep, very saline water in the Tasman Sea moving eastward, counter 
to the circumpolar drift. 

In 1950, H.M.S. Challenger made an extended cruise across the 
Pacific Ocean. Echo soundings, temperatures, and water samples were 
taken to 3500 meters depth. The bottom morphology and submarine 
geology were studied by samplers and seismic methods. Magnetic obser- 
vations, plankton hauls and bird observations were also made. 


HAWAII 

The Department of Zoology in the University of Hawaii maintains 
a biological station from which studies of the surrounding seas are con- 
ducted. These are particularly concerned with the occurrences and 
catching of white bait. Recent researches have shown that tuna are 
attracted and induced to school by certain extracts of tuna and other 
fish. [his is a major discovery which may well revolutionize the fishing 
techniques. 


HONGKONG 

A Fisheries Research Unit has been set up within the precincts of 
the University of Hongkong. Financed from Colonial Development and 
Welfare Research funds, the Unit is housed in the Northeast Science 
Building. Such also contains the Departments of Biology and Physics. 

The Fisheries Research Unit is staffed by a Director, a Chief Scien- 
tific Officer, and three Assistant Scientific Officers. A steel-hulled modi- 
fied timber on the diesel power is under construction as a research ves- 
sel and will be launched under the name of “Alister Hardy” on 27 No- 
vember 1953. 

The research programme of the Unit is in course of formulation, 
and researches on (i) the biology of three of the most important com- 
mercial species of fish, (ii) the biology and pond cultivation of grey 
mullet, (iii) the methods and organization of freshwater fish culture, 
and (iv) the occurrence and distribution of freshwater and reservoir 
algae have been initiated. These will be supplemented by a preliminary 
oceanographic programme as soon as the research vessel has been com- 
mended. 


INDIA 

While not one of the Pacific nations, oceanographic investigations 
in India will be of importance in the immediate future because of the 
Indo-Pacific Fisheries Council. Until recently, very little attention has 
been given to oceanographic investigations. The Government of India 


14 EIGHTH PACIFIC SCIENCE CONGRESS 


constituted the Central Board of Geophysics early in 1949, and a special 
committee on oceanography functions under this board. Oceanographic 
studies have been initiated in the Central Marine Fisheries Research 
Station and by the Indian Meteorological Department. Investigations 
of the latter deal particularly with turbulence and microseismic waves. 
Continuous tidal stations are maintained by the Indian Survey. The In- 
dian Navy has conducted researches on underwater sound and the ver- 
tical thermal structure of the sea. 

The teaching of oceanography is carried on at Andhra University 
where physical oceanography is given in the Geophysics Department, 
marine geology and marine zoology in the respective Departments of 
Geology and Zoology. 


INDONESIA 

In 1948 an oceanographer, Mr. C. Ph. Veen, was attached to the 
Laboratory for Investigation of the Sea at Djakarta. As there were no 
sufficient instruments available at that time and as there was no vessel 
available, only surface salinities were taken into consideration. 

This was done with the help of lighthouses, taking daily samples, 
and with the help of merchant ships. These merchant vessels take a 
sample of sea water every month, wherever they may be. Gradually this 
service grew and nowadays there are about 125 ships concerned in the 
work, bringing in 42000 samples of water yearly to the Laboratory. “Iwo 
Dutch and one Danish shipping companies are involved. 

In the beginning only Indonesia waters were considered but later 
it became clear that for a thorough understanding of what was happen- 
ing with the currents during the different monsoons, an extension proved 
to be unavoidable. So nowadays samples are collected even in the Indian 
Ocean to the South and West of Indonesia and beyond the Torres Strait 
in the East and to the northwest in the China Sea up to Formosa. 

Out of all the data collected, monthly charts of salinities were 
mapped and three monthly means were drawn up for the full West and 
East Monsoon and for the times between. 

This was published up to 1951 in the periodical OSR NEWS and a 
second publication was made wherein all data of Schott, the Snellius 
and other sources were taken into consideration. ‘This too was published 
in the OSR NEWS. 

In 1952 a research vessel, the “Samudra,” was put into commission, 
given to Indonesia by the FOA administration of the United States, 
meant chiefly for the use of fisheries exploration but fully equipped for 
oceanographic research. _ It is too early now to give results. 

The biologist devoted some time to the work of the Indo-Pacific 
Fisheries Council, an international council sponsored by the FAO. Most 


REPORT ON OCEANOGRAPHY 15 


of the time was devoted to teaching and to training young Indonesians 
out of college, who wished to become assistant marine biologists. ‘The 
result proved to be heartening. 


JAPAN 


This island nation with its dense population is actually dependent 
upon the sea for its existence. It is not surprising, therefore, that the 
science of oceanography has received more encouragement to develop 
here than in any other country of the Pacific area. Courses are offered 
in the various phases of oceanography in many universities and much 
fundamental, basic research has been conducted by professors in these 
institutions. 

Japan has approached oceanography from the standpoint of fish- 
eries, meteorology, and hydrography, and all investigations and observa- 
tions have been coordinated by a Marine Research Council. All fish- 
erjes resources are receiving intensive study. The Meteorological Ser- 
vice makes numerous daily records of the sea water temperatures. The 
Hydrographic Office and Maritime Safety Agency is concerned with the 
charting of the seas and coasts, the tides, tidal currents, and tsunamis. 
The considerable resources of each agency are available to the others 
through the coordination council. 

There are eight Fisheries Research Institutions, the Hydrographic 
office, and five principal Meteorological observatories, and at least ten 
research ships. Each department has a series of journals which provide 
for publication of data, researches, and studies. 

In addition to these observing and applied research groups, the 
theoretical aspects are studied in the Geographical Institute, and in se- 
veral universities. “The Oceanographical Society of Japan provides a 
meeting place for the scientists and publishes a technical quarterly jour- 
nal. | 

Japanese oceanographers are studying the behaviour of the north 
flowing warm Kuroshio and the south flowing cold Oyashio, which are 
the dominant currents among the ocean currents. The advance of the 
Kuroshio in the summer, its retreat in winter, and its meandering are 
complementary to the Oyashio’s. 

A similar balance of currents occurs in the Sea of Japan, but with 
different emphasis on the cold and warm water masses. This cold 
water on the Pacific side may be invaded by warm water through Tsugaru 
Straits. These circulations are dominated by seasons and winds, and 
the coastal regions are modified by tides. Oceanographers are describing 
the character and behaviour of these water masses, which are of major 
concern to the fisheries and climate of Japan. 


16 EIGHTH PACIFIC SCIENCE CONGRESS 


In coastal waters the tides, tidal currents, waves and tsunamis are 
being studied so that they may be forecast for the safety of vessels and 
coastal populations. ‘The physical and chemical properties of the waters 
and their fluctuation with season, weather, and state of the sea, are 
important to fisheries and are being studied in all areas. The total of 
this work is enormous. 

The Japanese have given much attention to the development of 
methods, equipment, and material for oceanographic research. Standard 
sea water comparable to Copenhagen water is being produced. Revers- 
ing thermometers are being manufactured, and many new instruments. 
have been designed such as recording current meters, wave recorders and 
computers, bathythermographs, and a bathysphere. 


MALAYA 


Le Mare and Tham, in Malaya, have made a statistical analysis of 
the relation of physical and chemical factors with the quantity of trap- 
caught fish. ‘They considered wind, rainfall, temperature, salinity phos- 
phate and plankton pigment in relation to the catch of anchovy, sprat, 
dorab and Spanish mackerel in the Singapore Straits, and solved a re- 
gression equation for the independent variables. With this they pre- 
dicted the monthly catch through 1948 and 1949 within twenty percent. 

Admittedly their situation is particularly suited to these analyses, 
but they are, nevertheless, to be congratulated in solving this direct re- 
lation; and their methods may well be extended to similar fisheries else- 
where. 

This is an instance where one of the ultimate objects of oceanog- 
raphy has been accomplished. 


NEW CALEDONIA 


The Laboratoire Oceanographique de I’Institut Francais Oceani- 
que (The Oceanographic Laboratory of the French Ocean Institute) is 
undertaking a large fisheries research program, with financial aid of the 
South Pacific Commission. 

The Muséum National d’Histoire Naturelle of Paris has sent Pro- 
fessor Ranson to Tahiti to study the production of pearls and shell, and 
to determine the best methods of exploitation. He has introduced mo- 
dern methods of oyster culture with encouraging results. 


NEW ZEALAND 


Prior to the 7th Pacific Science Congress, there was little organized 
oceanographic research, although a number of individuals were actively 
engaged in various studies. Recently an intensive hydrographic sur- 
vey program, which also includes regular observations of waves and of 


REPORT ON OCEANOGRAPHY 17 


the properties of coastal waters, was undertaken. In 1950 the New Zea- 
land National Committee on Oceanography was formed as an advisory 
body to the Council of Scientific and Industrial Research. It has oper- 
ated in effecting liaison, sponsoring research projects and in advising 
the New Zealand government on oceanographic matters. In the field of 
physical oceanography, arrangements were made for the preparation of 
a bathymetric chart of adjacent seas, for the collection of continuous 
echo sounding profiles, particularly on voyages between New Zealand 
and Australia and outlying islands. Cooperation was given to several 
extensive expeditions working in the Antarctic and South Pacific areas. 
Many programs in oceanic biology have been inaugurated by several of 
the universities. 


PACIFIC OCEAN FISHERIES INVESTIGATION 

An extensive series of investigations is in progress dealing with 
the physical, chemical, and biological properties of waters of the Cen- 
tral Equatorial Pacific along with experimental fisheries operations. 
This is an effort to evaluate the situations in which fish, particularly 
tuna, are present or absent. They have described the water structure of 
the north and south equatorial currents, and the counter-currents be- 
tween them; have found a subsurface counter-current and a mid-ocean 
region of upwelling with high phosphates and much plankton. On 
the basis of these encouraging reports their work is being intensified. 
Much data has been collected in Hawaiian waters but has not yet been 
analyzed. 


PHILIPPINES 


From 1947 to 1950 oceanographic investigations were made in the 
Sulu and Celebes Seas by the Fish and Wildlife Service of the United 
States under the Philippine Fishery Program. During that period 526 
hydrographic stations were occupied. Observations made at each station 
included temperature, salinity, dissolved oxygen, phosphate, nitrate, hy- 
drogen ion, and silicate. The observations extended generally to a depth 
of 2000 meters and in some cases to a depth of 4000 meters. 

The waters surveyed included the Celebes Sea, the Sulu Sea, all of 
the smaller seas of the Philippines, the nearby waters of the South China 
Sea, and the waters of the Pacific east of the Philippines to a distance 
of about 300 miles from shore. Most of the areas were surveyed twice; 
once during the northeast mensoon and once during the southwest mon- 
soon. 

Following the termination of this operation in June, 1950, the U.S. 
Agency turned over a small ship and some oceanographic gear to the 
Bureau of Fisheries of the Philippines. 


18 EIGHTH PACIFIC SCIENCE CONGRESS 


Monthly surveys of selected areas have been made throughout a 
year or more to determine the cycles of oceanographic conditions and 
their relation to wind, weather, and season. Daily observations of sea 
water temperature and salinity are made at three shore stations. Water 
and air temperatures are collected by ocean shipping. 


SOUTH AMERICA 

For the vast oceanic areas in the eastern Pacific, off the coasts of 
South and Central America, organized programs of research have been 
exceedingly limited. However, in the past several years the Food and 
Agriculture Organization of the United Nations has done much to ini- 
tiate and stimulate investigations in oceanography and particularly in 
fisheries. 

The first part of an atlas of the coastal current of Peru and a series 
of monthly maps of the Peruvian littoral with indications of the average 
sea-surface temperature, air temperature, barometric pressure, wind direc- 
tion and force for the years 1946 to 1951, have just been published. The 
Guano Company has installed a central department of oceanography and 
ichthyology in their main office in Lima, from which three biological 
stations are administered. One station deals with the behaviour of 
oceanic birds, another is concerned primarily with plankton studies and 
the third with the biology of the anchovy. The Peruvian Navy as well 
as the Guano Company has cooperated with recent oceanographic expe- 
ditions in the eastern Pacific operated by the Scripps Institution of 
Oceanography and by Yale University. Educational work in Oceanog- 
raphy is just beginning. The Geographic Institute of the University 
of San Marcos recently gave a series of lectures on oceanography. The 
attendance in these lectures has been primarily graduates of the univer- 
sity who are teachers in the Peruvian public schools. 

Pure oceanographic research has not been conducted to any extent 
by Chilean investigators, the tendency being to study the sea as the 
habitat of organisms of commercial value. However, considerable basic 
data have been collected by the Chilean Navy and by merchant ships. 
Two biological stations, one operated by the University of Chile at 
Montemar and the other by the University of Concepcion in south cen- 
tral Chile, give promise of undertaking oceanographic research in the 
immediate future, due to the activities of representatives of the Food 
and Agriculture Organization and the Chilean Navy. 

The Food and Agriculture Organization and the Centre of Scientific 
Cooperation of UNESCO for Latin America are studying ways and means 
of organizing an international network of marine laboratories in Latin 
America. Laboratories on the Pacific coast will stress investigations of 


REPORT ON OCEANOGRAPHY 19 


the Humboldt and El Nino Currents. The cold Humboidt Current as 
well as the warm countercurrent of El Nino has a strong effect in the 
distribution of fishery resources as well as the climate of western South 
America. A regional fisheries council is being organized for South Amer- 
ica, and attention is being given to the establishment of centers for the 
training of personnel to engage in fisheries and oceanographic investi- 
gations. 


THAILAND 


Oceanographic work is just beginning. Tidal observations are 
being made, sea water temperatures and salinities are being observed, 
and a fisheries research laboratory is being established. Trained per- 
sonnel are required to lead this work. 

The Hydrographic Service of the Navy has a division of oceanog- 
raphy which is mainly concerned with the preparation of Annual pre- 
diction of tides and tidal currents in the Gulf of Thailand. 

Some salinity data has been collected near the mouth of the river 
at irregular intervals during the past two years. 

The Department of Fisheries established a Marine Station at Bai 
Be Rayong in 1953. ‘The program has not yet been established. 

It is hoped that the Hydrographic Service and the Department of 
Fisheries will co-operate in the collection of temperature and salinity 
data in the Gulf of Thailand, especially in the areas of the river mouths. 


UNITED STATES OF AMERICA 


Programs in oceanography are carried out more or less independent- 
ly by services of the federal government, by organizations or bureaus of 
the several states, and by some universities. 

The U. S. Coast and Geodetic Survey is occupied primarily with 
the charting of coastal areas, tidal studies, and investigations of tidal 
and nontidal currents. The Fish and Wildlife Service is concerned 
with oceanography in relation to fisheries and have conducted a large 
number of investigations in Alaska, Hawaii, the Trust Territories of 
the Pacific and off the Pacific coast of the United States. Numerous 
projects of the U. S. Navy are in progress and much fundamental re- 
search is sponsored by the Office of Naval Research through grants 
to universities. Planning of oceanographic studies is made by the 
Hydrographic Office of the U. S. Navy and this organization serves as 
a general clearing house for much oceanographic information. The 
U. S. Coast Guard has cooperated in furthering various studies. ‘The 
National Academy of Science and the National Research Council have 
done much to stimulate oceanography in the United States. 


20 EIGHTH PACIFIC SCIENCE CONGRESS 


Two international commissions, the International Halibut Com- 
mission and the International Salmon Commission, both established by 
treaty between the United States and Canada effectively operate in the 
conservation and studies of these two fisheries. 

The U. S. Fish and Wildlife Service, the California Academy of 
Sciences, Hopkins Marine Station of Stanford University, the California 
Fish and Game Commission, and the Scripps Institution of Oceanogra- 
phy of the University of California, have sponsored the Marine Research 
Committee. Working with three ships and a large staff this project 
has observed the currents, the properties of the water, and the marine 
organisms within a limit of 300 miles off the California coast in connec- 
tion with studies dealing with the life history and habits of the Cali- 
fornia sardine. These investigations have also contributed materially 
to the blue fin tuna. it 

The Scripps Institution of Oceanography, located at La Jolla, a 
part of the University of California, offers a series of graduate courses 
in practically all of the branches of oceanography. ‘This institution, 
since the last Congress, has conducted several extensive exploratory expe- 
ditions over much of the Pacific area. 

In California attention has been given to coastal wind phenomenon, 
the nature and extent of upwelling, studies of waves, beach erosion, 
submarine canyons, sea mounts and the various oceanic fisheries. 

The University of Washington with its laboratories in Seattle and 
at Friday Harbor now offers undergraduate training in oceanography 
in addition to extensive graduate work. ‘The research activities are 
primarily concerned with the oceanography of the coastal waters of the 
State of Washington, and the oceanography of numerous straits, sounds 
and estuaries. ‘There is considerable cooperation between the Depart- 
ment of Oceanography and the School of Fisheries. 

Because of the great industrial development and increasing popula- 
tion, the United States is faced with problems arising from the pollu- 
tion of coastal waters. Methods of predicting pollution and of utilizing 
local sea currents to effectively remove such pollution have been devised. 

In general, the United States is examining all phases of oceanog- 
raphy in their own coastal waters with particular emphasis on the 
mechanisms of currents, and waves and their variation with season and 
weather, as well as their relation to fisheries. Detailed studies of the 
bottom topography, submarine geology, properties of the water, and 
general oceanographic processes have been conducted. In addition, 
many transocean expeditions have been and are being made to all parts 
of the world to increase the knowledge of structure, properties of the 
water, currents, depths, bottom material and marine organisms. 


REPORT ON OCEANOGRAPHY 21 


The results of all of this work are available in special publications 
from the various institutions, State and Federal publications, and the 
journals of the learned societies. 

A series of investigations on fish poisoning and poisonous fishes of 
the tropical Pacific have been in progress at the School of Tropical 
Medicine at Loma Linda, California. These studies emphasize the 
necessity of toxic fishes and the nature of ichthyosarcotoxins. Lack 
of such knowledge tends to hamper the economic development of the 
shore fisheries of the tropical Pacific. 


VIET-NAM 


The 1949-53 period has been marked by a slowing of activities as 
related to the constitutional modification arising from the transfer. of 
the Institute to Viet-Nam, and with the strife in the Territory. 

An increase in activities started in 1952-53, and a more marked 
increase is expected in 1954. ‘The Institute presently has two labora- 
tory chiefs. There will be four in 1954. “Temporary foreign researchers 
are also requested for the laboratory. 

The work presented during the period was more particularly di- 
rected toward the investigation of the flora and fauna of Viet-Nam. 
A science Museum for this fauna containing actually 30,000 specimens 
or 3,000 species has been established. Study of the fisheries has also 
been overtaken, most particularly in the field of the technical knowl- 
edge of fishing gear at Viet-Nam. 

The results of the work have been the subject of more than 20 pub- 
lications of varying importance, appearing either in the publications of 
the Oceanographic Institute of Nhatrang or in foreign publications. 


WESTERN SAMOA 

The observatory of Apia is under the control of the Department 
of Industrial and Scientific Research, New Zealand. Investigations are 
undertaken in meteorology, terrestrial magnetism, seismology, and in 
more general fields such as tidal predictions. As far as oceanography 
is concerned the Observatory records the heights and times of tides and 
the daily sea temperature and density. ‘These results are forwarded to 
the U. S. Coast and Geodetic Survey. ‘The Observatory is also under- 
taking some experimental work on a solar still for the New Zealand 
Reparation Estates in Samoa. 


eo eee ee ow 


22 EIGHTH PACIFIC SCIENCE CONGRESS 
PART III 


REPORTS ON ACTIVITIES OF SPECIFIC COUNTRIES ON 
RESEARCH ORGANIZATIONS 


OCEANOGRAPHIC RESEARCH IN AUSTRALIA SINCE 1949 


By H. ‘THOMPSON 


1. Research Programmes in Progress 


In each of the Australian Universities small research projects on 
marine animals are being undertaken by post graduate students in the 
various Departments of Zoology. “These are not to be regarded as por- 
tions of an integrated programme of oceanographical research. Each of 
the six state Departments of Fisheries is concerned mainly with the ad- 
ministration of Fisheries Acts, but each undertakes some biological re- 
search on particular fisheries problems. 

The Division of Fisheries of Commonwealth Scientific and Indus- 
trial Research Organization at its headquarters, the Marine Biological 
Laboratory, Cronulla and at five field stations in various parts of Aus- 
tralia carries out a research programme in the following sections: (1) 
Oceanography including Hydrology and Planktology, (2) Biology in- 
cluding studies of fish, crustacea, shellfish, and whales, (3) Microbiology, 
(4) Underwater fouling of ships and structures. 


2. Division of Fisheries, C.S.I.R.O. P. O. Box 21, Cronulla, N.S.W. 


3. No institution gives specific training in oceanography though the 
Department of Zoology of each University gives lectures on marine or- 
ganisms and ecology. 


4. Australia as a member government of United Nations F.A.O. has 
maintained a close link with the Indo-Pacific Fisheries Council. Repre- 
sentatives have been sent to each of the meetings of the Council and at 
the 3rd and 4th meetings the Australian delegate was Chairman of Tech- 
nical Committee I. 


5. Summary of research results of C.S.I.R.O. Division of Fisheries. 

i) Oceanography 

Oceanic studies. F. R. V. “Warren” has carried out a number of 
oceanographical cruises in S.W. Australian waters. S°/,, O,, Inorganic 
P, Organic P, and Nitrate N. The results of these surveys are given in 
volume 3 of Oceanographical Station Lists. 


REPORT ON OCEANOGRAPHY 23 


R. R. V. “Discovery II” in 1950-51 worked 300-mile section lines, are 
off Sydney, Eden, Pt. Culver, Albany, and Rottnest Island. The data 
are not yet published but certain results are given in a paper entitled 
“A Comparison of the Hydrological conditions off the Eastern and West- 
ern coasts of Australia.” (I.P.F.C. Section II Proc. Madras meeting.) 


Through the courtesy of her owners, the T.S.M.V. “Wanganella” 
is now collecting surface salinity and temperature observations on her 
regular fortnightly cruises from Sydney to New Zealand. 

The salinity temperature characteristics of the surface Tasman Sea 
water masses have now been determined and their seasonal variation in 
position, particularly as they affect coastal waters, will be followed in 
the future. 

il) Coastal Studies 

The monthly sampling at various coastal stations in Eastern and 
Western Australia has been continued. <A very interesting long term 
trend in productivity and other hydrological characteristics is now ap- 
parent in E. Australian coastal waters during the period 1942-1952 and 
an account of this phenomenon is now being prepared for publication. 
The annual hydrological cycles at various latitudes along the Eastern 
Australian coasts have now been established. A paper is being prepared 
giving a comparative study of these annual cycles. ‘This coastal data 
up to 1950 are contained in volume 4 of O.S.L. 

iil) Estuarine Hydrology 

Since the publication of the comparative results to date of estuarine 
hydrological studies, (A.J.M.F.R. Vol. 2 No. 1 June 51,) these studies 
have concentrated on the detailed dynamics and the productivity fea- 
tures of selected estuarine systems. “The productivity characteristics of 
the intertidal region particularly in relation to oyster production, have 
been intensively studied and a generalized account of this work ap- 
peared in Rapp. et Proc. Verb. Vol. 131, 1952-C.1.E.M. 


AUSTRALIAN FISHERIES BIOLOGY SINCE 1948 


A. Unutilized or little-utilized stocks of aquatic organisms (discovery, 
fishing tests, stock identification, life histories, fluctuations):— 

(i) Tunas. As small fishery for Thunnus thynnus maccoyt, the 
outcome of investigations and fishing tests in the previous decade be- 
gan in southeastern waters. It is becoming evident that shoals of 
this species may occur further out to sea than was once supposed, and 
are sometimes scarce near the coast. ‘These fluctuations in availability 
are being studied. New facts about the distribution of Katsuwonus pe- 
lamis in southeastern waters, including its apparent preference for wa- 


24 EIGHTH PACIFIC SCIENCE CONGRESS 


ters of 16 to 18°C., were brought to light. A survey of tropical Austra- 
lian waters in the latter half of 1949 showed Kishinoella tonggol and 
Euthynnus alletteratus to be the most abundant tunas. In the waters 
of Australian New Guinea the principal species appear to be E. allette- 
ratus and Katsuwonus pelamis. 

(ii) Clupeoids and carangids. The existence of several stocks of 
Sardinops neopilchardus and Engraulis australis was demonstrated. Pro- 
blems of age-determination from scales of Sardinops were studied. As 
a result of previous investigations a small fishery arose on one stock 
of Sardinops in southwestern Australia. Echo sounder traces of shoals 
of Sardinops, Engraulis, and the carangid Trachurus novaezelandiae 
were identified. 

(uli) Archibenthic fishes. The larger teleosts and elasmobranchs of 
the continental slope, at depths of about 200 to 800 metres, are being 
investigated by long-lining in southeastern waters. 

(iv) Algae. Studies were made of the availability of the giant kelp 
Macrocystis pyrifera and its rate of regeneration after cutting. 

(v) Other exploratory investigations included: Continuation of sur- 
veys of fish resources in New Guinea, the northwest, and elsewhere; a 
special survey of unutilized stocks of Palinurid crayfishes in north- 
western waters; and attempts to locate reported new beds of pear! oysters 
(Pinctada) in the northeast. 


B. Utilized stocks (stock identification, life histories, natural fluctua- 
tions, effects of fishing):— 

(i) Barracotta (Thyrsites atun). Progress was made with the iden- 
tification of different stocks, all of which appear to be under-fished. 
Considerable seasonal changes in bodily condition were observed. 

(ii) Australian salmon (Arripis trutta). Progress was made with 
the identification of different stocks. As a result of previous investiga- . 
tions two salmon canning firms now use aircraft to locate shoals. There 
are no clear signs of over-fishing. 

(iii) Humpback whale (Megaptera nodosa). ‘The fishery revived 
on the west coast of Australia and commenced on the east coast. Biolo- 
gical data are being obtained at whaling stations. The length of this 
whale at first maturity appears to be less than was previously thought. 

(iv) Western crayfish (Palinurus longipes). The fishery expanded 
greatly, partly as a result of previous scientific surveys of the resource. 
Studies were made of intraseasonal migrations of crayfish from deep to 
shallow water, and across the shallows. As with the preceding stock, 
the possible necessity for future control of exploitation is being borne 
in mind. 


REPORT ON OCEANOGRAPHY 25 


(v) Sea mullet (Mugil cephalus). Attention is still being given to 
the possibility that the eastern and western Australian stocks are being 
overfished, but the most recent work is somewhat reassuring. 


(vi) Scallops (Notovola meridionalis). ‘The stock of the D’Entre- 
casteaux Channel, Tasmania, is declining, apparently by natural fluc- 
tuation. Biological observations were made by diving. 


(vii) School Shark (Galeorhinus australis). Tagging experiments 
revealed the existence of a single large stock in southeastern waters. It 
is declining under fishing and conservation measures have been recom- 
mended. Growth and reproduction rates are slow. 

(vill) Tiger flathead (Neoplatycephalus macrodon). The study of 
this species was continued, with special attention to growth and recruit- 
ment. Availability has greatly declined over the last thirty years of 
intense trawl fishing on the east coast, depleting is presumed, and con- 
servation measures have been recommended. 


(ix) Whitebait (Louettia seali). Two stocks of this small anadro- 
mous salmonoid were identified in Tasmanian waters. One now ap- 
pears to be depleted after heavy fishing and the other is under-ex- 
ploited. 

(x) Other fishes which are being studied include Nemadactylus ma- 
cropterus. Trachichthodes affinis, Mylo australis, Cybium commersont, 
Chrysophyrs auratus, Arripis georgianus and the elasmobranch Emissola 
antarctica. 


C. Acclimatization and culture of stocks:— 

(i) Japanese oyster (Ostrea gigas). ‘This species was successfully 
acclimatized, to the point of good growth and reproduction, in Tasma- 
nian waters. Further importations are being made. 

(ii) East Coast rock oyster (Crassostrea commercialis). Work to 
improve the already efficient oyster culture of New South Wales wa- 
ters has been continued and efforts have been made to introduce oys- 
ter culture into other areas. 

(iii) Pearl oysters (Pinctada spp.). ‘The possibilities of culture are 
being investigated in Torres Strait. Growth and reproduction of oys- 
ters of natural beds are being studied as a prerequisite. 

(iv) Introduced freshwater trout (Salmofario and S. iridens). ‘The 
possibility of maintaining certain populations without further planting 
of hatchery stock is being investigated. 

(v) Enrichment of inland waters. A substantial flora and fauna 
was developed in a barren mountain lake as a result of addition of nu- 


trients. It is now intended to study the effect of the introduction of 
fish. 


26 EIGHTH PACIFIC SCIENCE CONGRESS 


(vi) Estuarine ecology. Preliminary steps were taken to implement 
a programme of ecological studies in east Australian estuaries and la- 
goons. It is considered that there are possibilities of increasing fish pro- 
duction in these waters by control of environment of fish populations 
or both. 
D. Fouling of submerged structures:— 

The principal fouling organisms of the east coast were identified, 
and attention is being given to periodicity of settlement and rates of 
growth. \ 


4 


ANTARCTIC RESEARCH 


The Australian National Antarctic Research Expedition has main- 
tained physical and biological research stations at Macquarie and Heard 
Islands since 1948. The oceanographic work at Heard Island has com- 
prised a survey of the plankton and hydrological conditions in the re- 
gion of the island and a programme on marine fouling problems. Be- 
cause of the hazardous boating conditions at Macquarie Island very 
little work on plankton and hydrology has been attempted there. How- 
ever, some plankton hauls have been done and a programme of littoral 
ecology is being carried out. 

Sea water temperatures have been taken at three-hourly intervals 
during the voyages to and from Australia by the relief vessels which visit 
the islands each year. 

Sea elephants and sea birds visit these islands in large numbers to 
breed. The biology of these animals has been studied in some detail, 
wholesome work has been done on visiting species, such as the Leopard 
Seal. Reports on these projects are being compiled and will be pub- 
lished in the Expedition’s own series of publications. 

The main feature of the biological programme for the immediate 
future is a limnological study at Macquarie Island. 

The Australian Government has approved an extension of the Ex- 
pedition’s activities to the Antarctic mainland, in the Australian Sector. 
The programme for the summer of 1953-54 covers investigations of a 
preliminary character in geographical exploration and mapping, and 
the main investigations in physics, geophysics, and biology will com- 
mence in the second year. 


REPORT ON OCEANOGRAPHY 27 


BRITISH CONTRIBUTION TO THE OCEANOGRAPHY 
OF THE PACIFIC OCEAN 


By G. E. R. DEACON 


The Royal Research Ship ‘Discoverey II’ worked two lines of sta- 
tions across the East Australian Current in October, 1950, and another 
line across the Tasman Sea to Wellington in the same month. In No- 
vember she cruised southeast across the southern end of the Kermadec 
Trench to the Chatham Island plateau and into deep water as far as 
45°S 150°N. Observations were then made as far as the northern edge 
of the pack-ice in 60° 46’S, before she turned westward along the ice- 
edge to 63°S 175°E and northward back to New Zealand. After more 
observations between New Zealand, Macquarie Island and the ice-edge, 
and several lines of stations in the southern Indian Ocean and south of 
Australia, another line was worked across the southern part of the Tas- 
man Sea. This was followed by observations across the South Pacific 
Ocean, touching the ice-edge in 66°S 141°E and 64°S 78°W. 

The observations in the southwest Pacific Ocean give some support 
to an earlier indication that the deep water east of New Zealand is 
slightly more saline than the deep and bottom water south of the ‘T'as- 
man Sea, and revive the question of a possible weak source of highly sa- 
line deep water north of New Zealand. It is particularly difficult to 
draw conclusions about possible deep-water movements in this region 
from the distribution of temperature and salinity because the salinity 
differences below 2000 metres are very small. The same is true in the 
deep water southwest of Cape Horn, where the data give a possible in- 
dication that the eastward circumpolar drift may be offset to a small ex- 
tent by a movement of deep water from the Atlantic Ocean. 

The similarities between the deep and bottom waters of the ‘Tasman 
Sea and those of the Southern Ocean indicate that there is no effective 
barrier between them. Echo soundings between the New Zealand shelt 
and Macquarie Island show a very rugged bottom at moderately great 
depths, but give no evidence of a connecting ridge such as is drawn ten- 
tatively on some maps. 

Vertical and oblique hauls were made down to 1500 metres at the 
same time as the physical and chemical measurements, and records made 
of the sighting of whales and birds. The primary object of the work 
was to fill in the gaps of the oceanographic survey of the Southern Ocean 
made by the Discovery Committee before the last war. The data are 
being prepared for publication. 

H.M.S. ‘Challenger’, one of Her Majesty’s surveying vessels, made 
an extended cruise across the Pacific Ocean in 1950-51, taking echo 


28 EIGHTH PACIFIC SCIENCE CONGRESS 


soundings, temperatures and water samples down to 3500 metres, and 
carrying out investigations into morphology and submarine geology 
with the help of samplers and seismic methods. Magnetic observations, 
plankton hauls and bird observations were also made. 

Observations on the ascent and descent of the sound scattering 
layer at sunset and dawn were plotted against light intensity measured 
by a Secchi disc. ‘They suggested that the migrations depended only 
on light intensity with no regard to temperature gradients. The rate 
of descent averaged 14 feet per minute; the ascents were more variable, 
small groups of scatterers appearing to rise ahead of others, and the 
rate varied from 9 to 3 feet per minute. In 40°N 148°E photographs 
were taken of a a short-tailed albatross (Diomedia albatrus) which had 
been considered extinct for the past 15 years. 

A bottom sample was obtained from a depth of 5744 fathoms in 
the Mariana’s Trench. It has been described by the British Museum 
(Natural History) as “dark brown ooze containing many remains of 
diatoms and radiolaria.” 


CANADIAN PACIFIC OCEANOGRAPHY SINCE 1949 


By Joun P. TuLty 


Since the last Pacific Science Congress, Canada has made consider- 
able progress in oceanography. The nature and scope of our problems 
have been recognized. The plans for research and education have been 
established. The oceanographic resources have been organized. It will 
be sufficient to show you the high-lights of our problems, work, and 
organizations, and refer you to the bibliography for the details. 

Canada fronts on the Pacific, the Arctic and the Atlantic Oceans, 
which are completely different in character, climate, and behavior. We 
do not have the resources to conduct complete programs in all three 
at the same time, but we have managed to get the essential work done. 
df the total Canadian effort were concentrated in any one of these 
oceans, it would be one of the world’s major programs. However, the 
development of our fisheries, industries, and sovereignty has made in- 
creasing demands for information, particularly in the coastal approaches. 

A short description of the principal oceanographic features of these 
three oceans will help you to appreciate the magnitude and diversity 
of the Canadian problems. 

The Canadian Arctic is completely ice-bound from November to 
June each year. As the ice in Hudson’s Strait and Baffin Bay breaks up, 
it is carried southward, by the Labrador Current, to meet the Gulf 


REPORT ON OCEANOGRAPHY 29 


Stream off the Atlantic Coast of Canada. Hudson’s Bay is an inland 
sea, similar in many respects to the Baltic. It is shallow, the waters are 
brackish, and the ice melts where it is during the short, hot summer. 

This melting, and the annual migration of ice out of the Eastern 
Arctic leaves a summer sea route open into Hudson’s Bay where the port 
of Churchill has been established at the railhead. 

The oceanography and fisheries of this region are being studied by 
the Atlantic Oceanographic Group and the Fisheries Research Board. 

Off the Atlantic Coast of Canada, the cold currents flowing south 
from Greenland meet the warm Gulf Stream floating northward. This 
is one of the great fishing areas, and the world’s most travelled sea 
route. It is bitterly cold in the winter, and sub-tropic in summer. Ice- 
bergs are frequent and dangerous. Oceanography in that area is con- 
cerned with the movements and properties of the water that affect the 
fisheries and ice movements. 

The Atlantic Oceanographic Group, working with three ships, has 
explored the waters of the Gulf of St. Lawrence, the Scotian Shelf and 
Grand Banks, and northward into Davis Strait, Baffin Bay, Hudson’s 
Strait, and Hudson’s Bay. They have identified the water masses and 
currents, and are studying their seasonal and annual variations. This 
group carries out extensive oceanographic studies. Also it helps to 
plan the work of a number of contributing organizations, and to ana- 
lyze the date. Every opportunity is taken to make use of Hydrographic 
Fisheries and Naval vessels in the area. 

The ice in the Beaufort Sea and Western Arctic melts in June and 
the ice barrier retreats northward to latitude 75°N. However, the 
oceanography is such that great point of ice reaches south to Point 
Barrow in Alaska. This effectively keeps ships out of the area until 
the end of July, and closes the area early in September, even though 
the Beaufort Sea itself is open to navigation. 

The Pacific Oceanographic Group and the U.S. Navy Electronics 
Laboratory have jointly explored this region each summer since 1949 
and are developing the oceanography of this wind dominated, tideless 
sea. 

The Canadian Archipelago is the barrier between East and West. 
Some of the greatest expeditions of discovery were lost here while seek- 
ing a Northwest Passage. The place names are cenotaphs of daring, 
hardship, and disaster. ‘The ice melts slowly, and has very little freedom 
of movement in these shallow channels. Consequently the Northwest 
Passage has only been navigated a few times. The most notable achieve- 
ments are the passages of the Royal Canadian Mounted Police vessel 
St. Roche commanded by Sergeant A. Larsen. They patrolled this re- 
gion for twenty years, making five complete passages. Two years were 


30 EIGHTH PACIFIC SCIENCE CONGRESS 


required for each trip and the ship was “frozen in” for the winter each 
time. 

It has been said that there are a thousand ships in the Atlantic 
for every one in the Pacific. “This is certainly true in the Pacific ap- 
proaches to Canada. There is little or no trans-Pacific traffic. Fisheries 
and commerce are contained in the inland seaways, and within sight 
of land. The oceanographic explorations have been made by the Pacific 
Oceanographic Group, working with ships provided solely for this pur- 
pose by the Navy, the Hydrographic Service, and the Fisheries. 

Thus the Pacific Group has had to devote most of its effort to ob- 
servation. 

The Pacific Coast of Canada is situated where the west-wind drift 
current (Japan Current) across the ocean divides, part going north to 
form the Alaska Gyral and part going south to form the California Cur- 
rent. The currents off the Canadian coast are slow (10 to 20 miles a 
day) and confused. ‘There are considerable changes from year to year 
as the west-wind current shifts north or south exposing the region 
alternatively to Sub-Arctic or Sub-Tropic waters. 

Five large synoptic surveys of this region were made in successive 
seasons from 1950 to 1952, and the oceanography has been described. 

The Pacific Coast is also remarkable for the line of barrier islands, 
and the great runoff from the large rivers. ‘There are a series of sounds, 
inlets, and straits. Each of these supports valuable local populations 
of salmon, herring, and other commercial fishes. Many of them are 
dominated by great tidal currents, and fresh water from the land. Each 
area is a complete oceanographic system, differing from its neighbors 
and from the ocean in many ways. 

Each day at high tide a sample of sea water is taken at fifteen posi- 
tions along the coast. The temperature is recorded, and the samples 
shipped to the base laboratory at Nanaimo, where the salinity is deter- 
mined. ‘These data are published annually and are widely used by 
fisheries, meteorologists, and shipping. 

It has been found that these data define the seasonal cycles in the 
sea, mark the differences between regions along the coast, show the dif- 
ferences between years, and are generally an index of the oceanographic 
conditions. They have been correlated to the winds, the currents, and 
to the fisheries in Canadian and neighboring waters. ‘They form a calen- 
dar of oceanography to which all other studies in the sea can be related. 
These daily seawater observations are one of the most important, and 
at the same time the cheapest of our oceanographic programs. 

Exploratory surveys have been made in most of the seaways and 
the ocean. This is being followed by detailed studies in each region to 
determine their structure, and mechanism, and seasonal cycles of 


REPORT ON OCEANOGRAPHY 31 


changes. Surveys are made at weekly or monthly intervals throughout a 
year or so. The oceanographic state is related to the weather, the run- 
off, and to daily seawater observations. ‘Thereafter, these readily ob- 
servable characters are used as indices to recognize the oceanographic 
states, and in some cases to predict the conditions. ‘The tedious and 
costly surveys are only carried on long enough to establish the relations 
with the daily observations. “This is a very simple and effective plan 
which allows for the accumulation and use of oceanographic knowledge. 

Juan de Fuca Strait is a broad (11 miles) deep (100 fathoms) chan- 
nel connecting the ocean with the inland sea of Georgia Strait. It con- 
tains most of the shipping and the principal migration route of the sal- 
mon and herring. Here the tidal currents are reversing at all depths 
and are linear functions of the difference of tidal height between the 
ocean and Georgia Strait. ‘The tidal wave progresses along the strait 
at about 30 knots, less than a fifth of the theoretical speed. ‘The reasons 
for these effects have not been solved as yet. However, a system of pre- 
diction of the tidal currents at all depths has been worked out, and is 
as accurate as the normal weather variations will allow. 

At the northern end of Georgia Strait the tidal flow through the 
narrow passages is purely hydraulic. At Seymour Narrows the currents 
attain thirteen knots, the fastest in the world, and are in effect two-way 
falls. Because of the great velocities there is a half-foot depression of 
mean sea level. Evidently mean sea level determinations should not be 
made in the vicinity of rapid currents. 

Georgia Strait, Chatham Sound, and a number of the coastal inlets 
have been the subject of intense studies. ‘These regions are dominated 
by the outflow of the major rivers. The fresh water flows out over the 
surface, mixing with the sea water as it goes. It forms an upper zone 
of brackish water which oscillates with the tide, but moves persistently 
seaward. The brackish water occurs as clouds which represent the river 
discharge during the falling tide. During the rising tide the sea water 
intrudes the estuary and stops the outflow. As the clouds move about 
in the vicinity of the river they become more saline and override earlier 
clouds, and so form multiple layers. 

In all these systems the water tends to form layers in which the 
salinity varies as the logarithm of depth. The reason for this has not 
been determined. However, its occurrence has been established, and 
has been used to considerable advantage in analyzing the structure and 
origin of the waters. 

Some progress has been made in the use of hydraulic models for 
the study of harbours, bays, inlets, and narrows. ‘These are systems 
where the boundary conditions are known. We have just completed a 
study of Alberni Harbour. ‘Tides are generated by the inflow of out- 


32 EIGHTH PACIFIC SCIENCE CONGRESS 


flow of sea water, controlled by a four-component tide machine. Fresh 
water is discharged from the rivers, and forms an upper zone similar 
to that in nature. The model is studied by observing the salinity dis- 
tribution, just as is done at sea, and by coloring the several water sources 
and making colored pictures of the model in action. 

The model approach is cheaper and more satisfactory for the study 
of limited seaways than the conventional series of oceanographic obser- 
vations. ‘These two-fluid models are invaluable aids for defining the 
oceanographic structure and circulation in complex coastal seaways. 
They provide realistic data for sewage and pollution studies, and if 
they are not completely quantitative, they provide a good qualitative pic- 
ture so that the oceanographer will know what to look for in the sea. 

Applied oceanography is a considerable part of our research. The 
most important application, at present, is the disposal of domestic and 
industrial sewage and the control of pollution. 

The city of Vancouver lies on a point of land between Burrard In- 
let and the Fraser River. The city has grown to 500,000 people, and 
shows every evidence of growing to a million people in the next forty 
years. The Fraser River discharge oscillates with the tides but moves 
persistently northward around the foreshore. At the present time, the 
sewers discharge into the sea and the river all around the city. There 
are many excellent bathing beaches, but these are fouled by sewage, and 
will become worse as the city grows. 

We studied the situation to find points of discharge where the 
sewage would be carried out into Georgia Strait, rather than along the 
beaches. Such a position was found, south of the North Arm of the river. 
From here the water is carried northward, outside the North Arm water. 
This solution has been accepted by the city, and the inhabitants are now 
consolidating their sewage disposal system in this site. 

Similar sewage disposal problems have been solved at other coastal 
cities, and particularly at industrial sites. A number of pulp mills have 
been established in the province. Their waste discharges are toxic to fish 
unless quickly dispersed. It is the general practice for the oceanogra- 
phers to examine the mill plans, especially the disposal system, and 
work with the industry to provide a safe discharge. ‘This service is 
appreciated because it safeguards the fishery and relieves the mill owners 
of responsibility for pollution. 

In our area oceanography is not regarded as a science in itself; 
rather it is a field in which the sciences are applied. Hence we have 
the application of the many phases of physics, chemistry, zoology, geo- 
logy, and engineering in the ocean, in seaways, in rivers, and in lakes. 


REPORT ON OCEANOGRAPHY 30 


The Institute of Oceanography at the University of British Colum- 
bia provides post-graduate courses in physical, chemical, and biological 
oceanography leading to Master’s and Doctor’s degrees in each science. 
Research at the Institute is mostly concerned with fundamental prob- 
lems in oceanographic processes such as mixing, internal waves, chemical 
activity of sea water, the relation of fishes to their environment, and the 
geological processes at work. 

The National Organization that makes all this work possible is 
simple and economic. While Canada may be counted as one of the well- 
to-do nations, the resources for oceanographic research are definitely 
limited. This is a notoriously expensive field of study requiring ships, 
crews, costly equipment, and highly trained personnel. Prior to the 
war a large number of agencies dabbled in oceanography, but made 
little or no progress because they could not finance the work. However, 
after the war all the government departments that were concerned with 
oceanography pooled their efforts in the Canadian Joint Committee on 
Oceanography. ‘The National Research Council, the Navy, the Defense 
Research Board, the Fisheries, the Hydrographic, and the Meteorological 
Services, are all members. Each contributes money or facilities, and 
the Atlantic Oceanographic Group (A.O.G.) or the Pacific Oceano- 
graphic Group (P.O.G.) carry out the research programs. ‘The Oceano- 
graphic Committee of the Royal Society holds an annual symposium. 

There are three oceanographic ships on the Pacific Coast, and four 
on the Atlantic. These are operated by the Navy, some with civilian 
crews, and some with Naval crews. Base Laboratories are provided by 
the Fisheries Research Board on each coast. Publication is provided in 
the Journal of the Fisheries Research Board, the Canadian Journal of 
Research, Proceedings of the Royal Society and a Manuscript Series 
from each Oceanographic Group. 

In general, the Oceanographic Groups undertake all surveys and 
longterm observations, applied problems, and large fundamental pro- 
blems. This consolidation is a great saving because it is often possible 
to satisfy several demands from the same set of data. For example, the 
daily seawater observations provide indices of submarine climate for 
the fisheries and an index of oceanographic conditions. 

The arrangement has worked satisfactorily for eight years, and is 
gaining wider acceptance and support all the time. 


34 EIGHTH PACIFIC SCIENCE CONGRESS 


INSTITUTE OF OCEANOGRAPHY, UNIVERSITY OF BRITISH COLUM- 
BIA: Note on Work Since 1949 and Future Plans (By G. A. PICKARD) 


The Institute of Oceanography of the University of British Colum- 
bia has decided to devote most of its effort to a study of oceanographic 
problems in the inlets of the B.C. coast. Before embarking upon a de- 
tailed study of any one inlet, the Institute carried out during the sum- 
mers of 1951 and 1952 a survey of most of the major inlets in the B.C. 
mainland coast to extend the information then available. It is planned 
to extend the study to the inlets of the Queen Charlotte Islands in 1953. 


Morphology of the Inlets. 

The inlets vary in length from 5 to 90 miles, are 14 to 3 miles wide, 
and generally possess many abrupt bends. Only a few of the inlets had 
been sounded before the 1951 cruise and so observations of depth were 
made along the length of the inlets. The average depth is about 1100 
feet (340 m.), depths of 1800 feet (550 m.) are common, and the maxti- 
mum is about 2400 feet (740 m.). In some cases the bottoms are regular 
but in the majority of cases considerable irregularities are observed. 
Only two inlets have marked sills 150 feet (45 m.) while no very shal- 
low sills such as occurring in the Norwegian fjords are known. ‘The 
most typical transverse section has the form of a truncated V, the rocky 
sides of the inlets having slopes as steep as 45° while the mud bottom 
is flat and level within the accuracy of a competent hydrographic 
survey. 


Botiom Sediments. 

The predominant material is a finely divided grey mud. 93% of 
the bottom samples taken in the survey contained mud, 22% contained 
some sand and only 12% contained pebbles. Only 2 in 73 samples 
smelled perceptibly of H,S. 

The bottom samples from Bute Inlet have been examined in detail 
and are found to be predominantly silts with the sand fraction never 
exceeding 5% except in areas off the mouths of inflowing rivers where 
the sand fraction may be as much as 25%. ‘The sediments are dark grey 
when wet and light grey when dry. Quarts, feldspar and mica are the 
predominant minerals. The organic content is less than 1% and the 
calcium carbonate less than 1%. Diatoms are abundant and foramini- 
fera and sponges are evident near the mouth of the Inlet. 


Water Structure. 
It is apparent that, with one possible exception, all the inlets are 
estuaries in the current oceanographic sense of the word in that the sea 


REPORT ON OCEANOGRAPHY 30 


water in them is appreciably diluted with fresh water in the upper lay- 
ers. ‘his fresh water comes from the rivers, mostly glacial in origin, 
which empty into the heads of almost all the inlets, and it is the lack of 
such a river which distinguishes the upper 10 miles of Belize Inlet from 
the remainder. This is the only region in which there was any evidence, 
in the form of oxygen depletion, of stagnation. 

The depth of the mixing layer between fresher surface water and 
deeper saline water varies from 3 to 10 meters in different inlets and 
in some Cases varies somewhat in depth along individual inlets. There 
is ample evidence in the drift of the vessel, and from current measure- 
ments, of the outward flow of the surface water. In many cases there is 
a very marked velocity shear in the mixing layer, the major part of the 
change in velocity taking place in as little as 14 to 1 meter. At the 
heads of the inlets the fresh water forms a sharply defined layer over the 
saline water but the mixing which occurs along the length of the inlet 
results in a more gradual change of salinity with depth toward the 
mouth of the inlets. It appears that the change from the two-layer 
system to the continuous distribution takes place to the same extent 
irrespective of the length of the inlet—the significance of this fact is not 
yet fully understood. 

The greater part of the fresh water resides in the top 20 m. of the 
water and below about 30-50 m. Each inlet shows only a slight change 
with depth or with longitudinal character. 

In the summer the temperature of the upper water is increased 
above that of the deeper water by solar radiation but rarely rises above 
17°C, while the deeper water temperature lies between 5.5° and 7.5°C. 

The deep water in the southern inlets (south of Knight Inlet) aver- 
ages about 30% salinity and 7.5°C temperature while the corresponding 
values for the northern inlets are 32.5% and 6.5°C. 

A feature of the vertical temperature distribution, not previously 
reported, is a temperature minimum, at intermediate depths, which va- 
ries in character during the year. In several of the inlets the temperature 
passes through a minimum value at 50-60 m. depth, increases to a maxi- 
mum at 60 to 100 m. and then decreases slowly to the bottom. The 
water in the minimum temperature layer is colder but slightly less saline 
than the deeper water. In Bute Inlet, where this feature has been 
studied in most detail, it is found that this low temperature layer comes 
into existence suddenly about February and gradually dissipates until 
it becomes indistinguishable by the end of the year. It is at present 
thought that this layer results from the cooling of surface water during 
the period of lowest air temperature when the salinity is at its highest 


36 EIGHTH PACIFIC SCIENCE CONGRESS 


but there are still some features which suggest that this may not be 
complete explanation. 


Internal Waves. 

Another characteristic of the B.C. inlets not previously described 
is the existence of marked internal waves both at mid-depths and also 
near the surface. ‘The mid-depth internal waves have been observed 
in most detail in the region of the temperature minimum at depths be- 
tween 50 and 150 meters in series of bathythermograms made for periods 
up to 70 hours. They have periods of approximately 12 or 24 hours and 
amplitudes up to 20 m., but it is as yet uncertain whether these waves 
are progressive or standing in character. 

The most marked shallow internal waves have been observed in 
Knight and Observatory Inlets in the boundary between the brackish 
surface water and the deeper saline water. ‘The depths of the boundaries 
at the time were 5 and 8 m. respectively and the internal waves had 
amplitudes as great as 8 m. and periods from 1.3 to 2.6 minutes. These 
shallow internal waves are observed in the vicinity of the sills in these 
inlets when the tide is turning to the flood. It is believed that they are 
a consequence of instability in the flow associated with the considerable 
velocity shear which exists at this time. 


Velocity Structure. 

A start had been made in obtaining vertical velocity profiles in 
some of the inlets. “The depth (650 m. or more) makes anchoring dif- 
ficult but some preliminary results have been obtained. ‘These confirm 
the outward flow in the brackish layer, with up-inlet flow below this, 
and considerable shear in the region of the halocline. Unfortunately 
the tidal currents are superposed upon the estuarial flow and since their 
detailed distribution with depth is not at all well understood, it has 
not yet been possible to separate the estuarial components alone. 


Zoological Collections. 

During the 1951] survey trawling was carried out in shallow waters 
in many inlets, while plankton hauls were made at regular intervals. 
Over 1100 fish of 55 species representing 19 families were taken, cottids 
(sculpins) and peuronectids (soles) being most common. No species not 
previously reported in B.C. waters were taken but a number of uncom- 
mon ones were observed and an extension in range of several varieties 
was noted. 

Both phytoplankton and zooplankton collections were made but 
only the latter have yet been examined. The total settling volume of 


REPORT ON OCEANOGRAPHY 37 


plankton per cubic meter of water varied from 0.01 to 55 cc. while the 
zooplankton volumes averaged between 0.5 and 1 cc. A preliminary 
examination of the individual samples indicates definite species differ- 
ences with depth, position in an inlet, and from inlet to inlet, and an 
attempt is being made to correlate the distribution with temperature 
and salinity. The most abundant groups were Copepoda and Clado- 
cera, which often occurred in complementary proportions. The former 
were more abundant in the deeper (and usually more saline) water, 
whereas the latter were more common in the upper layer of less saline 
water. The Cladocera were often the only zooplankton present in the 
upper, brackish water. 


Future Policy. 

The immediate aim of the Institute’s field observation programme is 
to obtain more detailed information about the current distributions, 
both in depth and transversely, with the object of separating the tidal 
and estuarial components. Further observations of the mid-depth in- 
ternal waves are planned in order to determine their frequency and 
whether they are progressive or stationary. 

A study of the plankton populations is also being made in order 
to determine if there are any correlations with the circulation. 

Cameron (1951) has demonstrated the relationship between the 
mass and velocity distributions in a deep inlet. He has introduced into 
the equations of motion in a two-dimensional tideless mathematical 
model, and analytical expression of the presumed transport and derived 
a mass field which is similar to that observed in typical B.C. inlets. 

He has presumed eddy frictional force proportional to the vertical 
gradual of shear, and retaining the vertical terms, has indicated the 
existence of a critical transport in the steady state. The soleaoidal field 
resulting from the fresh water distribution is sufficient to maintain 
a steady state of field acceleration and balance frictional forces similar 
in magnitude to those derived by Jacobsen. 

He is continuing his investigation into the possible effect of tides 
in such an inlet. There is evidence to suggest that their dynamics may 
contribute to the maintenance of an average baroclinic field and that 
the present concept of the role of eddy forces may be exaggerated. 

The Institute has supervised the analysis of hydrographic and 
oceanographic data obtained in the southeastern Beaufort Sea in 1951 
and 1952. Cameron has reported (1951, 1952) that the influence of 
the MacKenzie river on the circulation of the contiguous inshore wa- 
ters is predominately to the east of the MacKenzie delta. He has demon- 
strated the important effect of winds on the distribution of the fresh- 
water discharged by the river. 


38 EIGHTH PACIFIC SCIENCE CONGRESS 


McAllister (1953) has reported that the distribution of surface 
plankton in the southeastern Beaufort Sea reflects the physical ocean- 
ographic features of the area. His analysis indicates that the produc- 
tivity of the region is significantly lower than that of the Chutchi Sea. 


BRIEF REPORT ON OCEANOGRAPHICAL RESEARCHES 
IN CHINA 


By Cuu Tsu-YAo 


Before World War II there were many people in universities who 
studied Marine Biology. Some papers were published. Some meteoro- 
logical observatories took observations of water temperature and salinity 
of the coastal waters. ‘These research works have been interrupted since 
the beginning of the war. Now, in Taiwan, we carry on research work 
in different phases of Oceanography. For example Dr. Ma, who is a 
geologist in the Taiwan University, studies the topography of the sea 
bottom, coral reefs, etc. Mr. Ko, who is a zoologist in the Teacher’s 
College of Taiwan Province, studies the economic fishes in the district of 
Taiwan. The Research Laboratory of the Fisheries Rehabilitation Ad- 
ministration and the Fisheries Institute of Taiwan Province make stu- 
dies both on biological and physical oceanography. Besides, the Tai- 
wan Weather Bureau maintains fine stations on the coast in which we 
take observations of water temperature and salinity regularly. We are 
planning to establish a research Center on fisheries and oceanography 
hoping to unite all the people concerned in one organization. Perhaps 
we can get some aids from the MSA mission to China. Research work 
in Oceanography is expensive and China financially still is not very 
stable. Owing to the shortage of funds and lack of technical experts, 
some difficulties may be encountered. We will do our best to overcome 
all these difficulties in the hope of making progress step by step. We 
also hope to participate in all activities in cooperation with other coun- 
tries in research work in the oceanography of the Pacific. 


OCEANOGRAPHY IN INDIA 


By N. K. PANIKKAR 


It cannot be said that oceanographical research work is receiving 
active attention in India, although a great deal of preliminary effort is 
being made to organize research on the various problems. What little 


REPORT ON OCEANOGRAPHY 39 


work is being done is with a strong bias to biological and fisheries 
topics. Plans are afoot, however, for the eventual setting up of an 
Institute of Oceanography to cover both biological and physical-chem- 
ical aspects. 

During the British administration, considerable amount of ocean- 
ographic work was carried out by Col. R. B. S. Sewell while he was 
Surgeon Naturalist to the Government of India and later on Director 
of the Zoological Survey of India. He studied the temperature and 
salinity of the waters around India down to 500 fathoms depth and 
the results were published in a series of papers. During the “John 
Murray” Expedition which was led by Sewell, an attempt was made 
to carry out a complete investigation of the physio-chemical characters 
oi the sea water as well as of the fauna and the general topography of 
the Arabian Sea and Gulf of Oman. After the country attained inde- 
pendence, more attention is being paid to oceanographic research and a 
beginning is being made in sponsoring work relating to this throught 
the various governmental agencies and universities. 

In view of the great importance attached to Geophysical problems, 
the Government of India constituted the Central Board of Geophysics 
early in 1949 and a special committee for Oceanography has also been 
set up by this body. One of the chief centres where oceanographic 
work is initiated is the Central Marine Fisheries Research Station, Man- 
dapam (S. India). 

The oceanographic studies carried out in the Central Marine Fish- 
eries Research Station are with a definite bias to the development of 
fisheries, although a certain amount of pure scientific studies is under- 
taken for a complete understanding of the marine environment support- 
ing the fisheries. Attention is centered around chemical and biological 
aspects at present. The fluctuations in the nutrient salts, oxygen, salin- 
ity, temperature variations, etc. in the inshore waters; bacterial flora 
and their role in the food chain of the sea; qualitative and semi- 
quantitative study of the phyto- and zoo-plankton, their distribution 
and their variations in time and space, bottom fauna, etc., some of the 
organic production in the waters around India, have been started. As 
a result of collaboration with the Indian Naval Vessels patrolling coastal 
waters, it was possible for the Station to collect hydrological data (tem- 
perature, salinity and pH) at about 25 stations in the Bay of Bengal 
and readings were also taken with the Bathythermograph of the tem- 
perature at different depths. Very interesting results on the thermo- 
clines at the head of the Bay of Bengal have been obtained. A scheme 
for the collection of water samples from areas traversed by Indian 
Naval Vessels is already in existence, by which Naval Vessels send to 


40 EIGHTH PACIFIC SCIENCE CONGRESS 


the Central Marine Fisheries Research Station water samples collected 
from various localities with details of temperature and exact location 
of stations from where samples are collected, and these samples are sub- 
sequently analyzed. A further extension in the collection of water 
samples through the Merchant Naval Vessels is at present under con- 
sideration. 

Some work is also being carried on by the Indian Meteorological 
Department particularly relating to turbulence and microseismic waves. 
The survey of India maintains continuous tidal recording stations in all 
major ports. The Indian Navy has a research laboratory at Cochin, 
on the west coast, where research on underwater sound and oceanogra- 
phy is undertaken. They are now in the process of setting up a wave 
recorder and are also studying the vertical thermal structure of the sea. 
Future plans also call for seismic studies of the sea floor. The survey 
ship INS “Investigator” conducts hydrographic investigation along the 
extensive 2900-mile coast of India. 

The teaching of oceanography is carried on at Andhra University, 
Waltair; physical oceanography in the Geophysics Department, marine 
Geology and marine Zoology in the Geology and Zoology Departments, 
respectively. The University is conveniently located on the central part 
of the east coast adjacent to an excellent harbour, Visakhapatnam. 
Cruises have been made out of Visakhapatnam along the east coast be- 
tween Calcutta and Madras, and one extending around the southern 
tip of India to Cochin. On these cruises students are trained in the 
especially interesting, primarily because the currents are completely 
reversed when one monsoon is replaced by the other. There is great 
dilution from the enormous rivers; the submarine canyon ‘‘Swatch of no 
Ground,” probably sets forth turbidity currents; and upwelling and 
sinking appear to be present at different seasons. Recently work on 
these lines has been initiated by a visiting scientist, Prof. E. C. la Fond, 
from the U.S.A. 


PHYSICAL OCEANOGRAPHY IN JAPAN 
IN THE PERIOD 1949-53 


By Koji Haka 


1. INTRODUCTION 


This is the report on the activities in physical oceanography in 
Japan for the years 1949-1953, or since the Seventh Pacific Science Con- 


REPORT ON OCEANOGRAPHY Al 


gress was held in New Zealand in 1949. A summary of the activities in 
the universities, institutions and government organizations will be re- 
viewed. 


2. OCEANOGRAPHIC OBSERVATIONS IN JAPAN DURING THE Prriop 1949-53 


Oceanographic observations in our adjacent seas are now being 
carried out very frequently, with the surveying ships of the Hydrogra- 
phic Office, Maritime Safety Agency, Tokyo, Seven Fisheries Research 
Laboratories, and the Central Meteorological Observatory, ‘Tokyo, in- 
cluding its four subordinate marine observatories, and some local agen- 
cies subordinate to them. The elements observed range over almost 
all branches of physical, chemical, biological and geological oceanogra- 
phy. The activities were no doubt interrupted by World War I, but 
they are now getting rapidly recovered. Still the facilities and the ap- 
paratuses are so inadequate that the observations are mostly confined 
to the layer shallower than 1000 to 1500 meters. We imported bathy- 
thermographs, and many ships now are equipped with lorans and ra- 
dars. Still we do not have a great number of observations in all layers 
from the surface down to the ocean floors. At the same time it is de- 
sired that the instantaneous states of the oceanic phenomena should 
be caught with great accuracies. 

The above organizations responsible for oceanographic research are 
divided into three groups, namely: 

1) The Hydrographic Office, Maritime Safety Agency, Tokyo. 

2) The Tokyo and six other Fisheries Research Laboratories, dis- 

tributed over this country. 

3) The Meteorological Observatory, Tokyo, and subordinate Marine 
Observatories at Hakodate, Kobe, Maizuru and Nagasaki, and 
some coastal meteorological stations. 

The Hydrographic Office, Maritime Safety Agency, which celebrated 
its 80th anniversary in 1951, has been carrying out hydrographic obser- 
vations once to three times a month with the Surveying ships “Kaiyo” 
No. 4 and “Kaiyo” No. 5 and “‘Tenkai No. 1,” the explored areas being 
seas around Kyushu, seas to the south, southeast and northeast of Hon- 
shu, a part of Japan Sea, seas around Hokkaido, etc. In September 
1952, they lost “Kaiyo No. 5” by a submarine eruption to the south of 
Japanese Island. (M. Nakano KH, 2, 1952). 

Current measurements continuing for 15 days were carried out at 
the central part of the Hirado Straits, Kyushu, during July and August 
1948, in the Shimabara Kaiwan, Kyushu, during the period July to 
September 1949, and in the Yatsushiro Sea, Kyushu, during the period 
July to August 1950. The number of current stations where the meas- 
urements continued for one day amounts to 61 in 1948, 39 in 1949 and 


42 EIGHTH PACIFIC SCIENCE CONGRESS 


127 in 1950. Special observations where the measurements continuing 
for less than one day have been made at many stations. This organi- 
zation is now directed by Dr. Kanji Suda, and Terutoshi Nakamiya 
takes charge of the Hydrographic survey. 

In 1949, the governmental fisheries organizations were divided into 
seven Research Laboratories. ‘Tokyo Fisheries Research Laboratories, 
now directed by Dr. Gensho, has carried out monthly observations be- 
tween Tokyo and Hachijo Island with the M.S. “Soyo Maru” and 
“Tenyo Maru’. Stresses are laid upon the research of sardine resources 
in the Pacific. In 1951 the Nankai Regional Fisheries Research Labora- 
tory made observations in the tuna fishing grounds in the Equatorial 
Pacific in close cooperation with the Pacific Ocean Fisheries Investiga- 
tions in Hawaii. There have been additional oceanographic observa- 
tions in Tohoku areas (off Northern Honshu, June 1949), in the areas 
from Tokyo to the western sea of Kyushu for 65 days from February to 
April 1949 with the “Soyo Maru” for the investigation of sardine spawn- 
ing and oceanographic observations, in the same area for 70 days from 
February to April 1950 with “Tenyo Maru” for the same objects in the 
waters to the northwestern part of Kyushu and the Tsushima Straits 
on 1-4 March 1950, in the area to the south of Shikoku and Honshu 
in the middle of March 1950, on the profile from Nozima Zaki to the 
point 1°N and 147°E. During the period from June to August with the 
“Taiyo Maru No. 1”, the area to the south of Japan (from Tateyama 
to a point 1°N 150° 20’E) with the “Tenyo Maru.” During the period 
from June to August with the “Taiyo” graphic observations were made 
in the fishing grounds of salmon near the Aleutian Islands. ‘They have 
a program to carry out the observations in the Tsushima Current area 
in the Japan Sea. 

Other five Research Laboratories do not show special activities at 
present, except the observations in the Japan Sea carried out by the 
Japan Sea Fisheries Research Laboratory recently. 

The training ships “Umitaka Maru’, “Shunkotsu Maru’, “Shinyo 
Maru”, and “‘Seicho Maru” of the Tokyo Fisheries University have been 
engaged in the oceanographic cruises for the survey of the Kuroshio 
region and geological research of the sea floors. 

The Division of Oceanography, of the Central Meteorological Ob- 
servatory, Tokyo, has sent M.S. ‘“‘Asashio Maru” on about five cruises 
every year chiefly in Sagami Bay, carrying out regular oceanographic 
observations. Surface observations were made on board the liners be- 
tween Tokyo and Hachijo Island about three times a month. ‘This 
division has been directed by Dr. Mashito Nakano until recently. They 
made 15 cruises in the Sagami Bay areas and occupied 174 stations dur- 


REPORT ON OCEANOGRAPHY 43 


ing the period 1949-53, including regular hydrographic observations, 
observations of diurnal variations of several oceanographic elements, 
observations in the estuaries. They have carried out four regular cruises 
in Tokyo Bay during the period 1949-52 and occupied twelve stations in 
each cruise, some of them involving measurement of internal waves, and 
the test of self-recording current meter devised by T. Nan’niti. 

The observations in the Kuroshio area were made in two cruises 
in the area south of Tokyo during 1952. Twenty stations have been 
occupied in these cruises. Weathership Observations were made by 
cther divisions on board ‘“Ryohu Maru”, “Ukuru Maru”, “Chikubu 
Maru”, “Shinnan Maru”, and “Jkuna Maru”, at the St. X (39°N 153°E) 
all the year round, and at St. T (29°N 135°E) in summer months. 
Oceanographic observations were made on their courses to and from the 
weather ship stations. 

Hakodate Marine Observatory, Hakodate, directed by Dr. Yoshi- 
tada Takenouti, has made the oceanographic observations on board the 
“Yushio Maru” every month. ‘The exploring areas are chiefly the seas 
to the NE of Japan, and sometimes off Hokkaido, the northern part 
of Japan Sea, etc. The surface observations were made in the ‘Tsugaru 
Straits on board the liners three times a month. 

Maizuru Marine Observatory, Maizuru, directed by Hideo Kawa- 
saki, has made observations on board the “Kuroshio Maru” in Wakasa 
Bay, Maizuru Bay, and surrounding areas about three times a month 
since November 1949. 

Kobe Marine Observatory, Kobe, directed by Dr. Yasuo Matsun- 
daira, has made the oceanographic observations in Osaka Bay, Kii Suido, 
etc., with the M.S. “Shunpu Maru”. In addition current observations 
have been carried out. 

Nagasaki Marine Observatory, Nagasaki, directed by Dr. Kazuhiko 
Terada, has carried out the oceanographic observations in the adjacent 
seas with the Research Ship “Umikaze Maru” and surface observations 
have been made on board the liners connecting Nagasaki and the Goto 
Islands. Special attention has been paid to the observation in the areas 
west of Kyushu including the shallow areas bordered by numerous islets 
in the regions. They are also planning to observe the seiches or station- 
ary oscillations in Nagasaki Harbor which sometimes cause damages to 
the shore with the enormous amplitudes. ‘This observatory is also active 
in the forecasting of the wind waves and the meteorological tides. 

‘There are several coastal meteorological observatories which have 
surveying ships. M.S. “Koshi Maru” of the Niigata Local Meteorolog- 
ical Observatory, M.S. “Oyashio Maru” of the Hachinohe Meteorological 
Observatory, etc., have made the oceanographic observations offshore. 


44 EIGHTH PACIFIC SCIENCE CONGRESS 


In their voyages to the Antarctic whaling grounds oceanographic 
observations have been made on board the Japanese fleet of whalers by 
the members of the meteorological agencies. 


3. TTHREE-AGENCY MARINE RESEARCH COORDINATION COUNCIL 

Three government agencies, the Hydrographic Office, Maritime 
Safety Agency, Fisheries Research Laboratories, and the Meteorological 
Agencies meet in negotiations about three times every year in order to 
coordinate the mutual understanding and cooperation, and the repre- 
sentative members from each agency showing one another their results 
of observations and expeditions after the preceding meeting, and con- 
ferring about the plans and areas to be explored by each agency in 
the subsequent period so that they may not be superposed one upon 
the other. 


4, NATIONAL COMMITTEE ON GEOPHYSICS, SECTION OF PHYSICAL 
OCEANOGRAPHY 


This is a committee established in Japan to keep sound liaison with 
the International Union of Geodesy and Geophysics. ‘The Section of 
Physical Oceanography has about 13 members; Dr. Koji Hidaka is the 
chairman and Dr. Yasuo Miyake is the secretary. 

A sub-committee has been appointed in this section on the pre- 
paration of standard sea water, under Dr. Yasuo Miyake, chairman. 
Since the administration of the Standard Sea Water must be interna- 
tional, it is agreed within home oceanographers that this sub-committee 
should be dismissed as soon as the international standards become avail- 
able in this country. It was only in 1952 that we could have Copen- 
hagen water in Japan. 

There is the Special Committee for Marine Resources in the Com- 
mission for UNESCO, Science Council of Japan, and Dr. M. Ishibashi 
is now the chairman. 


5. "THE OCEANOGRAPHICAL SOCIETY OF JAPAN 


This scientific society was established in January 1941 under Dr. 
Takematsu Okada as the president. It has issued a popular monthly 
journal “Kaiyo no Kagaku” (Science of the Sea) and the Journal of the 
Oceanographical Society of Japan (quarterly, purely scientific), both in 
the Japanese language, and recently it recommended to publish papers 
in English in the journal. ‘The president is now Dr. Koji Hidaka. 
“Kaiyo no Kagaku” has not been issued since 1951. 


6. PAciFIC SCIENCE INVESTIGATIONS 


Dr. Shinkishi Hatai, who has long worked as the member for Japan 
in the Pacific Science Council, resigned in 1950 from this position and 


REPORT ON OCEANOGRAPHY 45 


Dr. Koji Hidaka succeeded him. However, Hatai is still very active as 
the chairman of the Pacific Science Committee, Science Council of Ja- 
pan, with about thirty members. Hidaka is also acting as the general 
manager of this committee. 

In 1950, Hatai planned to create a certain research group to carry 
out the oceanographic survey of a certain definite area similar to the 
Palau Tropical Laboratory, West Caroline Islands, of which he had 
been the director until the end of the war. He looked for an area 
located in the southernmost part of Japan at that time and after long 
discussions with collaborators, he chose the Hachijo Island about 33°N 
and due south of Tokyo. A systematic study was begun in 1951 from 
all fields in oceanography around this small island. A very active co- 
operation is being made since that time in this area. He issued a sec- 
ond report on the research in the area early in 1953. 

Close cooperation with the Pacific Science Council Secretariat is 
being made, too. K. Hidaka contributed to the Pacific Science Council 
Secretariat by sending the materials concerning the expeditions carried 
out by the Japanese in the Pacific area in the past 70 years. 

In 1952, K. Hidaka, M. Uda and Y. Hiyame, all members of the 
Pacific Science Committee were appointed members of the Physical 
Oceanography and Marine Biology Panel sponsored by UNESCO. 
(UNESCO/NS/105, Paris le 5 fevrier 1953; Original: anglais-francais.) 


7. PUBLICATIONS 
At present the following publications of oceanographical interest 
are issued from the institutions and societies in Japan. 
The Tokyo Fisheries Research Laboratories, Oceanographical Division 
(1) Kaiyo-zu (Oceanographical Charts, chiefly for fisheries work- 
ers, in Japanese) reports the distribution of temperature and 
salinity three times a month. 
(2) Kaiyo Tyose Yoho (The Oceanographical Observations): List 
of oceanographic data obtained by all fisheries agencies. 
(3) Suisan Kenkyujo Gyoseki Shu (Contributions from the Fish- 
eries Research Laboratories), 1950. 
The Hydrographic Office, the Maritime Safety Agency, Tokyo 
(1) Suiro Yoho (Hydrographic Bulletin, in Japanese): bi-monthly, 
contains mainly quick information on the observational data in 
hydrography and related topics. 
(2) Kaisho Iho (The Oceanographic Bulletin): Irregular, contains 
the results of observations and miscellaneous, 1947-50; publica- 
tion suspended from May, 1950. 


46 EIGHTH PACIFIC SCIENCE CONGRESS 


The Central Meteorological Observatory, Tokyo (CMO), Division of 
- Oceanography 

(1) Kaikyo Gaiho (Preliminary Report on the States of the Seas 
adjacent to Japan, in Japanese). ‘Three times a month, 1946. 

(2) Kaiyo Hokoku (Oceanographical Report of CMO, in Japanese) 
1 (1) 1949. 

(3) The Oceanographical Magazine (quarterly, in English and 
other foreign languages), 1 (1949), 2 (1950), 3 (1951, 4 (1952) 
5 (1953): This contains papers on oceanography and marine 
meteorology. 

(4) Nippon Kinkai Kaikyo Gaiyo (in Japanese) reports the general 
hydrographic conditions in the seas adjacent to Japan as de- 
rived from the observations during past one year, 1949. 

The Kobe Marine Observatory 

(1) Papers and Reports in Oceanography (in English), Nos. 14 
1949), No. 5 (1950). 

(2) Kaisho Geppo (Monthly Report on the Hydrography in the 
Adjacent Seas of Japan, in Japanese) reports the data observed 
in the seas and along the coasts and other various oceanograph- 
ical phenomena, 1950. 

(3) Memoirs of the Kobe Marine Observatory (in English), being 
a continuation of the Memoirs of the Imperial Marine Observ- 
atory. 

(4) Choseki Hokuku (Tidal Observations), 1950. 

(5) Kiyo Ziho (Journal of Oceanography, in Japanese), irregular at 
present. 

The Mizuru Marine Observatory 

(1) Oceanographical Reports (in English). 

(2) Kikyo Gaiho (General Hydrographic Bulletins, in Japanese). 

(3) Kiyo Kisho Kansoku Hokoku (Reports on Marine Meteoro- 
logical Observations, in Japanese). 

The Nagasaki Marine Observatory. 

(1) Kaisho to Kisho (Oceanography and Meteorology, in Japan- 
ese), 1 (1947)-5 (1951). 

(2) Kaikyo Ryakuho (Journal of Oceanography, in Japanese), 
1947-1949: continued by “Kaiyo Kansoku Hokoku” (Reports 
of Oceanographical Observations, in Japanese). 

(3) Nishi Nippon Kaikyo Zyumpo (Western Japan Hydrograph- 
ical Bulletin, in Japanese), three times a month. 


REPORT ON OCEANOGRAPHY 47 


(4) Nagasaki Kaiyo Kisyo Kai Hokoku (Report of the Nagasaki 
Marine Observatory, in Japanese and in English), 1 (1948)-3 
(1950). 
The Hokodate Marine Observatory 
(1) Kaiyo Ziho (Journal of Oceanography, in Japanese), irregular 
at present. 
The Oceanographic Society of Japan, Tokyo 
(1) Journal (quarterly, scientific papers in Japanese, English, and 
other languages). 
(2) Kaiyo no Kagaku (Science of the Sea), monthly, popular ma- 
gazine, now suspended for financial reasons. 


Kaiyo Kisho Gakkai (The Marine Meteorological Society), Kobe 
(1) Umi to Sora (Seas and Sky, in Japanese) chiefly contains pa- 
pers on oceanography, meteorology and geophysics. 
Science Council of Japan, Ueno Park, Tokyo 
(1) Records of Oceanographic Works in Japan. New Series, (Vol. 
1, No. 1, March 1953), being the continuation of a publica- 
tion of the same name; Vol. 12, No. 2, issued before World 
War II. 


Geophysical Institute, Tokyo University, Tokyo 
(1) Geophysical Notes and Collected Oceanographical Papers. 


8. PERSONAL ACTIVITIES 

In the following lines brief descriptions will be given on the per- 
sonal activities in all fields of physical oceanography. “These have been 
enabled by a friendly cooperation of the individual research worker 
by informing me of the results of his work in this period. I hereby 
express my deepest thanks to these authors for their kind cooperation. 


Sea Water 

During World War II, Japan was obliged to prepare the stand- 
ard sea water herself for titrating the salinity. After the end of hos- 
tilities this was sent to the Scripps Institution of Oceanography, and 
the Department of Oceanography, University of Washington, for com- 
parison; and it was found that our standard sea water did not differ 
by more than /0.02°/,, Cl compared with the Copenhagen water. The 
preparation has been sponsored chiefly by Y. Miyake, chairman of a 
committee especially appointed for this purpose (GM, 20, 1949, 101- 
104). Miyake and Katsuko Saruhashi planned to devise a microtitration 
of chlorinity. “They made a micro-pipette of 1.5 cc. content and a 
micro-burette graduated to 0.001 cc. and used a silver nitrate solution 


48 EIGHTH PACIFIC SCIENCE CONGRESS 


of the same concentration as in ordinary Knudsen-Mohr’s method. As 
the absorption indicator, sodium fluorescenate is used. They are in- 
tending to save both time and expenses without losing accuracy (in 
press). 
K. Hishida applied Einstein’s formula in order to find out the 
direct influence of the chlorine in the sea water upon the turbidity, and 
found that practically it does not affect the turbidity for the variation 
of salinity usually found in the sea (OM, 3, 1951, 103). 

In 1952, Miyake completed the calculation of the saturated vapor 
pressure of sea water for the range of temperature from—2°C to 40°C 
at 0.1°C interval and that of chlorinity from 1°/,, to Zoic cat 
1°/,9 interval (GM, 4, 1952, 95-118). 

Miyake and his collaborators have long been engaged in the study 
of the formation of the bubbles in sea water. Miyake tried to find 
out the possibility and allowable limit of an air bubble formation 
in the sea and a formula was obtained for the saturation amount of 
dissolved air in sea water. Since bubble formation in the sea water 
depends on the pressure in situ, new concepts, the saturation amount 
in situ and the saturation percentage im situ are introduced. Possible 
causes for bubble formation were discussed and a graphical method is 
given to compute the depth and the quantity of air to be evolved 
(MGP, 2, 1951, 95-101). 

T. Abe, one of his collaborators, studied the thickness of the bub- 
ble layer, that is, the layer in which the bubbles are formed in the 
test tube by shaking it by hand. He found that this thickness increases 
slightly with temperature and exponentially with Cl, and that bubbles 
are hardly seen in inorganic salt solutions (in press). 

K. Saruhashi, one of Miyake’s collaborators, applied Conway’s mi- 
cro-diffusion method to the analysis of the total carbon dioxide in the 
sea water. She deduced a theoretical relation between pH and the total 
carbon dioxide in sea water (MGP, 3, 1953, 202-206). 

In the diurnal variation of dissolved oxygen in surface water, the 
maximum occurs at about 4 P.M. and the minimum at 6 A.M. or so. 
The difference between the maximum and minimum is dependent on 
the solar radiation, temperature and the amount of phytoplankton. 
Y. Sugiura obtained a formula giving the amount of dissolved oxygen, 
in which the yield of oxygen were taken into account. The results of 
calculation agreed fairly well with observations (in press). 

Miyake, Sugiura, and K. Kameda made observations of chemical 
elements in the sea water around Hachijo Island in July, 1951, and in 
December, 1952. A marked inverse correlation between chlorinity and 
silicate content was noticed. Chemical analysis gave the result that the 


REPORT ON OCEANOGRAPHY 49 


effect of inland water can be seen in the region several kilometers off 
this island (ROWJ, 1, 1953). 


Energy Exchange Between the Sea and Atmosphere 


In 1949 Michio Miyazaki made an attempt to estimate the heat 
budget in the Tsushima Current flowing along the Japanese coast of 
the Japan Sea. He assumed that the gain and loss of heat per day 
at the sea surface in this warm current can be calculated by the balance 
of incoming solar radiation, radiation from the earth, evaporation and 
cooling by convection. He obtained the results that the net loss of 
heat from the sea surface by terrestrial radiation is nearly constant 
throughout the year, that the rate of evaporation and the cooling by 
convection is greater in winter and smaller in summer and that the 
annual net gain by the sea is negative, showing that the heat is trans- 
ported by the current (OM, 1, 1949, 103-111). He also applied the 
same computation to the entire Japan Sea, dividing this sea into 2-de- 
gree squares, and discussed the heat budget, formation of water masses, 
transportation of heat by currents (HFLB, 4, 1952, 1-54). A similar 
attempt was made by K. Terada and T. Osawa for some areas in the 
adjacent seas of Japan (GM, 24, 1953, 155-170). ‘T. Ichiye also showed 
that the annual thermal cycle in the Osakawan cannot be explained 
by the evaporation and radiation from the water inside the bay, but 
that we must take into account the heat entering from outside the bay 
by horizontal diffusion (JOSJ, 6, 1950). 

A similar estimate of the heat exchange between the atmosphere 
and the sea was made by J. Masuzawa based on the weather ship ob- 
servations at a station 29°N, 135°E (OM 4, 1952, 49-55). 

M. Hanzawa followed Sverdrup and Jacobs in estimating the eva- 
poration from the sea surface based on weather ship observations at two 
stations close to the Japanese Islands. He found that in the North 
Pacific the maximum evaporation takes place in winter months and 
it is in a minimum in early summer. He compared the result with G. 
Wust’s (OM, 2, 1950, 77-82). 


Oceanographic Optics 

Since several years ago T. Takenouti has studied submarine illu- 
mination in seas and lakes. He defined as “‘diffusion-ratio” the ratio of 
the illumination by the light from above over that coming from below. 
He showed theoretically that this ratio is independent of the depth of 
the layer if the water is optically uniform and only varies when there 
is a stratification of layers. He compared this with actual observa- 
tions successfully. He found that hitherto debated variation in the 
characteristics of this layer has all depended on the discontinuous layer 


50 EIGHTH PACIFIC SCIENCE CONGRESS 


present in a shallower level. He mentions this trouble is partly due 
to the difficulty in locating this discontinuous layer by simply measur- 
ing the submarine illumination (OMG) 175 1949>) 43=27) blew also seni 
died the optical significance of the transparency measured by Secchi’s 
disc. He concludes that the transparency of sea water should be defined 
as the depth at which we cannot distinguish the difference in colors of 
the disc with the surrounding water, in addition to the difference of il- 
lumination (OM, 4, 1950, 129-136). He also pointed out that the ex- 
tinction coefficient is a constant peculiar to sea water, independent of 
the altitude of the sun and amount of clouds. He determined the re- 
lation between extinction coefficient and wave length of light and ob- 
tained a standard value of extinction coefficient for each of Forel’s 
scales of color of the sea. He divided the extinction coefficient of sea 
water into the absorption and scattering coefficients. According to his 
observations with a photometer of photoronic cell type, scattering coef- 
ficient occupies only 10% of the extinction coefficient. This fact re- 
quested him to assume the existence of a colored substance in sea water. 
He determined the relation of transparency and extinction coefficient 
and showed that the formula at Atkins and Poole only holds for small 
value of transparency. This conclusion agrees with observations very 
closely (KJ, 4, 1952, 268-324). K. Hishida also made a photometer 
of the photoronic type and found that the submarine illumination has 
much to do with the hydrography (MMOR, 2, 1951, 21). 

A theory of transparency of sea water was propounded also by T. 
Nan’niti, who derived a theoretical relation between transparency and 
hydrographic factors (MGP, 3, 1953, 195-201). 

Annual variation and correlation between color of the sea, trans- 
parency and the plankton volume were studied by M. Koizumi. He 
found that there are two maxima in the color and transparency of the 
sea, that is, in summer and winter and two minima in spring and fall, 
and that this variation reflects the seasonal change of plankton volume 
which reaches a maximum in spring and a secondary maximum in the 
fall. From this result a simple formula was obtained between them 
(JOSJ, 8, 1952, 79-83). 


Sea Ice 

The intense studies on the sea ice in the areas around Hokkaido, 
the northernmost island of Japan, have been made by K. Fukutomi 
and his colleagues, K. Kusunoki, T. Tabata, T. Kashima, M. Saito, U. 
Kudo, and others. They are published in the Japanese language in 18 
papers entitled “Studies on Sea Ice” during the period 1949-52 (TK, 
3-9, 1950-52). Kusunoki compiled a bibliography of Sea Ice in Japan 
and made a list of references dated from 1892 to 1950 (JSSI, 13, 1952). 


REPORT ON OCEANOGRAPHY 51 


Fukutomi made extensive studies on the formation and growth of 
the ice crystals in sea ice, salinity and physical measurement of strength, 
microscopic inspection of the structure of sea ice, prediction and the 
growth of ice in the central part of the Okhotsk Sea. He also found 
that there is a turbulent layer of about 40 m. thick on the surface of the 
Okhotsk Sea. He established a theory of formation and growth of sea 
ice and applied it to this area and could predict when the ice is formed 
in this area, and how it grows. He also tried to estimate by simple 
empirical formulas the dates at which the air temperature over the 
sea reaches the freezing point of sea water. He made an extensive 
survey of ice along the north coasts of Hokkaido Island and discussed 
how the temperature distribution varies with the cycle of the atmo- 
spheric temperature, and compared the result with theory. He mea- 
sured the temperature and salinity im situ, and concluded that off the 
northern coast of Hokkaido there exists a supercooling in the sea wa- 
ter just below the lower surface of the ice. Fukutomi, Kusunoki, and 
Tabata examined the wind drift of ice and recognized the influence 
of the Earth’s rotation showing a deviation from the direction of the 
wind. They made experiments with a floating block of ice in a narrow 
sea and applied the result on the ice drift off the northern coast of 
Hokkaido. ‘They also discussed theoretically how the stationary motion 
of ice occurs when the surface of the sea is partially covered and com- 
pared the result with those obtained by Nansen in the Arctic Sea dur- 
ing the drift of the “Fram” in 1893-96. Fukutomi and Kusunoki also 
published a theory on the formation and structure of ice ridges. Fuku- 
tomi, Saito and Kudo measured various physical properties and struc- 
ture of the sea ice by photographic methods. Fukutomi gave a theory 
for the approximate estimates of the thickness of sea ice in relation to 
the average air temperature, and its annual range. Tabata tried a pre- 
diction of the data at which a last tract of drift-ice can be seen in 
the southern Okhotsk Sea coast of Hokkaido (TK, 3-9, 1950). 


Hydrography 

The hydrography of the East China Sea was discussed by M. Uda 
and he made clear the seasonal variation of water temperature, salinity 
and meteorological factors in the Yellow Sea and the East China Sea, 
and showed that the fluctuation of the Kuroshio at the margin of the 
continental shelf controls the intensity of the Tsushima Current. (Re- 
port of the Seikaiku Regional Fisheries Laboratory, 1950). He also dis- 
cussed the hydrographic fluctuations in the Japan Sea (Japan Sea Re- 
gional Fisheries Laboratory Report, 1952). 

Hydrography in the Japan Sea during the spring and summer, 
1949, has been reported by I. Yamanaka (JOSJ, 6, 1951; 1953, in press). 


52 EIGHTH PACIFIC SCIENCE CONGRESS 


Hydrography of the northwestern part of Hokkaido in 1949 was 
reported by K. Fukutomi and others (A Survey of Deep Sea Fish in 
Northern Part of Japan Sea, 1950), of the region south of the Kurile 
Islands and the southern part of Okhotsk Sea, by T. Tabata (TK, 10, 
1952), of the northern and middle Okhotsk Sea in summer, 1942, by 
K. Kajiura (JOSJ, 5, 1949, 19-27), of the area off the Tohoku district by 
J. Fukuoka and T. Yusa (OM, AOS Ze D1): 

Of the Kuroshio Current, we have several important works. T. 
Ichiye discussed the hydrography in the Kuroshio area in February and 
May, giving a theoretical explanation on the meander of this current, 
the abnormal pattern off Shionomisaki by making use of jet stream 
theory. He also made use of Rossby’s theory of momentum concentra- 
tion in concluding that the great cold water mass off the Shionomisaki 
consists of the water upwelled from deeper layers (KH, 2, 1951). He 
and K. Tanioka also determined the distribution of chemical elements 
on isentropic surfaces and discussed the effect of horizontal Austausch 
at different points in the stream axis on TS-curves (PRO, 1950). 

The Central Meteorological Observatory, Tokyo, has carried out 
hydrographic observations regularly in Sagami Bay in 1951 and 1952 
and at the weather station (39°N, 153°E) and others (M. Koizumi, 
KH, 1, 1950; Koizumi and J. Masuzawa, KH, 2, 1952; Koizumi and O. 
Asaoka, KH, 1, 1950; Koizumi, KH, 2, 1952, T. Nan’niti, OM, 3, 1951, 
27-48; M. Hanzawa, OM, 4, 1952; ROWJ, 1, 1953). 

Hydrographic observations were also carried out on the Antarctic 
whaling grounds in the winter months 1950-51 by a fleet of Japanese 
whalers. About 30 stations were occupied and the results analyzed (M. 
Hanzawa, K. Kobayashi, K. Yoshida, and R. Marumo, OM, 3, 1951). 

Hydrography of the two straits of Isaka-wan, the Akashi-seto and 
Yuraseto, after heavy rain accompanying typhoon, was discussed by T. 
Ichiye (PRO, 1949), Ariake Sea and the inland sea in western Kyushu, by 
Nagasaki Marine Observatory in the summers of 1951 and 1952 to make 
clear the Kuroshio and the Tsushima Currents in this region. Hydro- 
graphic structure in the Tsushima Current area was discussed by T. 
Tsujita with special reference to its fisheries importance. (Report of 
the Committee on the Hydrographic Investigations in the Western Part 
of the Japan Sea, 1952). T. Shinomura and M. Koizumi discussed the 
hydrography along the section from Tori-Sima (Bonin Group) to off 
Sanriku District (KH, 2, 1950, 55-74). 

The hydrography of the Kumihama Bay, a small inlet facing the 
Japan Sea, was discussed by K. Hishida (OM, 2, 1950, 67). 

The annual variation of sea water temperature in Kii Suido was 
discussed in detail by T. Ichiye. He showed the possibility of the fore- 


REPORT ON OCEANOGRAPHY da 


casting hydrographic conditions in this area (KH, 2, 1951). M. Nagai 
discussed the annual variation of sea water temperature and salinity 
and made several detailed statistical analysis and stressed that their 
fluctuations due to advocation are very important in forecasting these 
elements (KJ, 4, 1953). 

In 1950 T. Ichiye treated the meandering pattern in the isotherms 
observed on the surface along the polar front as the horizontal inter- 
nal waves formed along the boundaries between warm and cold water. 
(US, 28, 1950). 

M. Uda also discussed the characteristic feature of the yearly va- 
riation of coastal water temperature and pointed out the advance and 
lag of the seasons peculiar to each year. His conclusion was that it is 
most important to carry out the hydrographic observations during the 
winter months as frequently as possible (US, 30, 1952, 5-7). A survey 
of the fisheries in relation to hydrographic fluctuation was also dis- 
cussed by Uda in 1952 (TUFY, 38, 1952, 363-389). 

Classification of the types of the annual variations of water tem- 
perature was made by T. Ichiye. He mentioned three types: seas or 
lakes, bay in which tidal currents are strong, and open sea, with several 
important discussions (KMOM, 10, 1952). 

M. Hanzawa mentions some examples of an abrupt change in hy- 
drographic conditions from his experiences in the observations on board 
the weather ships. He points out that the advection due to wind effect 
is responsible for these changes (OM, 4, 1952). 

J. Masuzawa gives some examples showing that a typhoon some- 
times acts as a motive for the hydrographic changes in the area close to 
their tracks (KH, 1, 1950, 118-123). 

Method of forecasting the hydrographic conditions off Sanriku 
coast based on the isentropic analysis, was reported by Fukuoka (KH, 
950; 30): 

Forecasting sea surface temperature in the southwestern part of 
the Japan Sea was attempted by K. Hishida (KH, 2, 1951). 

The relation between the coastal and offshore water temperature 
and other hydrographic elements was analyzed by K. Hishida (MMOR, 
Zoot OM, 2; 1950). 


Ocean Currents 

In 1950, J. Fukuoka made an analysis of the Oyashio Current flow- 
ing south in the area to the NE of Japan. He analyzed the TS-curves 
from various stations in the Okhotsk Sea and western North Pacific 
Ocean, and noticed that the Oyashio water and Kuroshio water can be 
found in some latitudes close together, their boundary always oscillat- 


54 EIGHTH PACIFIC SCIENCE CONGRESS 


ing northward and southward. From this motion he could determine 
the velocity of the Oyashio Current (KH, 1, 1950, 10). He also made 
another attempt to compare the TS-curves of the sea water at various 
stations and could determine the effect of winds in producing the drift 
current stations, and could determine the effect of winds in producing 
drift current (OM, 1951, 97). He also determined the extent of the 
Oyashio Under Current, which is recognized below the warm water of 
the Kuroshio (JOSJ, 6, 1951, 202). TI. Nan’niti made an attempt to 
know the year-to-year variation of the Kuroshio and the Oyashio. He 
says that the Kuroshio was stronger in 1948 and warmer in 1949, and 
both of these currents were stronger in the period from the spring to the 
early summer of 1950 (MGP, 2, 1951, 102-111). He also made an at- 
tempt to compare the curl of wind stress to the intensity of the Kuro- 
shio. These two quantity must be proportional according to the Mod- 
ern theories of the drift currents (JOSJ, 8, 1952, 23-29). 

A very intensive survey of the flowing patterns of the Kuroshio 
was reported by M. Uda. He describes the fluctuation of the main axis 
of the Kuroshio and its margins. ‘The maximum speed and the width 
of the currents were determined based on the dynamic computations 
carried out during the period 1934 through 1943. He also explains the 
abnormal phase of the Kuroshio flowing in a loop to the south of Japan 
as the effect of the monsoon which was very strong in the winter of 
1934-35 in addition to the strengthening of the intermediate water 
formed as the extension of the Oyashio after it dives below the warm 
water of the Kuroshio. He also explains the occurrence, development 
of this abnormal phase of the Kuroshio and its recovery to normal 
phase, use being made of the past materials (JOSJ, 8, 1951, 181-189). 
He discussed the variation of the currents in the Japan Sea, Yellow Sea, 
and East China Sea and showed that the Tsushima Current begins at 
the 200 m isobath along the margin of the continental shelf of the cir- 
culation in the East China Sea (ROWJ, 1, 28-35). Recently Uda de- 
scribed the result of oceanographic observations in the adjacent seas of 
Hachijo Island in relation to the fisheries (ROWJ, 1, 1953). 

Currents in the Japan Sea in the spring and summer, 1949, was de- 
scribed by I. Yamanka, stress being especially laid on the meander of 
the Tsushima Current which is a branch of the Kuroshio entering this 
area (JOSJ, 3, 1951, 143). K. Kusunoki described the speed of the 
currents in the Japan Sea close to the west coast of Hokkaido, northern- 
most island, and discussed its yearly variation, its periodic cycles and 
its relation to the fisheries and ice in the Okhotsk Sea (JOSJ, 6, 1951, 
133-142). 


REPORT ON OCEANOGRAPHY 55 
As to the possible origin of the Oyashio we have the discussion of 
N. Watanabe, who found that the most part of the Oyashio originates 
in the water of the Okhotsk Sea and very little amount of the Bering 
water is considered to take part in the origin of this cold current (JOSJ, 
7a, NS) 
A very intensive water mass analysis of the Oyashio Current was 
made by Yukimasa Saito (JIPOCU, 3, 1952, 79-140). 


Water Mass Analysis 

It is a very important problem in oceanography to separate differ- 
ent water masses and to establish the boundaries between them. Still 
we have not had yet any reasonable method for them. M. Nagai has 
succeeded in classifying into 7 blocks the system of water masses in the 
East China Sea stochastically, numbering the 18x 9 water types having 
Sallam nyar29 on 29/50) agp 25730959 and mtemperatune l2s 50 lke lO, 

- 05 BOSE, (NK, ©, Mella BeSol))y 

T. Ichiye used monthly TS-diagram for determining the intensity 
of monthly mass exchange between the coastal and ocean waters. He 
showed how the ocean water penetrates into the bay due to the dif- 
fusion by eddies. He also discussed the general types of the TS-dia- 
gram in the transient region between the ocean and coastal water 
(KMOM, 10, 1952). 

Recently Michio Miyasaki has been considering the use of T-O,- 
diagram in addition to TS-diagram. By doing this, he could classify the 
so-called deep water in the Japan Sea into a number of water masses. 
He could point out the existence of several important water types in 
the deep layers of the Japan Sea (HFLB, 7, 1953, 1-65). 

The intermediate waters of low salinity in the regions south and 
northeast of Japan have been discussed by J. Masuzawa in their rela- 
tion to Kuroshio waters. He pointed out the intense turbulence both 
in horizontal and vertical directions and determined the horizontal dif- 
fusivity at 106-108 c.g.s. on the isentropic surface (t-26.6-26.8), (OM, 2, 
W@BOF INGE 2) WS, Balle, Pee). 

Y. Miyake considers that the boron in sea water behaves as a very 
good indicator for the water masses and recommends the ratio B/Cl as 
a useful tool in the water mass analysis (US, 30, 1952, 14-18). 

Ykimasa Saito published a very detailed water mass analysis for 
the northern seas of Japan, stress being laid on the research on the 
Cyashio. He could explain the significance of TS-diagram in exactly 
the same way as W. B. Stockman tried in 1947 (JIPOCU, 3, 1952, 


79-140). : 


56 EIGHTH PACIFIC SCIENCE CONGRESS 


Diffusion 

In 1949 T. Ichiye treated the Brownian movement of a particle of 
water produced by a stochastic extraneous force in a field of Coriolis 
forces, and determined the dependence of eddy diffusivity upon the 
latitude. He compared this theoretical result with the horizontal dif- 
fusivity determined from the distribution of conservative concentrations 
in the ocean currents, and showed how the horizontal eddy diffusivity 
could be determined from the drift of R.V. “Deutschland” in the Ant- 
arctic Ocean (OM, 1, 1949). 

In 1950 Ichiye considered a statistical theory of turbulent diffu- 
sion, discussing the diffusion from an origin by a process similar to 
Brownian motion, and could explain the so-called scale effect postula- 
ted by Lewis F. Richardson (KMOM, 8, 1950). He also made some re- 
marks on Richardson’s neighbor diffusion equation (OM, 2, 1950). He 
applied this theory to the diffusion of water masses in the oceans and 
gave a qualitative explanation on the variation of the horizontal Aus- 
tausch coefficient in the ocean currents by developing the spectral theo- 
ry of turbulence in case where irregular extraneous forces are in action 
(OM, 3, 1951). Yasukazu Saito solved the problem of diffusion of sa- 
linity in a horizontal current field, both horizontal and vertical mixing 
being taken into account (TUFJ, 38, 1952, 182-191). 

T. Nan’niti determined the horizontal and vertical eddy diffusi- 
vity using Montgomery’s method from the actual distribution of salin- 
ity. He obtained horizontal and vertical coefficients to be 107 and 101 
respectively (OM, 3, 1951). From the salinity distribution on the core 
sheet of the Subarctic Intermediate water near Japan, J. Masuzawa ob- 
tained horizontal eddy diffusivity to be 10%-108 c.gs. (KH, 2, 1951-52). 
E. Inoue concluded this quantity has a value 10'° c.g.s., a value much 
larger than previously known (KS, 28, 1950, 420-424). 

In 1950 Ichiye treated the annual variation of the heat contents 
at several stations in Osaka Bay as a horizontal diffusion by tidal cur- 
rents (KMOM, 8, 1950). 

In 1952 Ichiye discussed the relation between the O, minimum 
layer and the motionless layer in case where both horizontal and verti- 
cal diffusions occur, and showed theoretically how the depth of O, mi- 
nimum layer varies as the distance from the source increases when there 
is biological dissipation. He determined the schematic distribution of 
oxygen in the sea when the processes of dissipation, supply and diffu- 
sion are going on simultaneously (US, 29, 1952). 

On September 17, 1952, a new submarine volcano was observed 
erupting from the Pacific floor south of Japan. ‘This submarine erup- 
tion ejected a great deal of pumice stones afloat on the sea surface, 


REPORT ON OCEANOGRAPHY 57 


expanding by diffusion in all directions. From the distribution of pu- 
mice stones, M. Hanzawa derived an approximate value of eddy dif 
fusivity to be 4.8 x 10°-4.3 x 107 c.g.s. (OM, 4, 1953). 


Theories of Wind-Driven Ocean Circulation 

According to the recent theories of the oceanic circulation, the 
main source of energy supply to the major current of the ocean is the 
semi-permanent wind system over the oceans. During the period 1949- 
53, very active research has been done on this subject. 

T. Ichiye has long engaged in the dynamical research on ocean-cur- 
rents since 1949 (OM, 1, 1949). In 1950 he discussed the wind-driven 
currents produced by circular wind system. In this computation he 
retained the inertia terms and applied the result to the motion of wa- 
ter produced by a typhoon. He showed that an upwelling must occur in 
deeper levels (OM, 2, 1950). He also discussed the wind-driven ocean 
circulation in an ocean taking into account the effect of horizontal 
mixing. His computation is nearly similar to that of Munk (OM, 2, 
1950). He also discussed the equation of ocean current involving the 
inertia terms and solved it for a zonal flow in an asymptotic expansion. 
By this theory he could show the occurrence of a counter current on 
the right side of the current looking downstream (KMOM, 8, 1950). 

The same year, Masamori Miyazaki computed the coefficients of 
horizontal and vertical mixing on both sides of a current of uniform 
velocity by Gebelain’s method and obtained the distribution of ve- 
locity across the current. He thus concluded that the occurrence of a 
counter current can be determined by vertical distribution of current 
velocity (OM, 2, 1950, 53-58). The same year, Miyazaki published a 
theory of wind-produced zonal current in an ocean completely covering 
the earth, taking into account the effect of both horizontal and vertical 
mixing. He could prove that the deviation of current system from 
wind system decreases, and the subsidence of current with depth in- 
creases by the presence of horizontal mixing (KMOM, 8, 1950, 41-43). 
He gave an expression for the coefficient of lateral mixing for a station- 
ary state and the decaying stage without supply of energy from outside 
(OM, 2, 1950, 113-116). : 

In 1951 Ichiye published two papers on the variation of oceanic 
circulation. In order to explain the double periodicity found by C. 
O’D Iselin for the Gulf Strea, he discussed successfully the variation of 
oceanic circulation accompanying the periodic variation of zonal wind 
system (OM, 3, 1951). He also computed annual variation of the mass 
and heat transports in five sections across the Kuroshio and described 
the mechanism of these changes to the density currents due to the phase 


58 EIGHTH PACIFIC SCIENCE CONGRESS 


lags between the temperature cycles of coastal and offshore waters (OM, 
Syl oN): 

In 1951 Hidaka published the result of a computation of the gen- 
eral circulation of the Pacific Ocean. ‘This is a modification of Munk’s 
theory, the only differences being the use of spherical coordinates in- 
stead of Munk’s rectangular, and the assumption of two types of wind 
system—zonal and anticyclonic. He obtained practically the same re- 
sult as Munk’s, except a better agreement than Munk’s of total mass 
transport with the actual value 65 million tons per second obtained by 
Sverdrup from Japanese observations. It must, however, be borne in 
mind that the exact value of total mass transport is very hard to deter- 
mine, the recent observations by Japanese giving about 20-40 million 
tons per second (J. Masuzawa, KH, 2, 1951) according to the seasons of 
the year. This value is far smaller than that of Sverdrup and agrees 
with Munk’s theoretical result pretty well. 

In 1952 Masamori Miyazaki published a new theory of the wind- 
driven circulation and could explain the counter-current observed be- 
tween the Gulf Stream and the American continent by assuming a zone 
of smaller value of the coefficient of lateral eddy viscosity close to the 
coast. [his counter-current has been observed from a long time ago 
and many authors have failed to explain except Rossby, who could 
solve it by taking into account the effect of inertia terms (OM, 4, 1952). 

Yasukazu Saito made a very elaborate mathematical analysis on the 
theory of ocean currents driven by winds in an isotropic ocean taking 
into account the mixing in all directions. He used the velocity itself 
for solving the problems (KS, 28, 1950, 25-61; TUFJ, 38, 1951, 87-179). 

Recently Hidaka solved a three-dimensional theory of ocean cur- 
rents, thus making it possible to discuss the vertical structure of wind- 
driven current. The most outstanding conclusion is that the motion 
of water is much more intense than is expected in layers far below than 
the depth of frictional influence defined by Ekman (in press). 

As to the fluctuation of oceanic circulation caused by the wind 
fluctuation, Ichiye made an attempt to determine the curl of the wind 
stress in each 5° square over the Pacific from actual observations. Fur- 
ther he could determine the annual variation of the horizontal mixing 
coefficient on the basis of the spectral theory of turbulence, and dis- 
cussed the variation of circulation equalitatively (OM, 4, 1952). 

In 1952 K. Kajiura used the idea of Sverdrup and Reid in comput- 
ing the current velocities in the upper layers of the eastern portion of 
the equatorial Pacific on the assumption that the initial forces and the 
lateral friction are negligible. He divided the motion into two parts, 
that is, the pure drift currents and the relative currents, and showed 


REPORT ON OCEANOGRAPHY 59 


that the result agrees satisfactorily with the observations near the equa- 
tor. In this region the relative current is much stronger than the pure 
drift current, while the meridional components of currents are negli- 
gibly small compared with the EW-components (JOSJ, 8, 1952, 15-22). 

The dependence upon the bottom friction of sea surface slope in- 
duced by wind is discussed theoretically by Ichiye. He determined the 
vertical structure of drift currents and compared it with actual obser- 
vations. He also obtained the drift current when Rossby’s expression 
for the vertical mixing coefficient is used (KMOM, 10, 1952). 

Recently K. Yoshida treated successfully the problem of circula- 
tion in the upper mixed layer in the equatorial region of the North 
Pacific Ocean by solving the steady state equations involving terms of 
Coriolis forces, pressure gradient, and horizontal as well as vertical mix- 
ing (Hoshida, Han-lee Mao, and Paul L. Horro, in press). 

The most part of the theories described above is obtained on the 
assumption that the inertia terms in the dynamical equations are neg- 
ligibly small compared with the remaining terms. ‘The significance of 
these terms in dynamical oceanography was discussed by Hidaka and 
M. Miyoshi (GN, 2, 1949). A similar discussion was made by Ichiye, 
who concluded that these terms cannot be neglected when the curl of 
the wind stress is large, and estimated their magnitude (OM, 2, 1950). 

The simplification of the theory of the wind-driven ocean current 
will be approached by assuming a zonal ocean and a planetary wind 
system so that both winds and currents are independent of longitude. 
Theories were worked out by Hidaka and his collaborators K. Takano 
and M. Tsuchiya (GN, 3, 1950; GM, 23, 1952, 487-495; JMR, in press). 

A very important question in dynamical oceanography is how and 
in what proportions the energy of wind is imparted to raising waves 
and producing currents. This problem was discussed by K. Yoshida 
(JOSJ, 7, 1951) and Ichiye (OM, 4, 1952). 

In 1952 K. Kajiura discussed on the currents and the accumula- 
tion of water produced by winds in the water consisting of two layers 
of different densities. He assumed that the eddy viscosity is negligible 
along the boundary of two layers and showed that the shape of the 
boundary surface agrees very closely with observations (JOSJ, 8, 1952, 
67-71). 

Upwelling and Coastal Currents 

Recently K. Hidaka propounded a hydrodynamical theory of up- 

welling. He assumed an infinitely long straight coast and constant 


latitude, and discussed the upwelling to be produced as the effect of 
wind blowing in a belt of a certain width from the coast. He took the 


60 EIGHTH PACIFIC SCIENCE CONGRESS 


Coriolis forces and horizontal and vertical mixing into account. For the 
values of mixing coefficients generally accepted, the velocity of upwell- 
ing was computed at about 80 meters per month for the wind speed 
5-6 m/s and the latitude 30°N, thus coinciding closely with observa- 
tions and former estimates. He also showed that the most intense up- 
welling will occur when the wind makes an angle 21-5° with the coast 
line in an offshore direction. ‘The horizontal motion involved in this 
circulation can be considered to form a part of the coastal or long- 
shore currents much debated recently (Technical Report, Department 
of Oceanography, Texas A. & M., 1953). 

In 1950 ‘T. Ichiye, discussing the wind-driven currents produced by 
a circular wind system, could show that the upwelling must take place 
in deeper layers even in an open ocean (OM, 2, 1950). 

Yukimasa Saito published a simple method of computing the ver- 
tical velocity of water from the displacement of isophonals. ‘This meth- 
od will be very useful when the distribution of density is given at a 
certain interval of time. He applied his method to the upwelling off 
Southern California and obtained the velocity of upwelling 2.55 m/day 
or about 80 m/month (JIPOCU, 2, B, 1951, 1-4). 


Tides and Tidal Currents 

N. Okamoto, Masamori Miyazaki, and H. Yoshizawa succeeded in 
obtaining four principal components of tidal currents from fortnightly 
observations in June, 1951, by Ono’s recording current meter working 
on the No. 2 Buoy in the Osaka Harbor (KH, 2, 1952, 29-34). 

Masamori Miyazaki obtained the tidal harmonic constants for Kobe 
and Sumoto by the Tidal Institute Method of A. T. Doodson (KH, 2, 
LOD 2a 24): 

Z. Yasui and S. Ishiguro published an intensive survey and descrip- 
tion of the tidal currents in Hirado Channel near Nagasaki. ‘They 
made a model experiment at the same time and could explain observed 
results very satisfactorily (NMOR, 3, 190). H. Akamatsu made a very 
intensive survey of the tidal and nontidal currents around the Goto 
Islands to the northwest of Kyushu (KK, 4, 1950, 65-72). 

K. Hishida made a survey of currents, tidal or nontidal, close to 
the coasts of the Japan Sea and showed that a marked vertical variation 
is noticed in them, which may be explained as due to winds and bottom 
topography (MCAKU, 62, 1952). 

Ichiye reports the observations of tidal currents and waves in Osa- 
ka Bay, the Harima Nada, Kii Suido (PRO, 1949; US, 28, 1950; KH, 
2, 1951; Report on the Investigations of the Beach Erosion in the south- 
eastern part of Osaka Bay, 1). 


REPORT ON OCEANOGRAPHY 61 


Adventional variation of temperature and salinity due to tidal cur- 
rents was discussed by T. Ichiye (OM, 4, 1952). He also treated the 
modification of wave form when a long wave propagates through a 
channel of varying sections. He applied his theory to the Akashi Seto, 
a channel connecting Osaka Bay to another basin situated to the west, 
and computed the permeability of the waves when two eave trains meet 
in this channel (KMOM, 9, 1951). 

A new development in the discussion of the tidal currents in the 
Straits of Shimonoseki separating Honshu and Kyushu, two major is- 
lands of Japan, was made by Mashito, Nakano. He also pointed out 
a comment about its prediction (GJ, 58, 1949, 213-216). 


Seiches and Secondary Undulations of Tides 

On the occasion of cyclonic storms attacking our islands we fre- 
quently notice oscillations of period 1-3 minutes accompanying the 
tidal oscillations on mareograms. This phenomenon, now called “surf 
beats,” has been long known in Japan. M. Nakano reports a remark- 
able series of such undulations which accompanied the storm of 1-5 
April 1936, and observed on the mareograms of tidal stations along the 
Japanese coasts. Nakano gives a very intensive examination of this phe- 
nomenon (OM, 1, 1949, 13-32). 

T. Ichiye treated theoretically the oscillations which will be caused 
by a sudden impulse of wind exerted on the sea surface and obtained 
the relation between the shape of the bay, time variation of the stress 
and the amplitude. He pointed out that an impulsive stress is more 
effective on producing seiches (JOSJ, 6, 1950). 


Sea Level 

In 1951 S. Yamaguti showed that the monthly mean sea-level cor- 
rected for astronomical, meteorological, and oceanographical effects, can 
be fairly used for discussion of the vertical displacement of the earth’s 
crust and sometimes may be used in place of precise levelling (GSB, 2, 
1950). 


Waves 

Studies of waves have been made partly in connection with some 
practical applications. Forecasting of waves and swells has been needed 
for the safety of ships, for protection of coasts and harbors, and in 
connection with various problems of coastal engineering. ‘These fore- 
casting and practical studies have mainly been carried out by the staff of 
the Hydrographic Office, Central Meteorological Observatory, and a 
number of branch organizations (M. Nakano, S. Unoki, and K. Yuge, 
OM, 5, 1953; H. Arakawa and K. Suda, MWR, 81, 1953; M. Uda, GM, 


62 EIGHTH PACIFIC SCIENCE CONGRESS 


23, 1952; Yoshida, Kajiura and Hidaka, ROWJ, 1, 1953; K. Sato, HB, 
16, 1950; HB, 25, 1951; Miyazaki, KS, 28, 1950; I. Kimura, CKH, 1, 1949; 
H. Yamada, FE, 5, 1949; T. Ichiye, KH, 2, 1951; H. Hikada et al., KH, 
1, 1949). To locate and track the storm or typhoon over the ocean, 
studies of microseisms in relation to the ocean waves have been con- 
tinued in the Earthquake Research Institute and in the Central Meteor- 
ological Observatory. (F. Kishinoue, ERIB, 29, 1951, 277-282.) Studies 
of beach erosion problems have been made with particular activities, 
under the cooperation of various research groups. Experimental stu- 
dies of surf in a model tank which were made by T. Hamada have 
made an important contribution to this field. (Transportation Tech- 
nical Research Institute, Report No. 2, 1951, 1-165.) 

Theoretical studies of wind waves have been made by K. Yoshida. 
He pointed out the importance of the process concerning the mutual 
exchange of momentum between ocean waves and ocean currents (K. 
Yoshida, JOSJ, 7, 1951, 99-104). He suggested that energy transmitted 
from wind to water goes partly into waves and partly into currents, 
and furthermore, energy is transferred from shorter waves to longer 
waves and also from waves to currents, mainly due to semi-irregular 
breaking of waves. Based on a physical consideration, he derived an 
equation to find an energy portion required to increase wave height and 
wave velocity respectively, and therefrom an equation of wave growth 
which slightly differs from Sverdrup-Munk’s (K. Yoshida, GN, 4, 1951). 
Energy distribution in wave spectra, which results from his theory of 
energy transfer from shorter waves to longer waves, was compared with 
actual wave data (K. Yoshida, JOSJ, 7, 1951, 49-54). Based on nonlinear 
equations of waves with continuous spectrum, he suggested that the 
frequent occurrence of waves of several minutes’ period, surf beats, may 
be ascribed to the general structure of the ocean wave spectrum (K. 
Yoshida, GN, 3, 1950). Periods of surf beats are estimated approxi- 


2 
mately from an original spectrum; T = =<. where T denotes a period of 
A 


energy maximum, and AT is the range of periods of wave components 
with a significant amount of energy. M. Nakano published a paper in 
1949, Yoshida attempted to find a modification of swell in shallow wa- 
ter, where a bottom slope is not gentle enough to allow an ordinary 
refraction diagram approximation to be valid (K. Yoshida, GN, 3, 
1950). However, available wave records have not been sufficient to 
prove and support these theories so far. 

An electrical recorder of waves was devised by S. Ishiguro, a very 
able hydrographic mechanician. He constructed several types of wave 
recorders and an apparatus for the stroboscopic analysis for preparing 
the wave spectrum (S. Ishiguro, OM, 1, 1949; KK, 3, 1949; KK, 4, 


REPORT ON OCEANOGRAPHY 63 


1950; K. Sato, HB, 15, 1949). Wave recorders of pressure type have 
been installed at severa! parts of our coasts, and especially continuous 
records at Yogashima Island have been analyzed by the staff of the 
Oceanographic Section of the Central Meteorological Observatory (M. 
Nakano, S. Unoki and Y. Kuge, OM, 5, 1953, in press). The accumu- 
lation of such data as well as activities of the staff may afford a pro- 
mise of progress in forecasting. One of the most successful and interest- 
ing results from the wave recorders installed by this staff is that a re- 
corder at Hachijo Island recorded long sea waves (tsunamis) produced 
by an eruption of a submarine volcano in September of 1952, and that 
S. Unoki and M. Nakano could explain the observed change of period 
and district beat phenomena by solving the wave problem of Cauchy- 
Poisson type (S. Unoki and M. Nakano, OM, 4, 1952; OM, 5, 1953). 
This record at the station 130 km. distant from the volcano showed 
that the period decreases gradually with the lapse of time, from 95 sec, 
to 30 sec., and also showed distinct beat pattern. A stereophotogram- 
metric study of the surface was atempted by K. Sato, who was lost on 
board the wrecked vessel at the eruption of the Myojin volcano. 

In 1951 and 1952, Masamori Miyazaki published papers on math- 
ematical studies of surf and breakers in water of constant slope (Masa- 
mori Miyazaki, OM, 3, 1951; OM, 4, 1952). He also discussed the wind 
stress over the wavy sea surface mathematically (OM, 3, 1951). A prob- 
lem of “tidal race’ was taken up by Miyazaki in 1949 and by T. Ichiye 
neo ei(ichive; OM; 1929; Miyazaki, OM, 1, 1949). K. Hidaka 
published two papers of surface waves in 1951. He proposed a very 
simple explanation as to why the group velocity is equal to the velocity 
with which we can follow the waves without change of wavelength 
(K. Hidaka, JOSJ, 7, 1951). Hidaka and A. Nakano calculated the sur- 
face profile of high waves from Stokes’ equation by means of numeri- 
cal calculations instead of successive approximation procedures (Hi- 
daka and A. Nakano, JOSJ, 7, 1951). 


Storm Tides 

Ariake Sea, which is a shallow water in the island studded part in 
western Kyushu, has a big productivity. “This area is much frequented 
by typhoons. A computation was made by K. Terada as to how high 
the storm tides accompanying the passage of typhoons would be. A 
theory for such a phenomenon had been established by several persons 
immediately after the “Muroto” Typhoon which caused serious dam- 
age in the heart of Japan by a heavy storm tide in 1934. Masamori 
Miyazaki is one of those who recently solved the problem of storm 
tides caused by a travelling storm in an infinite and semi-infinite seas 


(OM, 4, 1952, 1-12). 


64 EIGHTH PACIFIC SCIENCE CONGRESS 


The storm tides caused by a heavy typhoon which attacked Japan 
in September, 1950, were also examined by Masamori Miyazaki in 1951. 
The storm tide-height amounted to about 125 cm. along the Kyushu 
coast facing the Inland Sea. 

He also analyzed the data obtained during the passage of the 
typhoon “Muroto” (1934) and the typhoon “Jane” (1950), which went 
across Osaka Bay, and made some additional explanation of the seiches 
with periods 310 minutes and 70 minutes which were observed during 
the passage (KH, 2, 1951). The storm tide caused by the typhoon 
“Jane” was also discussed by K. Hishida and T. Wakabahashi and was 
reported to have amounted to a height of 60-70 cm. (KH, 1, 1950, 185). 

A series of dynamical studies was made by S. Unoki during the 
period 1950-51 on the effect of atmospheric pressure change on the va- 
riation of sea level. He found that the sea level always responds to the 
variation of the atmospheric pressure after a lag of time. ‘This lag is 
found to increase with the period of the atmospheric pressure variation, 
velocity of travelling surface pressure disturbance and the latitude, and 
decreases with the depth of the sea. These observed facts were shown 
to agree with the theory pretty well (OM, 2, 1950, 1-15). He also made 
an attempt to improve the Colding formula for estimating the eleva- 
tion of the sea level caused by stationary winds. He studied the effect 
of the fetch, variation of depth and the gradient of wind velocity on the 
variation of sea level (OM, 3, 1951, 1-16). He further pointed out 
that the lag between the wind and the sea level variations is usually 
small when only the wind direction varies, but the phase-difference is 
large when the wind force varies, being closely related with the lati- 
tude, the angle between the wind and coast line, and the rate of varia- 
tion of wind velocity. But the most important conclusion he obtained 
is that the elevation of sea surface is considerably larger when the wind 
direction rotates counter-clockwise than when it does clockwise, even 
when the absolute value of wind velocity and the rate of variation of 
wind direction remains the same. ‘This means that larger elevation of 
the sea surface occurs when a cyclonic storm passes northward across 
the west side of a bay, than when it passes through the eastern portion 
(OM, 3, 1951, 53-63). 

In 1952, K. Kajiura made a study of the currents and the accumu- 
lation of water caused by winds in a lake whose water consists of two 
layers of different densities. [The computed profile of the boundary 
layer agrees with the observation satisfactorily (JOSJ, 8, 1952, 67-71). 

A series of remarkable papers was published by H. Yamada on the 
effect of a travelling disturbance on the motion of water in an enclosed 
or a semi-open sea. After a tedious computation, he could show the 


REPORT ON OCEANOGRAPHY 65 


detail of water movement accompanying the passage of storm across 
these basins (FE, 6, 1950, 22-33). 


Tsunamis 

The coastal areas of Japan have frequently been attacked by the 
storm waves (surges, or Takashio) caused by typhoon and also by tsu- 
namis caused by submarine earthquakes. To protect the coastal areas 
from damages due to such high waters, a number of studies has been 
made on these problems. 

A series of theoretical research was published in the years preced- 
ing 1950 by R. Takahashi. In 1951, he published a very intensive work 
on the amount of energy of tsunami waves arriving per unit length 
of segment along the Pacific coasts of the Japanese islands per century. 
This research is very useful to anticipate the possible damages by tsu- 
nami attacking our islands in future, providing the seismic activities 
remain unaltered for the time being (ERIB, 29, 1951, 76-96). 

T. Ichiye has published another series of papers on tsunami. In 
1949, he made a model experiment of the tsunami waves entering Osaka 
Bay from the Pacific Ocean and studied the patterns and characteristics 
of the oscillations peculiar to several portions of this bay around which 
are located many important industrial and commercial cities in the 
heart of Japan. He also attempted to take the effect of viscosity into 
consideration (KS, 26, 1949). 

Afterward he propounded a theory of tsunami and discussed the re- 
flection and penetration of tsunami waves as they pass into the shelf 
taking into account the interrelation between the length and period 
of tsunami waves and the depth and bottom slope of the shelf, and ob- 
tained a correction to Green’s law of change in amplitude. He also suc- 
ceeded in computing the reflectivity and permeability of tsunami which 
attacked Osaka Bay just mentioned from several directions of the Pa- 
cific. He also took into account the effect of viscosity on the shelf 
(KS, 27, 1949; OM, 2, 1950). He also established a theory of tsunami 
caused by a travelling disturbance on the bottom. ‘This theory of tsu- 
nami produced by a moving source is very helpful in treating the ob- 
served waves of tsunami. He first computed the tsunami waves when 
the submarine dislocation moves in a direction and showed that there 
occurs in a train of waves if the velocity of source is smaller than that 
of long waves, and a solitary wave is produced when the source moves 
faster than the long wave (KMOM, 8, 1950). Next, he treated the 
case where a circular elevation or depression is moving on the bottom. 
The patterns of oscillations remain the same except that the wave 
height decreases as the reciprocal of the square of the distance (KMOM, 
Y), US): 


66 EIGHTH PACIFIC SCIENCE CONGRESS 


It has been a common sense that the tsunami wave becomes highest 
at the head of a bay. But, according to the observed data of the San- 
riku Tsunami, March 4, 1952, this was proved not to be necessarily the 
case. ‘To explain this fact, Ichiye assumed a frictional resistance on the 
bottom of the bay head and had the conclusion that the amplitude be- 
comes a maximum at the middle portion of the bay (KMOM, 10, 1952). 

Although these papers are very excellent, it might be more advis- 
able now to have a tsunami recorder and to analyze the records more in 
detail. D. Shimozuru and T. Akima found tsunami waves of long 
period, about 80 minutes, superposed on shorter period waves of tsu- 
namis in the tidal record of December 21, 1946, by means of mechanical 
law-pass filter of torsion pendulum type. The investigation of the phase 
of the long period waves appears to indicate that they are due to the 
reflection from Guam Island (ERIB, 30, 1952, 223-230). 

The accounts on the Sanriku Tsunami, March 4, 1952, have been 
published by several authorities including the Earthquake Research In- 
stitute and Geophysical Institute, Tokyo University, and the Central 
Meteorological Observatory, and others. In the Geophysical Institute, 
Tokyo University, an expedition was issued for the investigation and 
the report on tsunami waves and its patterns was published by K. Yoshi- 
da, K. Kajiura, and H. Miyoshi (JOSJ, 8, 1953). An importance of 
the reflection of tsunami waves by continental slope was pointed out in 
this report. In the case of this tsunami, a warning system was success- 
ful. Various problems having been discussed concerning the propaga- 
tion of tsunami waves (T. Ichiye, US, 26, 1949; T. Ikano, CKH, 2, 1950; 
S. Homma, KS, 28, 1950; T. Rikitake, ERIB, 29, 1951), interesting is 
an application of diffraction problem to tsunamis which was made by 
K. Hidaka and S. Hikozaka concerning a distribution of wave-height 
on the coasts of Kausi Island in the case of the Hawaiian tsunami of 
1946 (JO, 5, 1949). Similar discussion was also made by S. Homma 
(GM, 21, 1950). Contributions were also made by model experiments 
of tsunami which S. Ogiwara, and T. Okita attempted (CKH, 2, 1950; 
SRTH, 2, 1950). ' 

It should also be mentioned that records of the sea shock on Au- 
gust 10, 1949, were obtained by S. Takagi, using a seismograph installed 
on board an anchored ship (US, 27, 1950). Another important work 
is a theoretical discussion of flood waves by S. Yayami, the importance 
of lateral mixing being introduced (Disaster Prevention Res. Ins. 
Bully 9): 


Marine Meteorology 
In 1950, Arakawa made a statistical survey of the visibility in the 
Northwestern Pacific Ocean using the data observed by the Japanese 


REPORT ON OCEANOGRAPHY 67 


Navy during the period of ten years beginning September, 1923. He 
found that the visibility is excellent in low latitudes almost all the year 
round. In high latitudes, poor visibility predominates, especially in 
the summer months. In the Far East the Summer Monsoon is directed 
from south to north, so the conditions will be favorable for advec- 
tion fogs. In the colder half of the year, the obscuring snow in the 
rear of winter cyclones on the northern sailing routes reduces visibility 
as a rule (MGP, 1, 1950, 58-66). Based on the materials from the 
same sources, he and ‘Tsutsumi also discussed the seasonal changes of 
daily frequency of squalls in the same area. He concluded that the 
frequency of squalls is drastically large in the Equatorial belt east of 
Longitude 125°E and south of Latitude 10°N, where the rainfall is 
heaviest in the Pacific as mentioned by G. Schott in 1938 (MGP, 1, 1951, 
296-301). ; 

In 1951, Hokodate Marine Observatory carried out the observations 
of fogs around his northernmost island very close the polar front and 
confirmed many of former conclusions on this phenomenon, together 
with the fact that there are very few of the short period components in 
the turbulence when the fog is very dense and the lapse rate of tem- 
perature is small close to the sea surface (KJ, 4, 1952, 81-120). 

A statistical study was made by M. Hanzawa and T. Inous on the 
influence of the variation of sea surface temperature and pressure on 
the growth of rice crop (KH, 2, 1952). 


Instruments and Methods 

In 1950 K. Ono of the Japanese Hydrographic Office, Tokyo, de- 
signed an electric shelf recording current meter. This instrument has 
undergone several improvements and has been used in several areas 
around the Japanese Islands with success. Another design with a photo- 
electric cell tube is also published by T. Nan’niti though we have 
not heard of its widespread use (MGP, 3, and 4, 1953, 286-294). 

In 1950 Nan’niti designed a lazy thermometer and tried a theore- 
tical consideration on its time lag. 

S. Agari made a design to measure the deep water temperature on — 
deck by the use of an electrically controlled distant deep-sea reversing 
thermometer. This consisted of a thin carbon thread sealed in a glass 
tube. The electric resistance is measured by platinum electrodes at- 
tached on this carbon thread. He made tests with both protected and 
non-protected reversing thermometers (KJ, 8, 1953). 

Shizuo Ishiguro is a very good designer and constructor of oceano- 
graphic instruments. He designed a sea wave height recorder taking 
advantage of the buoyancy of a cylindrical buoy placed in the water 
(KK 19507), 45-09): 


68 EIGHTH PACIFIC SCIENCE CONGRESS 


He also made an electric recorder for sea wave pressure. The trans- 
ducer of pressure gauge is of a variable mutual induction type using 
about a 100 cycle/sec. constant audit frequency. ‘The recording appara- 
tus consists of six parts: a carrier wave oscillator, a modulator combined 
with the pressure gauge, an amplifier and detector, an automatic cali- 
brating suit, a direct inking oscillograph and an electrical power supply, 
all kept in four portable cases. ‘This apparatus can measure the wave 
pressure from 0 up to 50 ton/m? with an accuracy of 2 to 3% in pres- 
sure and 1/20 sec. in the period of pressure pulsation. Actual obser- 
vations with this instrument proved successful. He made several im- 
provements (OM, I, 1949, 135-141; KK, 1, 1948, 2, 1949). 

Besides the wave recorder, Ishiguro devised an experimental analy- 
sis method for the forced oscillation of water in a lake or sea. The 
first method is to take movie pictures of the sea surface illuminated by 
a nearly horizontal beam. He also replaced the oscillating water in 
a basin by a combination system of electric impedance, the solution 
being shown in a cathode oscillograph (KK, 4, 1950, 59-84). 

Ishiguro applied the techniques of photogrammetry in order to 
measure the progressive phenomena on the sea surface such as tide 
waves, and wind waves and swell (KK, 4, 1950, 35-39). 

He also devised a drawing instrument or graphic computer to ana- 
lyze an irregular wave-form, or to combine different wave patterns, an 
optical direction recorder for tidal currents and an electric-contact-type 
speed recorder for submarine currents (KK, 4, 1950, 18-20, 21-23). Un- 
fortunately these instruments have not yet been constructed because 
of his illness. 

A nomograph diagram for the temperature correction of a non- 
protected reversing thermometer is given by Y. ‘Takenouti and T. Kato 
(KEE 1, 1950), 53-56): 

The technique of determining the ocean currents by measuring 
angle and direction of maximum inclination of the sounding wire was 
studied by K. Fukutomi (CKH, 1, 1951). The relation between the 
wind and the surface drift was discussed by K. Hishida (JOSJ, 6, 1950). 

In 1952 T. Abe made a different model of bathythermograph (KH, 
Zr lGb2) 289-296). 

An undersea observation chamber ‘“‘Kuroshio” was constructed in 
Japan and operated by N. Inoue, T. Sasaki and R. Oaki. ‘This in- 
strument, very similar to the bathysphere used by W. Beebe and Otis 
Burton in the United States of America was constructed in 1951. This 
project is financed by the Yomiuri Shinbun, one of the biggest news- 
paper companies in Japan, the Japanese Government, and others. ‘This 
was used in the summers of 1951 and 1952 with success. (Journ. Scient. 


REPORT ON OCEANOGRAPHY 69 


Res. Ins. 46, 1952; ROWYJ, 1, 1953, 52-62; N. Suzuki and K. Kato, Bull. 
Fac. Fish. Hokkaido Univ. 4, in press.) 

The production of deep-sea reversing thermometers, both protected 
and non-protected, has greatly increased recently. Nearly two hundred 
of them have been exported to the United States and many other coun- 
tries of the world. S. Watanabe and S. Yoshino are two of the outstand- 
ing makers. 


Submarine Geology 

In 1950 K. Hishida made an investigation on the sand drift in Ta- 
kahania Harbor in the Japan Sea coast of Japan (KH, 1, 1950, 193). 

T’. Ichiye published a series of papers on the beach erosion along 
the southeastern coast of Osaka Bay. He propounded a theory of beach 
erosion and suggested that the intense beach erosion is accompanied by 
converging currents (US, 26, 1951; Reports on the Investigations of 
Beach Erosion in the Southeastern Part of the Osaka Wan, 1951, 1952). 

Hiroshi Niino is carrying on a very extensive geological survey in 
several areas in the adjacent seas of Japan by boats belonging to the 
Tokyo Fisheries University. His surveys are regarded to be very im- 
portant from the standpoint of locating the fields of coal, oil and 
natural gas. 


ABBREVIATIONS 


The following abbreviations are used in the text for expressing 
names of the publications: 


CREW rs sescasse Chikyubuturigaki Kenkyu Hokoku, Hokkaido Universi- 
ty, Sapporo. ; 

Jae NS3) Beso coe Bulletin of the Earthquake Research Institute, Tokyo 
University, Tokyo. 

TMB Aone cals Reports of the Research Institute for Fluid Engineer- 
ing, Kyushu University, Fukuoka. 

GU iris, sive ceceers Journal of Geography, Tokyo. 

GMs 5 ctspeee rors Geophysical Magazine, Central Meteorological Observa- 
tory, Tokyo. 

GIN Bag he Seeley Geophysical Notes, Geophysical Institute, Tokyo Uni- 
versity. 

GSBieyn tees Bulletin of the Geographic Survey Institute, Tokyo. 

fo Ben ee OEE Hydrographic Bulletin (Suiro Yoho), Japanese Hydro- 
graphic Office, Tokyo. 

Be ec Bulletin of Hokkaido Regional Fisheries Research La- 
boratory, Yoichi, Hokkaido. 

JCSBR ee Bulletin of Chemical Society of Japan, Tokyo. 

JIPOCU_... Journal of the Institute of Polytechnics, Osaka City 
University, Osaka. 

SIME  scvastotercts Journal of Marine Research. 


SOM re eaeatc Journal of Oceanography. 


70 EIGHTH PACIFIC SCIENCE CONGRESS 


JOST ee eer: Journal of the Oceanographical Society of Japan, 
Tokyo. 

USS OM seoencoe Journal of the Japanese Society of Snow and Ice, 
Tokyo. i 

RET kus anes Chuo Kishodai Kenkyo Jiho (Journal of Meteorological 
Research), Central Meteorological Observatory, Tokyo. 

Kee ee Oe Kaiyo Hokoku (The Oceanographical Report of Central 
Meteorological Observatory, Tokyo). 

KK te ae Kaiyo to Kisho (Oceanography and Meteorology), Na- 
gasaki Marine Observatory, Nagasaki. 

KMOM_..... Memoirs of the Kobe Marine Observatory, Kobe. 

KGS AGh have revyetoce Kisho Shushi (Journal of the Meteorological Society 
of Japan), Tokyo. 

MCAKU.... Memoirs of the College of Agriculture, Kyoto Univer- 
sity, Kyoto. 

MGR Mice crete Papers in Meteorology and Geophysics, Institute of 
Meteorology, Tokyo. 

MMOR ..... Maizuru Marine Observatory Report. 

WNWARS gg 6 DOOD Monthly Weather Review, Washington, D.C. 

NMOR ...... Nagasaki Marine Observatory Report. 

OME iuctreuaitrters Oceanographical Magazine, Central Meteorological Ob- 
servatory, Tokyo. 

TPR OM irareleterers’s Papers and Report in Oceanography, Kobe Marine Ob- 
servatory, Kobe. 

OMIA Basgoc Records of Oceanographic Works in Japan, Japan 
Science Council, Tokyo. 

4 CR eae Teion Kagaku (Low Temperature Science), a publica- 


tion in Japanese, edited by the Low Temperature Insti- 
tute, Hokkaido University, Sapporo. 


ARON OA eas ores Journal of the Tokyo Fisheries University, Tokyo. 

IS Reha ee Umi to Sora (Sea and Sky), published by the Marine 
Metecrological Society, Kobe Marine Observatory, 
Kobe. 

SR ce. Science Reports of the Tohoku University. 


OCEANOGRAPHY IN MALAYA 


THE ANALYSIS OF THE MARINE ECoO-SYSTEM AS A BASIS FOR PREDICTION 
OF FisH AVAILABILITY IN MALAYAN SEAS. 


By D. W. LE Mare 


Sea fishing is essentially the exploitation of a natural resource 
by the capture of a portion of wild stocks from an uncontrolled en- 
vironment. The success of the operations depends on an intimate 
knowledge of the nature and habits of these stocks. Normally, experi- 
enced fishermen have a fairly good idea as to where and when to ex- 


REPORT ON OCEANOGRAPHY 71 


pect different species of fish. Very often, however, much time is wasted 
in searching for the fish and from time to time there have been reports 
from various parts of the world of unusually small catches or even of 
complete failure of certain fisheries. On the other hand there are o¢- 
casions when catches are normally poor. ‘The fishermen are unable to 
explain these phenomena so that, from the point of view of financiers, 
the fishing industry is generally considered to be inherently hazardous 
and does not attract finance so readily as other enterprises. ‘There are, 
of course, other factors but this element of uncertainty in fish produc- 
tion is the largest factor which retards the expansion of the fishing in- 
dustry on sound economic lines. It is clear, therefore, that for the fish- 
ing industry to operate on an economic basis the fishermen must be 
supplied with, inter alia, information as to where and when each spe- 
cies or group of species of fish is available for fishing operations. This 
is a task which should be given the highest priority in fishery investi- 
gations as until it is known where, when and at what depth each spe- 
cies of fish is available it is not possible to decide where to study the 
nature of the bottom, the sea currents and the meteorological condi- 
tions in which the fishing operations have to be carried out effectively 
without a knowledge of all these factors. The need for reliable predic- 
tion systems have been felt in different parts of the world and many 
have been elaborated. The use of indicator organisms for the Herring 
fishery in the North Sea is an example. It is of special importance in 
the underdeveloped areas to know when and where to go, so that the 
production of food for the world’s growing population may be in- 
creased with a minimal waste of effort. 

In Malaya, however, the catches of many of the tears in use at the 
present moment consist of mixed fish and it has been found that while 
these fish show a certain amount of food preference, they are mostly 
plankton feeders and readily feed on other organisms if the food pre- 
ferred are not available. Details of the results of the investigations on 
the food and feeding habits of the fishes in Singapore Straits are given 
in a paper by Tham Ah Kow (1950). There is evidence also that there 
is a close correlation between wind and catches of certain species of 
fish such as Stolephorus spp. This is not surprising in view of the fact 
that the currents in Malayan seas are largely monsoon currents. From 
the experience gained in the study of the fisheries of Malaya over the 
years, it would appear also that rainfall and salinity variations as well 
as variations in plankton play some part in the variation in availability 
of fish. 

In view of these considerations, it was decided that a concurrent 
study of the physical, chemical and biological factors as related to the 


- 72 EIGHTH PACIFIC SCIENCE CONGRESS 


availability of fish should be made by the Research section of the Ma- 
layan Fisheries Department. For this purpose it was decided to con- 
centrate all observations in Singapore Straits since, besides other consi- 
derations, one of the main gears used in this area is the fixed fish trap 
known as the Kelong. The important features of this method of fish- 
ing are: (1) in Singapore Straits its fishing intensity is practically con- 
stant; (2) the fish in Singapore Straits are brought on to the long leads 
of these traps by the tides and all fish lured into these traps are caught 
by means of fine meshed lift nets; and (3) reliable records of the catch- 
es of these stakes are easily obtainable. A detailed description of this 
gear is given by Le Mare and Tham (1947). Observations on the fol- 
lowing factors were made at regular fortnightly intervals during two 
full years: (1) sea water temperature, (2) salinity, (3) phosphate ccn- 
tent, (4) phytoplankton, and (5) copepod numbers. Full details of the 
methods used in the measurement of these factors are given in a paper 
by Tham Ah Kow (1953). It should be stated, however, that in the 
case of phytoplankton the estimation of pigment content by Harvey’s 
method as well as total counts were carried out. Data on wind-force 
and rainfall for the period of the investigations were supplied by the 
Malayan Meteorological Service. 

In an attempt to study the effect of each of these factors on the 
availability of fish the data so obtained were subjected to correlation 
analysis by means of partial correlation. As the data are based on 
fortnightly samples, they constitute time series and it is possible that 
in each of these time series the value of the variable at one period of 
time may influence its value in a succeeding period. In such cases the 
use of partial correlation as an analytical tool would not be valid. How- 
ever, according to Bartlett (1953) there should be no objection to the 
use of partial correlation as a preliminary measure. If the partial cor- 
relation coefficients are quite insignificant, there does not seem much 
point in considering them any further. If the correlation coefficients 
appear significant, then the terms of each of the series should be tested 
for independence and if found to be independent the partial correla- 
tion coefficients may be accepted as valid. This procedure has been 
adopted. Where the terms of both series correlated are not indepen- 
dent then the method of Fisher (1948) for series correlation is applied 
to remove the effect of time. The results obtained by this correlation 
analysis are shown in Figure I. 

The main elements of the fish population in Singapore Straits are 
Stolephorus spp. (anchovy), Clupea spp. (sprat), Chirocentrus spp. (do- 
rab) and Scomberomorus spp. (Spanish mackerel). They are inter- 


73 


REPORT ON OCEANOGRAPHY 


I qunyIy 


ENVOIMINDIS ATIVOILSILVLS ATAVAONAd — — — — — — 
‘LNVOIMINDIS ATIVOILSILVLS 


| ‘dd$ SAdLNGQ0uIHO | 


ALINITVS ee ets. = SSeS | TIVAINIVd |—-———| aLVHdSOHd | 


qTaOLVEGdWaL | 


| 


| AHOWOTANIM | 


| ‘ddS SAUOWONTANOOS ce aa ee | 


- 


SdIHSNOILLVIGYYALNI 


‘ddS SNUYOHdATOLS 


LNALNOO 
LNAWSId 


NOLANV'IdOLAH | 


74. EIGHTH PACIFIC SCIENCE CONGRESS 


related in that both Scomberomorus spp. and Chirocentrus spp. feed 
voraciously on Clupea spp. and Stolephorus spp. These latter groups, 
in turn, feed on zooplankton (especially copepods) and phytoplankton. 
The physical and chemical elements of the environment play an im- 
portant part in determining the availability of plankton as well as the 
various elements of the fish populations. It is clear, therefore, that 
the various elements of the marine eco-system in Singapore Straits are 
very closely integrated. 

In an attempt to study further the close relationship between the 
fish population on the one hand and the environmental conditions, viz: 
rainfall, windforce, temperature, salinity, phosphate, phytoplankton 
and copepods, on the other, the method of multiple regression is used. 
The multiple regression equation obtained may be expressed as fol- 
lows:— 

Xi, = — 49,903 — 395.61100 X, — 1.77415 X, — 1,105.75115 X, 
511269182990) Xow 10:47 90a abo r7 Xen 
where X,, = the monthly total catch of three kelongs in pounds, 


14 


X, = total rainfall in inches for that month, 

X, = total wind speed in metres per second for that month, 

X, == average temperature of the sea water in °C for that month, 
X, = average salinity in °/,, for that month, 

X, = average number of phytoplankton cells and/or chains of cells 


per cubic metre for that month, 
X, = average number of copepods per cubic metre for that month. 


On testing the significance of the multiple correlation by working out 
the value of “z’ it is found to be 0.87977 whilst the 0.1% point is 
0.8657. ‘The multiple correlation is therefore clearly significant. The 
adjusted multiple correlation coefficient squared is R? = 0.5566. The 
standard error of estimate S is = 2316 Ibs. This is 14.44°% of the mean 
monthly total catch for the two years under study. 

The total catch for each month for the two years 1948 and 1949 
has been calculated and compared with the corresponding actual total] 
monthly catches in Table I. In the above regression equation it is 
assumed that all the relationships are linear. If it were further re- 
fined statistically by taking into account the curvilinear nature of some 
of the relationships a much closer estimate would, in all probability, 
be obtainable. The results of the multiple regression shows that if 
predictions of the independent variates could be made with accuracy 
a prediction system of sufficient accuracy for catches in Singapore Straits 
is within reach. It would appear also from these results that, in the 
exploration of new grounds, an intensive study of the marine eco-sys- 
tem should yield a comprehensive picture of the habits and migration 
of the fish stocks in a comparatively short time. 


REPORT ON OCEANOGRAPHY 75 


It is believed that this is the first time that a prediction system 
for availability of fish has been developed, which shows the present de- 
gree of accuracy when tested over a period of 24 months. 


TABLE I 


COMPARISON OF ACTUAL TOTAL CATCH AND CALCULATED 
TOTAL CATCH 


YEAR 1948 CALCULATED ACTUAL Cat. X 100 DIFFERENCE 
ToTAL CATCH ToTAL CATCH ACTUAL AcT.-CAL. LBs. 

January 6,428 7,029 91.45% + 601 
February 15,799 17,153 92.11% +1,854 
March A Dil 18,439 83.63 % + 8,018 
April MTB 17,520 101.24% a AY 
May 18,793 15,546 120.88% amOsea 
June 17,967 17,618 101.98% = Gy) 
July 14,809 11,270 131.40% TT Oye) 
August 15,655 17,364 90.16% +-1,709 
September 16,768 16,589 101.08% = ee) 
October 20,917 20,586 101.86% =F Bl 
November 17,483 20,585 84.93% +3,102 
December 12,504 13,125 95.27% + 621 
YEAR 1949 

January 12,224 11,249 108.66% me | 5) 
February 16,323 12,381 131.83% ao oe 
March 17,983 19,821 93.07% +1,338 
April 19,184 18,552 103.41% = Oey 
May 17,809 18,445 96.55% + 636 
June 16,261 16,070 101.19% am 9 
July 14,956 17,192 86.99% + 2,236 
August 18,501 21,765 85.00% +3,264 
September 16,387 14,329 114.36% 2,008 
October 15,163 O22, 96.44% DS) 
November ~ 15,360 12,608 121.83 % enon 
December 14,217 14,394 98.77 % + 177 

REFERENCES 


BARTLETT, M. S. 1935. “Some Aspects of the Time-Correlation Problem.” 
Journ. Royal Statistical Soc. Vol. 98, p. 586. 

FisHer, R. A. 1948. “Statistical Methods for Research Workers.” Tenth 
Edition. Oliver & Boyd. London. 

Le Mars, D. W. and THAM, AH Kow. 1947. “The Kelong Fishing Method.” 
Fishery Conference convened by the United Kingdom Special Commis- 
sioner for Southeast Asia at Singapore. Paper No. 1 (Mimeo.) 

THamM, AH Kow. 1950. “A Preliminary Study of the Physical, Chemical 
and Biological Characteristics of Singapore Straits.” Colonial Fishery 
Publications. Vol. 1, No. 3, H. M. Stationery Office. London. 


76 EIGHTH PACIFIC SCIENCE CONGRESS 


OCEANOGRAPHY IN NEW ZEALAND 
By A. W. B. Powe. and CG. A. FLEMING 


I. INTRODUCTION 


The years 1949 to 1953 have seen important advances in organiza- 
tion and performance of oceanographic work in New Zealand. A re- 
view of New Zealand oceanography presented in 1947 (Hefferd 1950, 
Trans. Roy. Soc. N. Z. 77(5): 212-21) indicates the state of research 
just prior to the 7th Pacific Science Congress. The stimulus provided 
by the activities of the Oceanography Section of the 7th Congress in 
New Zealand in 1949 has undoubtedly contributed to the advances 
made since that date, which are documented by the bibliography of 
New Zealand Oceanography 1949-53, compiled by the N.Z. Oceanogra- 
phic Committee and tabled with this report. 

In October, 1949, on the arrival of the naval survey vessels, 
H.M.N.Z.S. Lachlan in New Zealand, her Commanding Officer, Com- 
mander J. M. Sharpey-Schaefer, R. N., offered to collect data and ma- 
terial for New Zealand scientists. To co-ordinate requests for data and 
distribution of material, an Interdepartmental Committee on Ocea- 
nography was formed, with representatives of Victoria University Col- 
lege, Dominion Museum, Marine Department, and Department of Scien- 
tific and Industrial Research. The Committee drew up a programme 
of sampling and observation, and supplied the ship with bottom sam- 
plers, containers, scientific log sheets, and arranged for analysis of wa- 
ter samples, distribution of collections, mechanical analysis and petro- 
logical examination of sediments, and perusal of echo-traces. In June, 
1950, the Interdepartmental Committee pressed for the formation of 
a National Committee fully representative of the many New Zealand 
oceanographers attached to different institutions and departments, to 
act as a national body competent to speak for New Zealand in ocean- 
ographic matters. 

_ A further stimulus to oceanography in this country was provided 
by the opportunities afforded for some deep sea investigations arising 
out of the visits of three oceanographic vessels—R.R.S. Discovery II 
(1950-51), H.M.S. Challenger (1951), and the Danish Research Ship 
Galathea (1951-1952). 

The New Zealand National Committee on Oceanography (Secre- 
tary J. W. Brodie) was formed in September, 1950, as an advisory re- 
search committee of the Council of Scientific and Industrial Research, 
and has since operated in effecting liaison, sponsoring research pro- 
jects, and in advising the New Zealand Government on oceanographic 


REPORT ON OCEANOGRAPHY 77 


matters. In the field of physical oceanography, the committee through 
its physical sub-committee, arranged for preparation of a bathymetric 
map of New Zealand seas, for the collection of continuous echo sound- 
ing profiles by naval vessels in New Zealand seas, particularly on vo- 
yages between New Zealand, Australia, and the outlying islands, and 
for “collector tracings” of all surveys to be available for scientific use. 
Visiting expeditions (R.R.S. Discovery Il, H.M.S. Challenger, H.D.M.S. 
Galathea) co-operated by supplying the committee with physical data 
of local interest (soundings, temperatures, bottom samples, etc.). Also 
molluscan material was allocated to two local specialists for study and 
report. In general, the committee has effected liaison between New 
Zealand workers in oceanography by assembling news-sheets, library 
lists, and lists of vessels and equipment available for research work. 


II. PuysicaAL (C. A. FLEMING) 
Hydrographic Surveys by H.M.N.Z.S. Lachlan 

Since her arrival in 1949, H.M.N.Z.S. Lachlan has been engaged on 
hydrographic re-survey of New Zealand coasts. New charts have been 
prepared of Foveaux Strait, Cook Strait, Wellington, Bluff, Lyttelton, 
and Otago Harbours, Peterson Inlet, and the east coast between Banks 
Peninsula and Wellington. Echo sounding surveys have clearly de- 
lineated the position of the continental shelf-edge and have de- 
monstrated the presence of submarine canyons in Cook Strait and off 
the east coast of the South Island near Otago Peninsula, Banks Penin- 
sula, and the Marborough Coast. In 1950, Lieutenant Commander B. 
M. Bary, M.Sc., Ph.D., N.Z. Defence Scientific Corps, joined H.M.N.Z.S. 
Lachlan as biologist, and the ship was equipped with a laboratory and 
oceanographic gear. Mr. T. M. Skerman, M.Sc., Oceanographic Ob- 
servatory, D.S.I.R., joined the ship when Lt. Commander Bary left to 
further his studies at the National Institute of Oceanography. 

In the course of hydrographic surveys, H.M.N.Z.S. Lachlan under- 
takes routine observations of sea surface temperatures, obtains salinity 
samples, bathythermograph records, bottom samples (using a Worzel 
sampler supplied by Geological Survey) and plankton hauls. The re- 
sulting collections and data are distributed to New Zealand oceanogra- 
phers by the “Lachlan” sub-committee of the Oceanographic Commit- 
tee. 

Oceanographic Observatory, D.S.I.R. 

The Oceanographic Observatory, Wellington, was formed in 1949 
and is now organized as a unit of the Geophysics Division of the De- 
partment of Scientific and Industrial Research for the study of hydro- 
logical conditions in the seas around New Zealand. The present staff 


78 EIGHTH PACIFIC SCIENCE CONGRESS 


consists of three professional officers and two technicians. ‘The observ- 
atory suffered a severe loss by the death in March, 1953, of Mr. W. 
M. Jones, M.Sc., (N.Z.) B.A. (Oxon.), Director. In his contribution 
to the development of physical oceanography in New Zealand, Mr. 
Jones brought his long experience as a mathematical physicist in other 
fields of geophysics. 

An Admiralty wave recorder was installed at Greymouth, west coast 
of South Island, in 1950, and ocean wave records obtained during a 
three-month period. An examination of these records in conjunction 
with weather information showed that there was satisfactory agreement 
between the main features of meteorological situations and the resul- 
tant wave spectra, and some graphical methods were evolved for eval- 
uating the quantitative relations. The statistical relationships between 
the observed sea surface and its spectrum have been studied. Some re- 
sults have been published by Jessie K. A. Watters (1953, “Distribution 
of height in ocean waves.” N. Z. J. Sci. Tech. B 34: 408-22), and others 
will be published in a paper in preparation for the same journal by 
N. F. Barber, and R. A. Wooding (“Some statistical features of sea 
waves’). 

The sea surface temperatures obtained from 1949 to 1952 from 
merchant and naval ships and from surface recording thermographs in- 
stalled on trans-Tasman and other vessels have been plotted on month- 
ly charts as the basis for study of the surface hydrology of the south- 
west Pacific by D. M. Garner (who has submitted a short account of 
the results to this Congress). 1,600 salinity determinations, by the Do- 
minion Laboratory (Wellington), are used to supplement the tempera- 
ture data. 

The hurricane at Suva in January, 1952, produced a microseismic 
storm on the Milne Shaw seismograph, and the relations of the micro- 
seisms to the position and intensity of the hurricane have been exam- 
ined. 

Geophysics Division, D.SJI.R. 

Mr. J. W. Brodie has undertaken the filing and analysis of sound- 
ing records received from ships of the Royal New Zealand Navy and 
from other sources (including Discovery H, H.M.S. Challenger, and 
H.D.M.S. Galathea). An account of the sea floor west of New Zealand 
appears in N.Z. J. Sci. Tech. B 33 (5): 373-84, 1952. Contoured bathy- 
metric charts of Cook Strait, Bay of Plenty, and Wellington Harbour 
have been compiled and a description of a seamount rising from 1000 
to 5000 fathoms, west of Waikato Heads, has been prepared. 12,000 
drift cards have been obtained for release during 1953 in the south- 
west Pacific to determine current movements. 


REPORT ON OCEANOGRAPHY 719 


Echo sounding profiles across the New Zealand continental shelf 
are being accumulated for study. Many profiles show the shelf to be 
terraced. The resurvey of Cook Strait by H.M.N.Z.S. Lachlan has 
shown that a submarine canyon drains southward from the relatively 
shallow (50-fathom) shelf of the western strait to depths in excess of 
1,100 fathoms south of Cape Palliser. Shallow tributary channels cross- 
ing the shelf between Nelson and Taranaki bear no relation to the 
mouths of rivers. The resurvey has shown changes in the walls of the 
Cook Strait Canyon since the early surveys of last century. 

During 1950, D. J. Banwell and B. H. Olson measured electric 
potential differences between points on shore spaced 2-3 kilometres 
apart, considered due to tidal currents (Couper, 1953, Rep. 7th N.Z. 
Sci. Congr. 3). Previous measurements (e.g. by Barber) were made in 
the northern hemisphere. The results agreed fairly well with the theo- 
retical argument of Longuet-Higgins, given the opposite polarity of 
the earth’s field. 

New Zealand Geological Survey | 

Echo sounding and other bathymetric records were filed at the Geo- 
logical Survey from 1949 until 1952 when the Geophysics Division un- 
dertook their custody. 

The topography and sediment of Mernoo Bank, an oval elevation 
of the sea bottom rising from depths greater than 200 fathoms to 28 
fathoms, 90 miles east of Canterbury, were described by Fleming and 
Reed (1951, N.Z. J. Sci. Tech. B 32 (6): 18-30) on the basis of an echo 
sounding survey by H.M.N.Z.S. Lachlan, and serial magnetometer profile 
and sediment samples. The bank is interpreted as a tectonic dome, 
composed of late Paleozoic to early Mesozoic indurated sediment, sculp- 
tured by shallow radial submarine valleys. J. J. Reed has studied the 
grain-size, sorting, and mineralogy of sediments of the Sumner estuary, 
Canterbury (1951, N.Z. J. Scc. Tech. B33 (2): 129-37). From the Cha- 
tham Rise west of the Chatham Islands, R.R.S. Discovery II dredged 
coarse sediment at a depth of 170 fathoms containing pebbles of schist 
and of phosphatised Miocene globigerine limestone (Reed and Horni- 
brook, 1952, N.Z. J. Sct. Tech. B 34 (3): 173-88). Reed has prepared a 
sediment map of Cook Strait based cn mechanical analysis of 170 sam- 
ples, mostly collected with a Worzel sampler from H.M.N.Z.S. Lachlan. 
Few samples had been obtained from the floor of the Cook Strait Can- 
yon, but the general pattern indicates that sediment is coarse near the 
canyon and fine on flat shelf areas distant from it. Calcite and siderite 
concretions, some of them fossiliferous, a foot or two in diameter, are 
regularly caught on fishing lines on the sides of the canyon and have 
been studied by C. A. Fleming. The concretions contain fossils pro- 


80 EIGHTH PACIFIC SCIENCE CONGRESS 


bably of Pleistocene age and are bored by marine animals and support 
a vigorous epifauna. These facts suggest that an area of geologically 
young sediments is being destroyed by bottom scour on the sides of 
the Cook Strait Canyon, leaving the more resistant concretion on the sea 
bottom, where currents are sufficient (in depths of 100 to 120 fathoms) 
to prevent sediment accumulating. 

B. L. Wood and I. McKellar (Geological Survey, Invercargill) have 
begun a study of bottom topography and sediment in Foveaux Strait 
off the East Coast of Otago. A submarine lignite from Foveaux Strait 
has been shown by pollen analysis to be Plio-Pleistocene in age, and 
to represent a cool climate (Couper, N.Z. J. Sct. Tech. B 33 (3): 178-86). 

By arrangement with the Galathea Expedition authorities R. A. 
Couper is working on the spores and pollen grains in a sediment core 
obtained by H.D.M.S. Galathea in Milford Sound. Preliminary re- 
sults suggest that it may be possible to determine the rate of sedimenta- 
tion in the glacially over-deepened basin with the rock bar near the 
entrance to the sound owing to the appearance of pollen from intro- 
duced Cupressus trees at the top of the core. 

Some further information on the White Island Trench, described 
by Fleming at the 7th Pacific Science Congress (1953, Proc. 7th Pacific 
Sct. Congr. 3:210-12), is now available as the result of echo sounding 
and a gravimetric survey. The trench, which is interpreted as the 
submarine continuation of the Rangitaiki Graben, has now been traced 
north eastward into the Bay of Plenty to depths in excess of 1300 fath- 
oms, and additional work has shown that a parallel depression runs 
seaward on its west side, defining the ridge on which stands the White 
Island volcano. Gravity surveys of the Bay of Plenty have shown that 
the landward part of the trench is an area of negative anomaly, with 
a maximum difference of 50 milligals between the trench and the up- 
lifted blocks which bound it on either side. Neither the gravity profiles, 
nor the echo traces are evidence that the depression has particularly 
steep walls, although these have been mapped geologically as faulty. 
The bottom relief offshore corresponds in detail with the gravity pro- 
file along the coast. 


III. BrotocicaL (A. W. B. Powe Lt) 

A considerable amount of work that may be classified under the 
heading of biological oceanography is at present in progress at the 
several University Colleges, Museums and other scientific institutions 
in this country and an outline of the nature and scope of this work 
follows: 


REPORT ON OCEANOGRAPHY 81 


Although many of the titles in the Oceanographic Committee’s 
bibliography and many of the topics included in my list work in pro- 
gress suggest specialized zoological and botanical scope rather than 
oceanographic, it should be conceded that New Zealand is a young 
country and that the systematics and biology of many groups are still 
inadequately known. 

All such papers collectively will eventually form an indispensable 
background for future biological oceanographic investigation. 


Published Biological Work 

The published papers are representative of most phyla but mol- 
luscan and algal studies predominate with 33 titles for the former 
and 16 for the latter. 

Protozoa. ‘Two papers by B. N. Bary on Sea-water discoloration. 

Portfera. One paper, The Kirk Collection of Sponges, by H. B. 
Fell. 

Coelenterata. ‘Two papers on Ctenophores from Cook Strait by 
P. M. Ralph and C. Kabery and The Actinaria of New Zealand by G. 
Parry, which includes a check-list of recorded and new species. 

Echinoderma. Five papers by H. B. Fell: “The Constitution and 
Relations of the New Zealand Echinoderm Fauna,” “Echinoderms from 
Southern New Zealand,” “The Occurrence of Australian Echinoids in 
New Zealand Waters,” and several papers on littoral and deep-sea ophi- 
uroids. Also a paper on Holothuria by W. H. Dawbin. 

Polyzoa. A monograph of Tertiary Cheilostomata by D. A. Brown 
and two papers by G. H. Uttley contain many references to the syste- 
matics and distribution of recent species. 

Mollusca. ‘Thirty-three papers by C. Borland, R. K. Dell, C. A. 
Fleming, J. E. Morton, R. M. Cassie, Rapson, and A. W. B. Powell. 
In addition to systematics there are papers on life-histories, feeding 
mechanisms, animal communities of the sea bottom, population stu- 
dies, biogeographic provinces, bipolarity and the dispersal of southern 
high latitude species. 

Crustacea. ‘Three papers on the Spiny Crayfish (Jasus lalandi) by 
C. A. Bradstock, two on brachyura by L. R. Richardson, one on new 
species of Scyllarus and Ctenocheles by A. W. B. Powell, and one on Am- 
phipoda by D. E. Hurley. N. de B. Hornibrook has described ‘“‘A new 
Family of Living Ostracoda with Resemblances to some Palaeozoic Bey- 
richiidae” and has published a monograph ‘Tertiary and Recent Ma- 
rine Ostracoda of New Zealand, their Origin, Affinities and Distribu- 
tion,” including a systematic revision of the Cytheriidae. 

Protochordata. Eight papers on New Zealand Ascidians by B. 
Brewin. 


82 EIGHTH PACIFIC SCIENCE CONGRESS 


Pisces. Five papers by J. A. F. Garrick, J. M. Moreland, W. J. 
Phillips, and L. R. Richardson. 

Mammalia. Southern Ocean Seals, two papers by E. G. Turbott 
and the “Elephant Seals of Campbell Island” by J. H. Sorensen. 

The algal papers deal with systematics, ecology, zonation and al- 
gal provinces. The authors are M. P. Ambler, J. A. Carnahan, V. J. 
Chapman, R. F. de Berg, U. V. Dellow, and V. W. Lindauer. 


Biological Work in Progress in New Zealand 

FISHERIES BRANCH, MARINE DEPARTMENT, WELLINGTON. 

Survey of Snapper (Pagrosomus auratus) spawning grounds in the 
Hauraki Gulf, Auckland, to log the distribution and density of eggs 
and larvae. 

Routine trawls in the Hauraki Gulf to record the seasonal varia- 
tion in the composition of fish stocks. 

Investigation of the spawning areas for Tarakihi (Dactylopagrus 
macropterus) in the Gisborne-East Cape area. 


VICTORIA UNIVERSITY COLLEGE, WELLINGTON. 


The Zoology Department is encouraging students to specialize in 
the systematics of groups. In recent years students of the Department 
have investigated Amphipoda, Cephalopoda, Macrozooplankton and Os- 
tracoda. Staff members are at present working on Coelenterata, Hiru- 
dinea, Crustacea Brachyura, Echinodermata and Pisces. <A study is 
in progress also on optimum and lethal points of environmental fac- 
tors for marine larval organisms. In addition an investigation of the 
Cook Strait Whaling Industry and the ecology of the humpback is 
continuing. 

DOMINION MUSEUM, WELLINGTON. 

A survey of marine bottom communities in Wellington Harbour 
and Cook Strait. The compilation of a molluscan check-list for the 
Cookian Province. R. K. Dell. — 

The Relationships of the Kermadec Mollusca (paper for the Eighth 
Pacific Science Congress) R. K. Dell. 

A revision of the shore fishes of New Zealand. J. Moreland. 


AUCKLAND UNIVERSITY COLLEGE. 

In the Botany Department three papers are in progress. A conti- 
nuation of the study of the mangrove and salt marshes in New Zealand, 
-by Professor V. J. Chapman. 

Study of life history and taxonomy of certain red algae, in parti- 
cular Porphyra, Lomentaria and Apophloca, by Miss Jane M. ‘Trevar- 
then. A study of the factors determining the occurrence and distribu- 


REPORT ON OCEANOGRAPHY 83 


tion of Hormosira banksii, including especially a determination of the 
depth in sea water at which the compensation point is reached, by Mr. 
C. B. Trevarthen. 


AUCKLAND INSTITUTE AND MUSEUM. 

A report entitled “Mollusca of the Cape Expedition” is now fin- 
ished and awaits publication. It is primarily a report on the mollus- 
can collections made during 1941-45 by personnel of the coast-watching 
stations, but all previous molluscan records for the Southern Islands 
of New Zealand are listed and evaluated. Forty-three new species are 
described and the area is oriented into three marine provinces. 

Other reports in progress are (1) Mollusca of the BANZARE ex- 
peditions (Macquarie, Kerguelen, Heard Islands and Antarctica, (2) Gas- 
tropoda from the Galathea Expedition, (3) Benthic Molluscan faunu- 
les from Hauraki Gulf, Bay of Plenty and Northland; ecological and 
a correlation between animal communities and bottom textures. A. W. 
B. Powell. 

Distribution study of the Red-billed gull by ringing at Three Kings 
Islands. Field studies of sea birds during M.V. ‘‘Alert” expedition to 
Antipodes and Bounty Islands in 1949. E. G. Turbott. 


UNIVERSITY OF OTAGO. 

In the Department of Zoology the following two papers of oceano- 
graphic interest are in progress: 

Systematics and geographical distribution of New Zealand Ascid- 
ians and the development, growth and life history of a local highly- 
specialized compound ascidian, by Miss B. Brewin. 

Systematics and geographical distribution of New Zealand sponges, 
by Mrs. S. Rind. 


PORTOBELLO MARINE BIOLOGICAL STATION. 

Amphipod systematics; wharf pile fauna studies in Otago Harbour; 
Ecology of crustacea and other bottom dwelling animals, by D. E. Hur- 
ley. 
Neuromuscular system and behaviour of Coelenterates; Intertidal 
ecology, by Dr. E. Batham. 


CANTERBURY UNIVERSITY COLLEGE, CHRISTCHURCH. 

Mr. G. A. Knox has commenced a bottom sampling programme on 
the continental shelf of Pegasus Bay and off Banks Peninsula. The 
work will form the basis for a study of the relationship of the bottom 
communities and the feeding habits of fishes. He is continuing work 
on the Systematics of New Zealand Polychaetes and on the intertidal 
ecology of New Zealand rocky shores. Miss F. R. Nurse is engaged on 
studies in New Zealand and Macquarie Island Turbellaria. Dr. R. L. 


84 EIGHTH PACIFIC SCIENCE CONGRESS 


Pilgrim has begun a revision of New Zealand Nudibranchia, and Pro- 
fessor E. Percival is working out the life history of Tegulorhynchia ni- 
gricans as part of his general interest in brachiopoda in New Zealand 
tidal waters. 


NEW ZEALAND GEOLOGICAL SURVEY. 

Mz. N. de B. Hornibrook continues study of marine Ostracoda and 
Foraminifera, particularly Globigerinidae, which may be useful paleo- 
temperature indicators. Mr. P. Vella has completed a survey of the 
Foraminifera of Cook Straits. 


SUMMARY OF OCEANOGRAPHIC WORK CONDUCTED BY 
THE PACIFIC OCEANIC FISHERY INVESTIGATIONS 
SINCE 1949 


Objectives: 

To survey the distribution of physical, chemical and biological pro- 
perties of the waters of the central equatorial Pacific and to combine 
the resultant oceanographic data with those from the experimental 
fishing operations in an effort to better understand the particular eco- 
logical situations in which the fish are present or absent. 

Facilities: 

The major portion of the oceanographic survey program has been 
carried out aboard the Hugh M. Smith, a former Navy YP of the 600 
class. The Smith is 128 feet long with a beam of 29 feet; is powered 
with a 560 H.P. Union Diesel and has a cruising range of 8,500 miles. 
The present oceanographic equipment includes two winches for raising 
and lowering Nansen bottles and for towing plankton nets; a bathy- 
thermograph installation; and automatic surface temperature recorder, 
and a GEK (Geomagnetic Electrokinetograph) for recording velocities 
of surface currents. 

An oceanographic and biological laboratory is located on the main 
deck where chemical analysis are made and where biological specimens 
studied and preserved. 

The John R. Manning, west coast purse seiner, and the Charles 
H. Gilbert, a combination tuna boat and longline vessel, are both 
equipped with recording thermographs and with bathythermograph in- 
stallations. Plans for a biological-oceanographic laboratory aboard the 
Gilbert are presently nearing completion. 

Laboratory and office space are available in the POFI building 
located on the campus of the University of Hawaii. A calibration tank 
for reversing thermometers and limited shop facilities are also provided. 


REPORT ON OCEANOGRAPHY 85 


Programs: : 

Since 1949, a total of 13 oceanographic survey cruises have been 
conducted, 8 in the equatorial area and 5 in the Hawaiian Island wa- 
ters. On all cruises, continuous records of surface temperature and 
data from bathythermograph lowerings at frequent intervals are avail- 
able. Continuous records of surface temperature and those from less 
frequent bathythermograph lowerings are available from 13 exploratory 
fishery cruises in the equatorial region and 19 in the Hawaiian area. 

In general, each oceanographic station consisted of thirteen sam- 
ples, surface to 1,000 meters. Protected and unprotected reversing ther- 
mometers were used with the Nansen bottles. Samples were drawn 
from each depth for chlorinity and phosphate analysis. A 900-foot 
bathythermograph record and associated meteorological observations 
were included with each station. 

Current measurements were made by all practicable methods in- 
cluding the drift of the vessel; drift of the nets or longline when avail- 
able and by actual measurements of surface currents with the GEK. 
On one cruise, Cruise 16 of the Smith, shallow and deep drags were 
used. | 

Navigational methods include the dead reckoning plot with posi- 
tions fixed by astronomical sights, Loran and, when practicable, by 
radar. 


Results: 

Analyses of the data from the cruises in the equatorial region, 
10°N. to 10°S. latitudes between 140° and 180°W. longitudes, have 
yielded a better understanding of the equatorial circulation within this 
area. Summaries of the POFI oceanographic cruises, including discus- 
sion and tabulation of the station data, are being published in the 
special scientific reports of the Fish and Wildlife Service, U.S. Depart- 
ment of the Interior. The first such report, Mid-Pacific Oceanography, 
January-March 1950, by Townsend Cromwell, was issued in July as 
SSR No. 54. In addition, Mr. Cromwell has submitted for publication 
a theoretical consideration of equatorial circulation entitled Circula- 
tion in a Meridional Plane in the Central Equatorial Pacific. Some of 
the results of these and other studies presently underway are: 

In general, the circulation pattern consists of the westerly moving 
North and South Equatorial Currents, with the relatively narrow 
counter-current between. The northern and southern limits of this 
counter-current are about 10° and 5°N. respectively. In addition to 
these surface currents, there is evidence of a sub-surface counter-current 
centered at the Equator, beneath the South Equatorial Current. AI- 


86 EIGHTH PACIFIC SCIENCE CONGRESS 


though as yet little understood, this subsurface counter-current may 
have considerable significance with respect to the biology of the area. 

The only upwelling of significance is centered at or slightly south 
of the Equator. The intensity of this upwelling, as reflected by lower 
surface temperature, decreases from east (120°W.) to west (180°). Data 
from Japanese surveys indicate very little upwelling west of 170°E. 
longitude. The upwelled water, characterized by lower temperature 
and high phosphates, usually has a northerly movement from the point. 
of origin. ‘The surface movement may be suddenly checked by con- 
vergence and sinking. This convergence may take the form of a front 
with a sudden change of several degrees in surface temperature, or may 
be reflected as a more gradual change through a zone of transition. In 
either case, phosphates and zooplankton also usually change, i.e., a de- 
crease in concentration of PO, and in zooplankton volume when cross- 
ing from the southerly colder water into the warmer waters of the 
South Equatorial Current. 

Data presently at hand permit only generalizations concerning this 
circulation pattern. Information concerning short period and seasonal 
fluctuations in the circulation will require additional surveys, these 
surveys planned to delimit these changes both in space and in time. 

There are not, as yet, sufficient oceanographic data in the Hawaii- 
an waters to permit even a generalization concerning the circulation or 
related conditions. ‘This program has been considerably augmented 
and within six months to a year considerable information will be forth- 
coming. 


A BRIEF REPORT ON OCEANOGRAPHIC RESEARCH 
IN THE PHILIPPINES 


By D. V. VILLADOLID 


The oceanographic work now in progress is actually a continua- 
tion of some phases of the investigations conducted in 1947-50 by the 
United States Fish and Wildlife Service under the Philippine Fishery 
Program. Following the termination of its operation in June, 1950, the 
U.S. Agency turned over to the Bureau of Fisheries the M/V “David 
Starr Jordan” along with a batch of oceanographic gear and supplies. 
The boat is a 30-ton otter trawler driven by a 135-hp Murphy full 
diesel engine, giving a cruising speed of six knots. The principal di- 
mensions of the boat are: Length overall, 16.2 meters; length at water 
line, 14.6 meters; breadth, 4.0 meters; and draft, 2.0 meters. A portable 
laboratory was installed on the afterdeck. 


REPORT ON OCEANOGRAPHY 87 


Survey work currently assigned to the boat is confined to sheltered 
coastal areas, the seats of the principal fisheries of the Philippines. 
Water samples are collected at different standard levels and measure- 
ments of temperature, chlorinity and nutrient salts contents are taken. 
Subsurface plankton hauls are occasionally made, but surface plankton 
tows are a regular part of the hydrographic work. 

Of the five areas surveyed since the work commenced in February, 
1951, Manila Bay in Luzon Island has been the most comprehensively 
studied. The area was visited every month for one year, occupying a _ 
total of fifteen stations whenever weather conditions permitted. A 
total of 3,115 measurements of physical and chemical properties of the 
waters of Manila Bay were taken during the year’s survey. Processing 
of the data has already been completed and a report on the inter-rela- 
tionships between the physical and chemical parameters and the exter- 
nal factors affecting them is forthcoming. 

For the purpose of determining long range variations in the pro- 
perties of the waters fringing the island archipelago, we have estab- 
lished a number of fixed collection stations ashore at strategic places 
in the Philippines. At this writing we have one on the Pacific side 
and two on the South China Sea side. It is our intention to increase 
the number of these collection stations later on. In this type of work 
only surface samples are collected at a fixed hour daily and measure- 
ments of temperature and chlorinity are taken. In addition, hourly 
measurements in a 24-hour cycle are made twice a month at each sta- 
tion. 

In cooperation with the Philippine Weather Bureau, our oceano- 
graphic staff is charged with the processing of observational data turned 
in to the Weather Bureau by ocean going liners. Water and air tem- 
peratures form the principal part of these data. 


OCEANOGRAPHIC ACTIVITIES IN SOUTH AMERICA 


By B. F. Osorto-TAFALi 


ECUADOR 

In 1951 FAO sent on request a Fisheries Biologist to make a brief 
survey of the sea fisheries in the territorial waters of Ecuador. The ex- 
pert conducted concurrently fishery research work, oceanographic and 
meteorological observations including collection of sea-surface tempera- 
tures, not only along the continental coast, but also in the waters of 
the Galapagos islands, and on his way hence and back between the 
continent and these islands. 


88 EIGHTH PACIFIC SCIENCE CONGRESS 


Due to adverse conditions, the expert of FAO was not able to com- 
plete the brief oceanographical survey, as planned, but was able, on 
his last voyage to the Galapagos Archipelago, to take some hydrometer 
readings in correlation with the sea-surface temperature. 

The results of these observations will be published soon by FAO 
in the form of a report. 

Ecuadorean biologists which attended the Latin American Fish- 
eries Training Centre, held in Valparaiso in 1952 will probably con- 
tinue the investigation initiated by the FAO expert. 


PERU 

Scientific investigations with regard to the Peruvian Current are 
undertaken in Peru by the Department of Fish and Game (Direccion 
de Pesca y Caza) of the Ministry of Agriculture in Lima, by the Hydro- 
graphic and Lighthouse Service (Servicio Hidrografico y de Faros) of 
the Peruvian Navy, and by the Company for the Administration of 
Guano (Compania Administradora del Guano). 

The investigations of the Department of Fish and Games refer 
mainly to studies of the biology of commercially important species of 
fish, conducted at a laboratory installed at the fishing terminal in the 
port of Callao. 

The studies of the Hydrographic Service of the Navy are at their 
beginning. They shall encompass the investigation of some problems 
in which the Navy is interested and a general oceanographical research 
agreed upon with the Company for the Administration of Guano which, 
however, has not yet been started. 

This company is studying the basic ecological conditions of the 
habits of guano birds and has, therefore, initiated the collection of 
Oceanographic and Meteorological data including sea-surface tempera- 
tures since 1939. Special studies of plankton and the life cycle of the 
anchovy, which is the basic food of guano birds, and the investigations 
of the populations of important food fishes as well as aquatic mam- 
mals found in Peruvian waters are also being carried on. 

As a result of these activities the Guano Company has published 
already the first part of an Atlas of the Coastal Current of Peru (Atlas 
de la Corriente Costanera Peruana) and a series of Monthly Maps of 
the Peruvian littoral with indications of the average sea-surface tem- 
perature, air temperature, barometric pressure and wind, direction and 
force, for the years 1946 to 1951 (published during 1952), and is pres- 
ently editing a new set of monthly maps containing the same data for 
the 14 years between 1939 and 1952, which also indicate the trends 
for the year 1953. 


REPORT ON OCEANOGRAPHY 89 


For these purposes the Guano Company installed a central depart- 
ment of Oceanography and Ichthyology in their head office at Lima 
from which depend three biological stations, one occupied with investi- 
gations of the normal and abnormal behavior of birds, another one 
which has been mainly studying for four years the variations and de- 
velopment of plankton, and a third one occupied mainly with the stu- 
dy of the biology and life cycle of the anchovy. The outcomes of these 
investigations shall be published twice a year in a special bulletin en- 
titled “Scientific Bulletin of the Company for the Administration of 
Guano” (Boletin Cientifico de la Compania Administradora del Gua- 
no). ‘The first issue is already in print. 

Scientific oceanographic expeditions have worked in Peru in 1952 
and 1953, in collaboration with the Guano Company and the Hydro- 
graphic Service of the Navy. In 1952 Peru was visited by the “Shellback 
Expedition” of the Scripps Institution of Oceanography which carried 
on her way to Callao one employee of the Guano Company and from 
Callao to Puntarenas, Costa Rica, two other employees of the same 
company. A special boat of the Navy of Peru made, during the same 
time, cruises on zones beforehand appointed. 

In 1953 the “Yasa’’ expedition of Yale University came to Peru, 
which worked with the representative of the Hydrographical Service of 
the Navy and the Guano Company. 

Educational work on oceanography is at its beginning. The Geo- 
graphic Institute of the University of San Marcos, Lima, has just started 
a series of lectures on oceanography applied to Peru. ‘The students 
are mainly graduates of that same Institute and they work mostly as 
teachers in Peruvian public schools. It is hoped that the number of 
general lectures on the influence of the sea in Peru and in the human 
activities on its coast will be steadily increasing. 


CHILE 

Pure oceanographic research has not been conducted to any sig- 
nificant extent by Chilean investigators. “Their tendency has been to 
study the sea as the habitat of organisms of commercial importance. 
In view of this, the FAO Fisheries expert, Dr. Erick Poulsen, made 
some observations of temperature down to 80 meters, as a complement 
of his study of the populations of hake in the coast of Chile. 

Another FAO expert, Dr. Fernando de Buen, during his investiga- 
tions of the biology of pelagic fishes of commercial value which habits 
are very much influenced by oceanographical changes, made observa- 
tions of temperature and salinity at different depths, in 15 stations. 
He also collected samples of plankton in meritic and oceanic waters. 


90 EIGHTH PACIFIC SCIENCE CONGRESS 


He worked in sub-antarctic waters which reach north in Chile, as 
well as in a warm strip found above the cold waters, through which 
some species of commercial importance like the yellow fin tuna and 
the skipjack reach the northern fishing ports of this country. 

The Chilean merchant boats and Navy vessels are constantly tak- 
ing surface temperature along the coast which are collated by the Hy- 
drographic Office and sent to the Division of Fish and Game. This 
material has been recently handed over to the FAO Regional Office in 
Santiago where it is being compiled and plotted in charts. 

The Marine Biological Station of Montemar of the University of 
Chile has conducted some oceanographic observations including the 
determination of dissolved oxygen. 

The University of Concepcion in Southern Central Chile operates 
a Marine Biology Station devoted principally to the study of local 
marine communities. 

The Chilean Navy, once a year during the Summer season (Jan- 
uary), sends an expedition to the Antarctic territories claimed to belong 
to Chile in order to relieve the personnel and supply three land bases 
operated respectively by the Army, the Navy and the Air Force. 

One or more scientists are assigned to each expedition. ‘They are 
instrumental in collecting information on hydrographical condition as 
well as in making collection in the Antarctic waters. Also there is a 
yearly expedition to Easter Island which gives the opportunity for scien- 
tific collections in Juan Fernandez, San Felix and San Ambrosio is- 
lands. Routine observations of temperature and plankton collections 
are made. 


REGIONAL MEETING OF Foop AND AGRICULTURE ORGANIZATION 
OF THE UNITED NATIONS 


During the Second Regional Meeting of FAO held in Montevideo, 
Uruguay, from 1 to 12 December, 1952, three resolutions were passed 
recommending: (1) the organization of a Latin American Fisheries 
Council; (2) establishment of a Latin American Fisheries Training Cen- 
tre to prepare fisheries workers in fisheries administration and research; 
and (3) operation of a research centre for the study of the Humboldt 
and El Nino Currents. 


1. Latin American Fisheries Council. 


One of the items of the programme of work of FAO is to organize 
regional fisheries councils in areas where governments need help for 
the development and coordination of fisheries administration and re- 
search. ‘Two Councils have already been organized and have been in 


REPORT ON OCEANOGRAPHY 91 


operation for a number of years: the Indo-Pacific Fisheries Council and 
the General Fisheries Council for the Mediterranean. 

Foliowing the resolution of the Second Regional Meeting of FAO 
it was proposed to the Fifth Session of the Conference of the same 
organization by its Director-General, that a Fisheries Council should 
be also established in Latin America to help coordinate the efforts of 
the countries of the region to further study and develop their fisheries. 

Accordingly an organizational meeting took place in Lima, Peru, 
in September, 1951, during which 15 countries reached an agreement to 
establish a council. This agreement has been approved by the Sixth 
Session of the FAO Conference and submitted to the interested govern- 
ments for ratification. As soon as five Member Countries of FAO in 
the area accept the agreement, the Council will come into existence. 
The FAO Regional Fisheries Office for Latin America will act as the 
secretariat. 


2. Latin American Fisheries Training Centre. 

The lack of trained personnel in fishery administration and fish- 
ery research in general is a great obstacle in the development and 
study of the fishery resources of the world. ‘This situation is particu- 
larly acute in Latin America. To help solve this problem, FAO in 
accordance with the recommendations of the Montevideo Meeting, ope- 
rated in Valparaiso, Chile, a training centre for fisheries workers of 
the region which lasted from 6 January to 14 March, 1952. 

About 50 delegates and observers from 7 countries attended the 
classes given, which covered the fields of fishery administration, biol- 
ogy, technology, and economics. 

The following courses were given by the listed instructors: Dr. 
Jorge Ahumada (ECLA-UN), Appraisal of Fisheries Projects; Jorge 
Alarcao, (FAO), Fisheries Statistics; Richard S. Croker (U.S.A.), Fisheries 
Administration; Dr. Fernando de Buen (Uruguay), Economically Im- 
portant Families of Fishes; Dr. Carlos Gonzales (Argentina), Sanitation 
of Fishery Products; Mogens Jul (FAO), Handling and Refrigeration 
of Fisheries Products; Antonio Landa (Peru), Analytical Biological 
Fisheries Statistics; Milton J. Lobell (Chile), Fishing Methods, Craft 
and Gear; Dr. Antonio Lopez-Matas (Chile), Canning and Curing of 
Fish, Fish by-products; Dr. B. F. Osorio-Tafall (FAO), Latin Ameri- 
can Fisheries, the Living Aquatic Resources and Their Importance for 
Man; John C. Marr (U.S.A.), Marine Fisheries Management; Valentin 
Paz Andrado (Spain), Fisheries Economics; Felipe Quezada (UN), Eco- 
nomic Geography of Latin America; Dr. Gerardo H. Schwabe (Chile), 
Molluscs and Crustaceans of Commercial Importance; Dr. Erwin 


92. EIGHTH PACIFIC SCIENCE CONGRESS 


Schweigger (Peru), Elements of Oceanography; Dr. Rui Simoes de Me- 
nezes (Brazil), Utilization of Fresh Water Fisheries Resources; Sven 
Somme (Norway), Fisheries Extension Service; Dr. Parmenio Yanez 
(Chile), Introduction to Fisheries Literature. 

Special lectures and seminars were also given by the following 
instructors: Dr. Edward Kotok (FAQ), Dr. Erik Poulsen (Denmark), 
Dr. Robert Smith (U.S.A.), Dr. Arturo Vergara (FAO), Dr. Julio Luna, 
F. Jimenez Cesneros, A. Rendic and Dr. Edwyn Reed (all of Chile). 

Some of the courses given are now being edited to be reproduced 
in book form. 


3. Study of the Humboldt and El Nino Currents. 


‘The cold Humboldt Current as well as the warm countercurrent of 
El Nino, has a strong effect in the distribution of the fishery resources 
as well as the climate of the coast of Western South America. It is 
thought, therefore, that there is a great need for a long term study of 
the oceanographic and meteorologic conditions of the region to help 
its fishing, agriculture and livestock industries. 

During the above mentioned meeting in Montevideo, it was urged 
that international institutions should work out a way of organizing 
an international centre to conduct these studies which are of such im- 
portance for the region. 

FAO and the Centre of Scientific Cooperation of the UNESCO for 
Latin America are presently studying the ways and means of organizing 
an International Network of Marine Biological Laboratories in Latin 
America. The establishment of International laboratories in the Paci- 
fic and Atlantic coasts of South America are under consideration. It 
is expected that the laboratory of the Pacific coast will conduct the 
recommended studies of the Humboldt and El Nino Currents. 


ORGANIZATION OF AN INTERNATIONAL NETWORK OF MARINE 
BIOLOGICAL LABORATORIES IN LATIN AMERICA. 


On 1 and 2 August 1952, the Centre of Scientific Cooperation of 
the UNESCO for Latin America held a meeting in Montevideo, Uru- 
guay, attended by the Advisory Committee on Scientific Regional La- 
boratories of Latin America to study the possibilities of organizing 
“Regional Scientific Laboratories.” Along with the other resolutions 
passed in this meeting it was recommended that the possibilities of or- 
ganizing international marine biological laboratories in the region 
should be studied as soon as possible. These laboratories are supposed 
to conduct research and courses in marine biology, oceanography, fish- 
ery biology and related subjects. 


REPORT ON OCEANOGRAPHY 93 


UNESCO has extended an invitation to FAO to cooperate in this 
project. It is planned to hold a meeting in 1953 of experts in the field 
to discuss the problems and possibilities of organizing the laboratories 
in question. 


PACIFIC OCEANOGRAPHY IN THE UNITED STATES 


By THomas G. ‘THOMPSON 


NATIONAL ACADEMY OF SCIENCES 

In 1949 the National Academy of Sciences established a special com- 
mittee to review the resources in facilities, personnel and income avail- 
able in the United States for the support of oceanographic research and 
to discuss some of the difficulties which must be overcome to assure 
the advancement of the science. A report of this committee was pub- 
lished in 1951 as Publication No. 208 of the National Academy-Na- 
tional Research Council. The report deals, in a general manner, with 
recent accomplishments in basic oceanographic research, applications of 
Oceanography in peace and war, current problems in developing ocea- 
nography in the United States and present facilities available for ocea- 
nographic investigations. 


U.S. NAVY HYDROGRAPHIC OFFICE 

The Hydrographic Office has continued to collect bathythermo- 
graph observations made by naval vessels and Coast Guard Station ves- 
sels in the Pacific. Routine current reports have been obtained from 
the navigators of merchant vessels in the Pacific and added to the file 
that the Hydrographic Office has been assembling for many years. Re- 
cords of drift bottles have also been collected and notes concerning 
them have been published in the Hydrographic Bulletin. In addition, 
a survey of coastal waters of the United States is being carried on under 
contract by various scientific institutions among which are the Univer- 
sity of California and the University of Washington. 


U.S. COAST AND GEODETIC SURVEY 

In the United States and Alaska, tide stations were continued in 
operation as follows: 18 along the Pacific coast of the United States 
and 11 in Alaska. In continuing the program of tidal investigation in 
the Pacific Islands area, tide stations are being maintained at 14 loca- 
tions: 6 in the Hawaiian area, 1 at Wake Island, 2 in the Marshalls 
area, 1 in the Marianas area, 2 in the Carolines area, 1 in the Samoan 
area, and | in the Phoenix area. In addition, records are being pro- 


94 EIGHTH PACIFIC SCIENCE CONGRESS 


cessed from 13 stations maintained in the Pacific area of Latin America 
by the Inter-American Geodetic Survey. 

The tidal observers at most of these stations also made a daily ob- 
servation of sea water temperature and density. The results are pub- 
lished in Special Publication 280 (formerly “'W-2), “Surface Water 
Temperature, Pacific Coast,” and in Special Publication 281 (formerly 
DW-2), “Density of Sea Water, Pacific Ocean.” 

During the course of hydrographic surveys in Alaskan waters, Coast 
and Geodetic Survey ships have made serial observations of tempera- 
ture and density for use in the surveys, and also made several series 
of bathythermograph observations for the U.S. Navy Hydrographic 
Office. 

There have been a number of seismic sea waves recorded by Coast 
and Geodetic Survey tide gages during the last few years, the largest 
and most notable being the tsunami of November 4, 1952. A report 
of this tsunami is in preparation and should soon be available in printed 
form. 


CALIFORNIA ACADEMY OF SCIENCES (Prepared by Robert C. MILLER) 


In the summer of 1949, the California Academy of Sciences, under 
contract with the Office of Naval Research, undertook an exploration 
of the geology of the continental shelf and slope off central California. 
The net tender U.S.S. Mulberry was assigned to this project. It was an 
extremely suitable vessel because it carried heavy cables and powerful 
winches. Much of the work consisted simply of breaking off pieces of 
rock from the sea bottom. 

Seven members of the Academy’s staff participated in the opera- 
tions at sea, and 66 collecting stations were occupied before interna- 
tional events required the reassignment of the Mulberry to other duties. 
Through the cooperation of the United States Coast Guard and the 
California Department of Fish and Game, the project was continued 
and brought to a successful termination. 

The geology of the Farallon Islands, not heretofore known, was 
worked out in considerable detail. A study was made of three sea- 
mounts, the Guide, the Pioneer, and a third which was named the Mul- 
berry. On the Guide seamount no rock outcrops were found, the 
dredge bringing up only mud. On the Pioneer seamount several hun- 
dred pounds of basaltic material was obtained. It contains titaniferous 
augite and in this respect differs from volcanic material in the adja- 
cent coastal mountain ranges. The Mulberry seamount is also volcanic, 
and the rocks have a “fresh” appearance. While these seamounts have 
no doubt come up through volcanic action, evidence was obtained of 
a fairly recent subsidence of the continental shelf. 


REPORT ON OCEANOGRAPHY 95 


In the course of dredging for geological materials, large numbers 
of biological specimens were also obtained, which have been described 
by specialists. The results of this work have been published chiefly in 
the Proceedings of the California Academy of Sciences, Fourth Series, 
Volume 27, Nos. 9-16. 


HOPKINS MARINE STATION (By Rotr L. BoLin) 
An investigation of the fluctuations in the populations of marine 


organisms correlated with fluctuations in hydrographic factors was ini- 
tiated in 1950 under an Office of Marine Research contract. A shallow 
water oceanographic station, extending to 30 meters in Monterey Bay 
and a deep-water station, extending to 1000 meters in the waters off 
Monterey Bay are being occupied at weekly intervals. ‘Temperature, 
‘salinity, oxygen, phosphate, silicate, and light penetration data, and 
plankton samples from both surface layers and deep waters are being 
collected. Until the present time more than 300 stations have been 
occupied, more than 20,000 physical observations and chemical deter- 
minations, have been made, and the analysis of the plankton samples 
and their correlation with hydrographic fluctuations is in progress. 


OCEANOGRAPHY BRANCH OF THE NAVY ELECTRONICS LABORA- 
TORY, SAN DIEGO, CALIFORNIA 

Research has continued in physical oceanography, underwater 
sound, and sea floor structure. The main emphasis has been directed 
toward the temperature structure of the ocean and upon the relation 
of sound transmission to physical properties of the sea. Much work 
has also been done in the field of marine geology, especially regarding 
sea floor processes and interpreting sea floor structure from echo sound- 
‘ing profiles. 


SCHOOL OF TROPICAL AND PREVENTIVE MEDICINE, LOMA LINDA, 
CALIFORNIA (Prepared by BrucE W. HALSTEAD) 

Since the inception of the School of Tropical and Preventive Med- 
‘icine in 1948, the Department of Ichthyology and Herpetology, under 
the supervision of Dr. Bruce W. Halstead, has directed its efforts to- 
ward investigating the problem of poisonous fishes in the tropical Paci- 
fic. Field studies were conducted in the following areas during Sep- 
tember, 1950, to July, 1953; Phoenix, Line, Hawaiian, Marianas, East- 
ern and Western Carolines, Johnston, Okinawa, Japan, Galapagos, Co- 
cos, La Plata (Ecuador), Gulf of California, and Panama Bay. The in- 
vestigations thus far have been concerned largely with the epidemio- 
logical aspects of the problem, viz., the specific identification of these 
fishes and compilation of data relative to their geographical distribu- 
tion. All fishes brought into the laboratory are identified as to their 


96 EIGHTH PACIFIC SCIENCE CONGRESS 


scientific names and then fresh samples are taken from the muscle, liver, 
intestine, intestinal contents, and gonads for toxicological analysis. Tis- 
sue extracts are prepared with the use of distilled water by homogeniza- 
tion and centrifugation. Four samples of each tissue extract of 1 ml. 
each are injected into four white mice (CC, strain) and observed for 
36 hours for the development of toxic symptoms. Studies thus far 
indicate that the poisonous fish population of the tropical Pacific is 
much larger than was formerly believed. ‘Toxic species, exclusive of 
plectognaths (Puffers, triggerfish, boxfish, porcupinefish), have been 
found to occur in the Pacific from the Galapagos Islands to the Phil- 
ippines and Okinawa, and from Midway to Tahiti. The survey of Can- 
ton demonstrated that about 27 per cent of the reef fishes (largely 
from the lagoon) were toxic. The survey at Johnston Island indicated 
that about 69 per cent of the lagoon fishes were toxic. The studies of 
the other areas are in various stages of progress. 

The problem of poisonous fishes represents one of the greatly neg- 
lected fields of medical and ichthyological research. Since fish poison- 
ing, ichthyosarcotoxism, is not listed as one of the reportable diseases, 
there are no accurate data as to its incidence. The existing confusion 
and lack of precise data regarding the identity, geographic distribution 
and biology of toxic fishes, and the nature of ichthyosarcotoxins, can 
only result in hampering the economic development of the shore fish- 
eries of the tropical Pacific. The fact that a fish species may be com- 
mercially valuable in one locality and violently toxic in another can 
be a major factor in outlawing otherwise valuable fishing grounds. A 
classical example of this very situation is the current poisonous fish 
problem in the Line Islands. On a number of occasions reef fishes such 
as snapper, grouper, seabass, ulua, etc., have been shipped into the Ha- 
walian fish markets and there has resulted serious outbreaks of fish 
poisoning. As a result of these epidemics all reef fishes from the Line 
Islands are banned from the Hawaiian markets. Future world demands 
for protein food sources will necessitate a more rigid control and effi- 
cient utilization of the vast food reserves of the ocean. ‘The problem of 
poisonous marine organisms will become of increasing importance in 
the years to come. 


UNIVERSITY OF CALTFORNIA-SCRIPPS INSTITUTION OF 
OCEANOGRAPHY 
The Scripps Institution of Oceanography is divided for adminis- 
trative purposes into several research divisions, with a number of sup- 
porting activities. 
The research groups are the Bathythermograph, Chemical Oceanog- 
raphy, Marine Biochemistry, Marine Botany, Marine Invertebrates, 


REPORT ON OCEANOGRAPHY wil 


Marine Microbiology, Marine Genetics, Marine Vertebrates, Physical 
Oceanography, Waves and Currents, Descriptive Oceanography, Special 
Developments, Submarine Geology, Sediments, and Shore Processes Di- 
visions, and the Foraminifera, Marine Physical, and Visibility Labora- 
tories. 

Supporting activities include the Library, Aquarium-Museum, 
Oceanographic Photography, and Oceanographic Publications. 


Marine Life Research Program 

Jointly with the California Department of Fish and Game, the 
U.S. Fish and Wildlife Service, the California Academy of Sciences, and 
the Hopkins Marine Station, Stanford University, the Institution parti- 
cipates in the California Cooperative Sardine Research Program. The 
Institution’s share of this research endeavor is known as the Marine 
Life Program and has been supported since 1949 by the California 
Legislature. 

The investigation has placed the greatest emphasis on studying 
the ecology of the California sardine including its food and life his- 
tory. The study, however, involves basic research on other pelagic 
fishes, such as sauries, anchovies, and mackerel; on the pyto- and zoo- 
plankton; and on the chemical and physical factors operative in the 
environment. With only a few omissions, monthly cruises have been 
conducted along the coast of California and Baja California from San 
Francisco to Cape San Lucas and seaward to distances up to 350 miles. 
Three ocean-going vessels participate in each cruise. 


University and Foundation Sponsored Research 

There is more or less overlapping of problems with contract re- 
search. The following can, however, be specifically mentioned: 

1. Comparative biochemical studies of marine animals and their 
environment. These have involved especially (a) kinds and biological 
significance of carotenoids, porphyrines, fluorescent pigments and other 
biochromes in marine animals, leptopel and buried sediments; (b) ex- 
change of elements between organisms and the environment including 
piant nutrients, ionic iodine, vanadium, and calcium, using radioactive 
isotopes and tracers. 

2. Microbiological research on (a) effect of hydrostatic pressure 
on bacteria to depths exceeding 7000 meters; (b) sulfate reducing bac- 
teria; (c) fish diseases. 

3. Nutritional studies on invertebrates, fishes, and seals. 

4. Ecological, taxonomic and zoogeographical studies on certain 
pelagic invertebrates, deep-sea fishes, and littoral invertebrates, 

5. Life histories of invertebrates and fishes, 


98 EIGHTH PACIFIC SCIENCE CONGRESS 


6. Recently initiated research on marine genetics, utilizing paper 
chromatography. 


Contract Sponsored Research 

Contract work accounts for a considerable share of the research 
budget of the Institution. 

Under contract with the Office of Naval Research, the Institution 
is engaged in a long-term program of basic research on ocean currents, 
gravity waves of a wide range of frequencies, the temperature and den- 
sity structure of the ocean, submarine geology and geophysics, Arctic 
physical and biological oceanography, and aspects of underwater sound. 

The Office of Naval Research also supports work on marine fora- 
minifera, marine wood-boring organisms, non-visual methods by which 
fish detect obstacles, and the behavior of deep-sea microorganisms. 

Under contract with the Office of Naval Research, the Bathyther- 
mograph Division processes all bathythermograms taken by Navy and 
oceanographic research vessels in the Pacific, and conducts research 
on bathythermogram data. 

The Bureau of Ships for several years has supported investigations 
of marine physics and the development of oceanographic instrumenta- 
tion and during the past year has, with the Air Force, supported a large- 
scale program concerned with marine optics. 

Under contract with the Beach Erosion Board, there has been an 
extensive investigation of beach erosion processes, nearshore currents, 
and sedimentation. 

The Air Force supports an investigation of the physics and chem- 
istry of the air-sea boundary layer. 

A study of nearshore recent sediments is supported by the Ameri- 
can Petroleum Institute. Field work under this program is conducted 
on the Texas coast and in the east Mississippi Delta area. 

A study of the fish life of the local kelp beds is conducted under 
a contract with the Kelco Company. 

Expeditions 

Since 1950 the Institution has conducted under Navy sponsorship 
four long expeditions into the Pacific. In 1950 the Mid-Pacific Expedi- 
tion, carried out jointly with the U.S. Navy Electronics Laboratory, 
went to the Marshall Islands. In 1951, the Institution’s vessel HORI- 
ZON travelled to the Gulf of Alaska on Northern Holiday Expedition. 
In 1952, HORIZON, as part of a large-scale cooperative venture known 
as Operation CO-OP, conducted the Shellback Expedition to Peru. In 
1952-53, HORIZON and SPENCER F. BAIRD investigated the geology and 


REPORT ON OCEANOGRAPHY 99 


geophysics of the South Pacific on Capricorn Expedition. In all, Scripps 
Institution vessels have steamed approximately 76,300 miles in the course 
of these expeditions, exploring several parts and several aspects of the 
Pacific never studied before. 


Physical Plant 

In 1950, the Institution opened its Thomas Wayland Vaughan 
Aquatium-Museum. The building contains an aquarium in which are 
displayed species representative of the marine life of the La Jolla area, 
and a museum of oceanography. ‘The Institution’s administrative of- 
fices are temporarily located in this building. Since its opening the 
Aquarium-Museum has attracted approximately 3,000 visitors a week. 

Construction is expected to begin within the next year on a four- 
story addition to the Institution’s chief laboratory building, Ritter 
Hall. The new addition will contain laboratories and offices. In the 
planning stage is a large salt-water experimental aquarium. 

In 1952 the Regents accepted the gift of several acres of natural 
marshland bordering on Mission Bay. A portion of this land may be 
used for research in marine ecology and marine plant and animal ge- 
netics. 

Ship Facilities 

The Institution now operates five vessels. “These are SPENCER F. 
BAIRD (143 feet, 760 tons), HORIZON (143 feet, 760 tons), CREST (136 
feet, 206 tons), PAOLINA T (80 feet, 3 inches, 110.67 tons), E. W. SCRIPPS 
(104 feet, 109 tons). In addition it operates two buoy boats, several 
skiffs, and an amphibious truck (DUKW). 


Institute of Marine Resources 

In 1952 the Regents approved the establishment on the La Jolla 
campus of an Institute of Marine Resources, which will “foster re- 
search, education, and public service by the University in the develop- 
ment of fisheries and other resources of the sea.” 


Educational 

Enrollment since 1949 has averaged about 50 students per semester. 
Since 1949 the Regents have granted 41 degrees of Master of Science 
and 19 degrees of Doctor of Philosophy in Oceanography for work 
carried out at the Institution. 


Personnel and Annual Research Budget 
The Institution now has a research budget of approximately 
$1,500,000 per year. Since 1948, the number of staff members has in- 


creased from approximately 100 to 415. There are at present more 
than 100 persons engaged in research. 


100 EIGHTH PACIFIC SCIENCE CONGRESS 


Publications 


Since 1 January 1949 there have been 187 papers by staff members 
published in the scientific journals. One monograph is now in press. 
Since 1 January 1949 the Institution has issued 230 progress and tech- 
nical reports on contract-sponsored research. 


UNIVERSITY OF SOUTHERN CALIFORNIA 

Work has continued on marine sediments in relation to origin of 
oil, and regeneration of nutrients from the bottom. This involves stu- 
dy of the change in composition of living plankton, organic débris, and 
sediments with investigations of the relationships between sediments 
and overlying waters. 


SCHOOL OF FISHERIES, UNIVERSITY OF WASHINGTON (Prepared 
by RICHARD VAN CLEVE) 


A short history of the School of Fisheries was presented to the 
last Pacific Science Congress and a discussion of the curriculum of the 
School appeared in the Progressive Fish Culturist (Vol. 14, No. 4, Octo- 
ber, 1952). The general objectives of the School remain those of train- 
ing fisheries biologists, primarily for research in conservation agencies 
and training technologists for work in the fishing industry. While 
specialized training must be given in order to provide an understanding 
of the problems which will be met, the principal emphasis during the 
entire training period, in both biology and technology, is on the basic 
background sciences that form the foundation for operations in these 
fields. 

The School moved into its new building located on the shore of 
Portage Bay in November, 1950, and now has adequate space for class- 
room and laboratory instruction, as well as for student and faculty 
research. In addition, limited space is provided for other research agen- 
cies. Equipment includes that required for instruction and research 
in the field of freshwater biology, consisting of a 32-trough hatchery 
which also accommodates 14 tanks and 3 circular pools for rearing 
young trout and salmon. Five rectangular and 2 circular concrete pools 
are located within a wire enclosure on the lake side of the building. 
Running fresh water is pumped from Lake Union into an 18,000-gallon 
tank on top of the building to supply the hatchery and ponds. Sup- 
plementary emergency water can be diverted from the city water mains 
and can be de-chlorinated in two large activated-carbon filters. During 
the past two years the water supply from the lake has been unsuitable 
in summer because of high temperatures, and difficult to operate dur- 
ing winter because of the introduction of silt and mud through a poor- 
ly-constructed filter. As a result, a well was drilled on the campus and 
it is now supplying some 200 gallons per minute of practically ideal 


REPORT ON OCEANOGRAPHY 101 


water of almost constant temperature which rises no higher than 53°- 
54°F. in the summer and does not fall below 48° in the winter. This 
water is now being used in conjunction with the lake water. ‘Two other 
laboratories for freshwater research are equipped with tanks and 
troughs. One is for the study of fish diseases, with its own sewage 
system; the other, with thermo-regulated mixers in the water supply, 
is for constant-temperature work. Facilities are also provided for field 
work in the freshwater area, with a carryall-truck and several small 
boats which may be used with an outboard motor for both class work 
and research in the nearby lakes. 

Research in marine biology is carried out on our 50-foot converted 
Navy motor sailer provided with a double-drum trawling winch and 
a smaller accessory drum for handling lighter cable from which hydro- 
graphic instruments can be operated. In addition, outriggers have been 
installed for towing small plankton nets. ‘The boat is used for operat- 
ing various types of fishing gear in the Puget Sound area, and can also 
be used for dredges, etc. The study of live specimens in the laboratory 
is made possible by a self-contained saltwater aquarium which bor- 
rowed several features from similarly situated aquaria in Chicago and 
San Francisco. Salt water, passing from one of two storage tanks, moves 
through a series of Pyrex glass coils where it is cooled by refrigerated 
brine circulating around the coils. Water from the second tank is 
warmed while passing through a thermostatically controlled heating 
coil. ‘The warm and cold water enter the aquarium room through sep- 
arate pipes and provide a variety of temperatures when mixed in vary- 
ing proportions. From the aquaria the water passes to the basement 
where it is filtered and pumped back to the reservoirs on the roof, com- 
pleting the circuit. The saltwater system is operating successfully and 
is available for student instruction and research. With the completion 
of the system one experiment indicative of the type of research made 
possible is that of the acclimatization of salmon to salt water. This 
experiment is still in progress, and a number of silver and chinook 
salmon were raised for some months last season before they were sud- 
denly struck with a bacterial disease introduced into the system from 
an unknown source. The disease has apparently been eliminated and 
another group of salmon are now being acclimated. ‘This may pro- 
vide an interesting research tool in the study of effects of various factors 
in the environment on the subsequent development of the salmon. 

Facilities for instruction and research in technology include a well- 
equipped chemistry laboratory and a bacteriology laboratory, a small 
pilot plant containing all the basic machinery for canning, curing, and 


102 EIGHTH PACIFIC SCIENCE CONGRESS 


processing fish and fish meal, and a small cold-storage plant with three 
rooms maintained at temperatures of 34°F., 0°F., and —40°F. respec- 
tively. 

Research projects now in progress in freshwater fisheries biology 
include studies in such diverse fields as the nutrition of salmon and 
trout, the effects of temperature on the development of chinook sal- 
mon eggs and young, the detailed morphology of the sperm of sal- 
monide, control of fungus in the eggs of rainbow trout, and the hy- 
bridization of cutthroat trout. In addition, a revision is being made 
in the nomenclature and imperfect description of western Nostostrican 
phylopods. 

Research in Fisheries Technology is currently being re-organized 
following a change of personnel in that department. Present plans in- 
clude an investigation into the thermal death times of bacteria and an 
investigation into a more convenient and efficient method of deter- 
mining the degree and rate of spoilage in fish. 

In marine fisheries biology, research into classification of fishes is 
carried on with the help of the fish collection of the School which at 
present contains over 600 genera, including fishes from Australia, New 
Zealand, the islands of both the North Pacific and South Pacific, both 
coasts of the United States, and Alaska and British Columbia. ‘This 
collection is used for class instruction and research and is available for 
investigators from other institutions and agencies. Other studies in 
marine biology at present include a cooperative study, with the Wash- 
ington State Department of Fisheries, of the population of a species of 
flatfish in a particular area of Puget Sound, which it is planned to 
extend as the different segments of the population are defined. An- 
other study is that of the production and drift of eggs and young of 
fishes of the Sound. Other studies cover such features as the selective 
action of sampling gear and the ecology of various marine fishes. Dur- 
ing the past year, contracts have been concluded between the Univer- 
sity of Washington and the U.S. Army Corps of Engineers calling for 
the investigation of basic problems involved in the guiding of young 
snadronous fishes by electrical methods, and by non-electrical means 
such as light, sound, etc. Under these contracts which name the School 
of Fisheries as the agency responsible for the research, staffs have been 
assembled and we are now accumulating data in the prescribed areas. 

Scholarships in the School of Fisheries are usually reserved for 
those students who have attended for at least a year and have thus es- 
tablished their ability as workers. However, support is available for 
students who are able to work, through activities of cooperating agen- 


REPORT ON OCEANOGRAPHY 103 


cies which sometimes have part-time work available throughout the 
academic year and full-time jobs in the summer. These jobs not only 
provide a means for students to support themselves but give valuable 
experience in the practical problems that will be met when they take 
on the work of management and research themselves. These cooperat- 
ing agencies, which are located on or in the immediate vicinity of 
the campus include the following: The Applied Fisheries Laboratory, 
the Fisheries Research Institute, The International Fisheries Com- 
mission, The Washington State Department of Fisheries, The Washing- 
ton State Game Department, and The U.S. Fish and Wildlife Service. 
One of the advantages to the School of Fisheries is that in addition to 
furnishing jobs for students, the staffs of these agencies form a valuable 
addition to the teaching staff of the School by providing lecturers and 
thorough supervision of research projects. 

Training in the School of Fisheries is designed to fit students for 
their chosen field of fisheries biological research or technology, and 
is not intended to drill them in particular methods. ‘Techniques in 
these fields are developing so rapidly that it would be useless to base 
a program entirely on the study of current methods. Basic principles 
of importance in developing new lines of research and new methods 
must be stressed in such a field. 

Most students enter the School of Fisheries after two years of uni- 
versity training in the basic sciences of zoology, chemistry, and mathe- 
matics, with bacteriology and additional chemistry substituted for some 
zoology in the preliminary training of technologists. A course of lec- 
tures by leaders in fisheries research organizations is given during this 
preparatory period to aid students in orienting themselves in fisheries 
work. Background training in associated sciences is continued through 
the training. 

The fisheries curriculum follows a logical sequence, beginning in 
the student’s third year of university work with a year of comparative 
anatomy, physiology, and the classification and identification of fishes. 
In addition, a year’s course is offered in the classification, life history, 
distribution, and methods of cultivation or capture of commercial aqua- 
tic invertebrates. These two courses furnish the foundation upon which 
all subsequent study is built. More advanced students are offered a 
year of the general biology of fishes, including the study of the migra- 
tion and inter-relationships of fish populations; the reproduction, lar- 
val and postlarval life of marine fishes; and the relation of hydrographic 
conditions, food, etc., to the distribution, abundance, and availability 
of various species of fish. This is followed by a year’s course in the 


~-104 EIGHTH PACIFIC SCIENCE CONGRESS 


mathematical phases of fisheries biology, including the study of popu- 
lation growth and enumeration, population dynamics, and the influ- 
ence of natural and artificial factors on variations in yield. 

In the field of freshwater fisheries biology, a year’s course is given 
covering methods of hatching, rearing, collection, and incubation of 
salmonides, and related problems; the nutrition of fishes; and finally, 
problems of management of freshwater fisheries. This is supplemented 
by a course in communicable diseases of fish as well as with a brief 
course in hydrological problems involved in the stream and lake en- 
vironments. : 

As noted above, courses in fisheries technology have been added 
to the curriculum to meet the needs of the industry. At present a 
year’s course is offered covering the application of chemistry, biology, 
and engineering to the canning, curing, and freezing of fish and shell- 
fish, and to the preparation of fish by-products, oils, meals, etc. An- 
other course extending through fall and winter quarters is comprised 
of lectures by authorities in various fields of the fishing industry. The 
latest machinery is being obtained for experimental work in technology 
—canning machinery has been loaned to the School of Fisheries by the 
American Can Company and the Anchor Glass Company. As equip- 
ment and facilities are added, further technological training of a more 
advanced character will be offered. 

As the field of fisheries conservation develops, the need for a more 
profound understanding of the related sciences becomes more evident. 
Students must carry as much work as possible in chemistry, biology, 
and mathematics or related fields of physics, engineering and economics, 
according to their individual interests and abilities. A recent increase 
in the number of graduate students is therefore encouraging, since these 
men generally specialize even further in these related subjects. Future 
progress in all fields of fisheries will depend on a broader understand- 
ing of the basic sciences and the ability to apply this understanding to 
fisheries conservation and technology. 

OCEANOGRAPHIC PROGRAM OF THE UNIVERSITY OF WASHING- 
TON: 1949-1953 (Prepared by RicHArD H. FLEMING) 

The past four years have been characterized by many major devel- 
opments in oceanography. Programs initiated after World War II have 
borne fruit, and many new research activities have been established 
and older ones reorganized. The latter is the situation at the Univer- 
sity of Washington. Although the facilities described by Dr. T. G. 
Thompson at the last Congress (Thompson, 1952) remain essentially 
the same, the organization, program and staff have all been greatly 


REPORT ON OCEANOGRAPHY 105 


affected. These changes have been the result of reorganization within 
the University. In 1951 the Department of Oceanography was created 
in the College of Arts and Sciences and authorized to offer programs 
for both undergraduate and graduate students. A permanent, full-time 
faculty was therefore created. The facilities at Friday Harbor (that for 
some twenty years had, with the building on the main campus in 
Seattle, comprised the Oceanographic Laboratories) were established as 
an independent activity under the College of Arts and Sciences with 
the name of the Friday Harbor Laboratories. The other major devel- 
opment was that a research vessel, the 114-foot BROWN BEAR, was 
made available to the University through the Office of Naval Research 
of the Navy Department of Oceanography in surveys, research and train- 
ing. 

The educational program of the Department of Oceanography is 
unique in that undergraduates may elect oceanography as their major 
subject in studying for a Bachelor of Science degree. The nature of 
the courses offered in this program as well as in the graduate curri- 
cula will be described elsewhere at this Congress (Fleming, in press). 
The establishment of the Department carried with it the requirement 
for a regular full-time faculty. The composition of this faculty at the 
present time (November, 1953) is as follows: 

RiIcHARD H. FLEMING, Professor and Executive Officer of 

the Department 

Tuomas G. THompson, Professor 

CuiFForD A. BARNES, Associate Professor 

Howarp R. Goutp, Assistant Professor 

Maurice RATTRAY, JR., Assistant Professor 

HERBERT F. FROLANDER, Instructor 

RoBERT G. PAQUETTE, Lecturer 


In addition to the faculty there is a supporting staff of full-time re- 
search investigators, technicians, crew members, and student assistants 
totaling 45. ‘This staff is largely supported by contract funds, princi- 
pally derived from the Office of Naval Research. Chief research in- 
vestigators on the staff are Dr. Richard G. Bader, Dr. Wayne V. Burt, 
and Dr. Robert G. Paquette. 

Cooperative research with other departments of the University, that 
was characteristic of the earlier organization of the Oceanographic 
Laboratories, was gradually changed in nature. During the past year 
students working in the laboratories but studying toward degrees in 
Chemistry, Geology, Microbiology, etc., have completed their theses, 
Many of these are mentioned later in this paper, 


106 EIGHTH PACIFIC SCIENCE CONGRESS 


The BROWN BEAR, belonging to the Fish and Wildlife Service, 
was made available to the University in the spring of 1951. ‘The first 
year was largely spent in remodeling the vessel for oceanographic work. 
Although used intensively during the past eighteen months, certain 
installations still remain to be completed. ‘The vessel is outfitted with 
all the conventional types of navigational and oceanographic gear, and 
perhaps her most unusual feature is the number of accommodations 
aboard. In order to provide for classes there are, in addition to cabins 
for the crew of eleven, cabins and bunks for a maximum of twenty-two 
in the scientific party. For short overnight cruises as many as thirty- 
five have been accommodated. ‘Two major survey programs are being 
carried on. The first involves monthly cruises in the inland waters of 
the State of Washington, planned to provide comprehensive data for 
the interpretation of the seasonal cycles, the year-to-year variations, 
and to provide a basic understanding of the physical processes that 
maintain and control the general physical, chemical and biological con- 
ditions. The second program is directed toward an understanding of 
the currents, distribution of properties, and general oceanography of 
the oceanic waters. Some preliminary results of the second program 
‘are to be presented elsewhere at this Congress (Paquette and Barnes). 
The BROWN BEAR has also been employed on many special projects 
as well as for a floating classroom and laboratory for the students. 
When a smaller vessel is adequate, the Department uses the MV On- 
corhynchus, a 55-foot research vessel maintained by the School of Fish- 
eries, and during the summer the MV Hydah that is chartered for the 
use of the Friday Harbor Laboratories. 

As is true of all the oceanographic activities in the United States, 
the large growth that has occurred since World War II is chiefly the 
result of the support provided by national and state agencies, in this 
case by the Office of Naval Research. Three such contract programs 
have been carried on. One is a general contract in support of basic 
oceanographic research; the second has covered the operations of the 
MV BROWN BEAR; and the third was a Literature Survey, financed 
by the Hydrographic Office, to bring together all available data and 
knowledge pertaining to the Puget Sound area. Additional support has 
been received from the Bonneville Power Administration for a detailed 
study of a transect of Puget Sound where it is planned to install a sub- 
marine power line. ‘The size of the cable sheath, about 30 cm. the 
distance of about 6 km., and the fact that the cable must traverse steep 
slopes and a maximum depth of over 200 meters, raised innumerable 
engineering problems that required oceanographic information. ‘The 
Department has devoted particular attention to the detailed microto- 


REPORT ON OCEANOGRAPHY 107 
pography in the section, the physical and mechanical properties of the 
sediments, the bottom population with special reference to forms that 
might attack the sheathing on the cable, and the currents to be en- 
countered at various depths. During the past year, a grant was awarded 
by the National Science Foundation to support the work under Dr. 
T. G. Thompson or Dr. T. J. Chow on the study of copper and other 
heavy metals in the sea. 

Because of the rapid development of the field programs during the 
past two years there has so far been little opportunity for the prepara- 
tion and publication of formal papers. A large amount of materials 
has been prepared and is available in the form of reports upon request. 

Before describing some of the research topics under investigation 
in the Department of Oceanography I wish to turn briefly to the Friday 
Harbor Laboratories, first because the activities of this institution have 
always been reported to the Pacific Science Congresses, and secondly 
because the Department of Oceanography continues to participate in 
its program. As mentioned earlier, the Laboratories are now a re- 
search facility in the College of Arts and Sciences. They are adminis- 
tered by an Executive Committee, Dr. Richard H. Fleming, director; 
and Dr. A. W. Martin, Jr., executive officer of the Department of Zo- 
ology, and Dr. C. Leo Hitchcock, executive officer of the Department of 
Botany, as members. The Laboratories function as an inter-depart- 
mental organization and during the past two summers, courses of instruc- 
tion and research have been offered by the following departments: Bo- 
tany, Fisheries, Geography, Meteorology, Oceanography, and Zoology. 
During the summer of 1953 there were in residence 43 students (almost 
entirely graduate students), 12 independent research investigators, and 
a faculty of 11. During the past four years, there have been notable 
improvements in the facilities. Ten housekeeping cottages have been 
built as well as five duplex buildings for family use, and five dormitories 
for single individuals. The housekeeping cottages, in particular, now 
make it possible for investigators to utilize the laboratories either on 
a continuous year-around basis or for short periods at any time of the 
year. The main improvement in the laboratory has been the installa- 
tion of an all-glass sea water system that has made it possible to hatch 
the eggs and rear the larvae of many of the invertebrate animals. Dr. 
Emery Swan, who was appointed resident scientist in 1948, resigned in 
1952 to accept a faculty position with the University of New Hamp- 
shire. No replacement has yet been made. Dr. Koji Hidaka was a visit- 
ing professor at the Laboratories during the summer of 1951. 

Some of the major research activities of the Department of Oceanog- 
raphy will now be briefly outlined. Projects in chemical oceanography 


108 EIGHTH PACIFIC SCIENCE CONGRESS 


are now supervised by Dr. Thompson, and until the reorganization, 
by Dr. Rex Robinson of the Department of Chemistry. Among the 
completed topics, and some still in progress: 

(a) Development of an improved analytical method for the deter- 
mination of potassium. (b) Development of a polarographic method 
for the determination of nitrate. (c) Examination of the factors affect- 
ing the determination of silicate ion in sea water. (d) Development 
and use of an accurate method for the determination of copper. The 
normal range of concentrations has been found to be between 0.014 
and 0.050 microgram-atom per liter, with anomalous values in areas of 
stagnation. (e) Study of the physical-chemical processes involved in 
the freezing and thawing of sea water with particular reference to the 
types of salts precipitated and the partition of salts between the ice 
and the brine. (f) Development and application of methods for the 
evaluation of the various pigments in plankton. (g) Determination by 
means of flame spectrophotometry of the quantities of strontium in sea 
water. (h) Determination of titanium in sea water and marine organ- 
isms. (i) Development of a method for the determination of organic 
phosphorus. 

Investigations in geological oceanography have been expanding, 
particularly those phases concerned with the project supported by the 
Bonneville Power Administration. A general reconnaissance of the sedi- 
ments of Puget Sound has been the subject for a Ph.D. thesis of a stu- 
dent in the Department of Geology. Dr. Richard Bader, one of the re- 
search staff, has begun a study of the nature and amount of the organic 
detritus in marine sediments from a variety of local environments. Dr. 
Gould, who joined the faculty in the fall of 1953, plans to undertake 
a broad survey of the bathymetry and sediments of both the inshore 
and offshore areas. 

It is in physical oceanography that the greatest amount of effort 
has been concentrated. As mentioned elsewhere (Paquette and Barnes) 
the offshore surveys of the BROWN BEAR have been directed toward 
two general problems, first, to learn what types of water movements are 
present and the nature of the permanent circulation, and second, to 
establish the nature of the processes affecting the outflow of the diluted 
waters of the Strait of Juan de Fuca and the Columbia River and 
their replacement at depth by saline ocean waters. In the inshore wa- 
ters, the importance of the tides and tidal currents as factors in mixing 
and flushing have long been recognized. The other important varia- 
bles are the amount and period of precipitation and runoff and the 
general climatic situation. In order to further evaluate these processes, 
detailed, systematic surveys are being conducted at monthly intervals. 


REPORT ON OCEANOGRAPHY 109 


Because of the complexity of these problems, a dynamic model of 
Puget Sound and Hood Canal was built in 1950. In this scale model 
the tides and tidal currents can be duplicated and studied in detail 
and in addition the effects of variable river discharge in salt water in- 
trusion can be tested. Some of the results of these investigations are 
being reported elsewhere (Rattray, in press). Besides serving as a val- 
uable research tool, the model is used as a teaching aid to demonstrate 
the nature of tides and tidal currents and also to develop in the stu- 
dents an understanding and appreciation of the local environment. The 
facilities are frequently used by fisheries investigators and pollution 
engineers to aid them in their studies. ‘To supplement the model and 
to make available to both research investigators and students a means 
to study the nature and behavior of waves and tides under conditions 
much simpler than those in the Puget Sound Model, a tank with trans- 
parent sides 5 meters long and 2 meters wide and 0.5 meters deep has 
recently been completed. 

Among the unique features available to the Department are Lakes 
Washington and Union that are connected to Puget Sound through a 
system of canals and locks. ‘The penetration of salt water through the 
locks into Lake Union was in fact the topic that first turned the atten- 
tion of Dr. Thompson to Oceanographic chemistry some 40 years ago. 
With increased use of the locks and limited supplies of fresh water run- 
off, during recent years there has been some penetration of salt into 
Lake Washington so that the average chlorinity has risen from about 
3 p.p.m. to about 55 p.p.m. Although this increase may appear to be 
rather minor, the lake is large and it represents an intrusion of some 
250,000 tons of sea salts. Mr. Gunter Seckel, under the direction of 
Dr. Rattray, has been investigating the physical processes involved in 
the mixing and movements of the fresh and salt water. 

Under the leadership of Dr. C. A. Barnes, the Department has con- 
tinued an active interest in Arctic oceanography. Faculty and staff 
members have participated each summer in surveys in the Arctic on 
board U.S. Naval Vessels. 

Many of the programs in Marine Biology described in previous re- 
ports are being continued by the faculty of the Department of Zoology 
at the Friday Harbor Laboratories and in space made available to them 
in the Department of Oceanography. Projects carried on by faculty and 
staff of the Department of Oceanography have so far been relatively 
limited. In addition to the Bonneville Power Administration work, 
mentioned above, Dr. Frolander has begun a program of plankton 
sampling. During 1952-53 this was supplemented by the work of Dr. 


110 EIGHTH PACIFIC SCIENCE CONGRESS 


John Barlow, who recently resigned to accept a faculty position with 
the Agricultural and Mechanical College of Texas. 

Located as it is in a state with paramount interests in the sea, the 
Department of Oceanography continues to collaborate with, and pro- 
vide consulting services for a large number of agencies concerned with 
fisheries, pollution control, coastal engineering, etc. Because of its 
proximity to the international boundary many of the problems under 
investigation are of mutual concern to the Canadian oceanographers 
under the leadership of Dr. John P. Tully and those at the Institute of 
Oceanography at the University of British Columbia. To foster an 
understanding of these problems and to profit from each other’s ex- 
perience, a series of informal meetings have been initiated. 

The foregoing material indicates the ways in which the oceanogra- 
phic activities of the University of Washington have increased and 
changed in emphasis during the past four years. It is felt that the crea- 
tion of a Department of Oceanography with both undergraduate and 
graduate curricula is recognition that the study of the oceans has at- 
tained scientific maturity and that this field is of vital importance in 
the future development of the maritime nations. 

The Pacific Science Association, since its organization in 1920, has 
always featured oceanography as one of its major fields of interest. 
Much credit is due to the Association and to the distinguished scientists 
who have inspired and led the Committee on Oceanography of the 
Pacific for the rapid development of the science of the sea in all coun- 
tries bordering on our mighty ocean. 


ee 


VIETNAM 


INSTITUTIONS 

Les recherches océanographiques au Vietnam sont surtout celles 
de l'Institut Océanographique de Nhatrang. Un “Comité d’Océanogra- 
phie et d’Etudes des Cétes” groupe, sous l’égide de la Marine Nationale 
Francaise, des physiciens, géologues, biologistes dont les travaux por- 
tent sur des questions marines; les titres de travaux effectues par ce 
comité sont cities al fin de la bibliographie. 

L’Institut Océanographique de Nhatrang, que a rendu compte de 
ses travaux aux V°, VIe et VII° Pacific Science Congress a été, au ler 
Janvier 1952, transfere par le Gouvernement francais de I’Indochine 
au Vietnam devenu Etat independant. L’Indochine ayant disparu com- 
me gouvernement, la France continue, par un accord avec le Vietnam, 
a apporter a l'Institut Océanographique de Nhatrang une assistance 
en finance et en personnel. 


REPORT ON OCEANOGRAPHY 111 


Cette modification institutionnelle, aussi bien que les troubles qui 
ont agité le territoire du Vietnam ont entrave la marche normale de 
l'Institution et ses travaux durant la période 1949-1953. C’est ainsi 
que trois scientifiques ont quitte l’Institution: Mr. Drroux, Chef labo- 
ratoire Coelentéres en 1950, Mr. Duranp, Chef laboratoire d’Ichthyolo- 
gie et Mr. Marcue Marcnap, Chef laboratoire Mollusques en 1951, et 
les travaux qu'lls poursuivaient ont été interrompus. Le personnel 
scientifique ne comporte en 1953 que Mr. SERENE, Docteur es Sciences, 
Directeur, Chef de laboratoire des Crustaces et Mme. Fizz, Licenciee 
es Sciences, Chef de laboratoire des Vertebres marins et planctonolo- 
giste. Deux nouveaux chefs de laboratoires licencies es sciences pren- 
dront la charge de chef de laboratoire d’Océanographie physique et de 
chef de laboratoire d’Ecologie marine au ler Janvier 1954. 

Divers chercheurs temporaires ont frequenté les laboratoires du- 
rant la période, en particulier en 1952 Mr. WATERMAN de I’Université 
de Yale, et en 1953 Mr. Dawson de |’Allan Hancock Foundation, Uni- 
versité de Californie, Messrs. FONTAINE, MERCIER, SAURIN de l'Université 
d@’Hanoi. Le laboratoire a procure des collections et du matériel d’étu- 
des a divers chercheurs étrangers. Ces deux derniers aspects de I’activité 
du laboratoire seront développe en 1954 en liaison avec diverses institu- 
tions scientifiques de Vietnam et de France (Faculté des Sciences de 
l’ Université d’Hanoi, Service des Péches du Vietnam, Muséum National 
d’Histoire Naturelle de Paris, Office de la Recherche Scientifique d’Ou- 
tre-Mer a Paris). Une assistance de UNESCO est envisagée dans ce 
sens. L’assistance appartée en 1952-53 par, le Pacific Science Board 
(U.S.A.) sera sans doute continée. Lebut est de donner son plein em- 
ploi au laboratoire qui bien situe et bien equipe, manque de paronnel 
qualifie suffisant. 


INSTRUCTION ET FORMATION DE CHERCHEURS OCEANOGRAPHES 

L’Institut Océanographique de Nhatrang a formé des preparateurs 
specialises dans les divers secteurs de la faune marine; Poissons, Crus- 
taces, Mollusques, Coelentéres; ces preparateurs assuant des charges cor- 
respondant a leur spécialité dans les laboratoires de l'Institut. Les étu- 
diants en zoologie de la Faculté des Sciences d’Hanoi accomplissent 
chaque année un stage de 10 jours d’Initiation sur le terrain a la faune 
marine. Des fonctionnaires de Service des Péches recoivent des éléments 
de formation scientifique et technique soit a ]’Institut Océanographique 
de Nhatrang, soit dans divers centres internationaux de formation or- 
ganises par le C.I.P.P. (FAO); en particulier en 1952 a Djakarta pour 
la Pisciculture et a Bangkok pour les statistiques des péches, en 1953 
a Bangkok pour la Pisciculture; en 1953-54 en scientifique recoit une 


112 EIGHTH PACIFIC SCIENCE CONGRESS 


formation specialisée pour la péche a l’Office Scientifique de la Re- 
cherche d’Outre-Mer a Paris. 


COOPERATION INTERNATIONALE 

C’est au sein de Conseil Indo-Pacifique des Péches et par les tra- 
vaux de l'Institut Océanographique de Nhatrang que le Vietnam a par- 
ticipe surtout a la poursuite de programmes de recherches océanogra- 
phiques dans le cadre d’une coopération internationale. Parmi ses con- 
tributions aux travaux de Nombreux comit¢s de cet organisme, il faut 
signaler celle de Mr. TRAN vAN TRI au sous-comité des Engins et celle 
de Mr. SERENE au sous-comité d’Hydrologie. 

On a vu plus haut que les laboratoires de |’Institut Océanographi- 
que de Nhatrang accueillent des chercheurs étrangers. Les echanges de 
Publications de la bibliotheque et les relations de travail des labora- 
toires de faunistique de l'Institut Océanographique de Nhatrang ont 
intéressé pendant la période environ 500 correspondants étrangers. 


TRAVAUX 

La poursuite des travaux de |’Institut Océanographique de Nha- 
trang durant la période 1949-53 a été handicapée par la situation ex- 
posée plus haut. C’est ainse qu’en Océanographie physique aucune 
recherche meritant d’etre mentionée n’a été accomplie. De méme les 
recherches planctoniques ont été interrompues. Ces deux laboratoires 
fonctionneront a nouveau en 1954. 


INVENTAIRE ET MUSEUM DE LA FAUNE MARINE 

Dans une publication (1952) donnant un bilant de nos connais- 
sances sur la faune marine benthique des invertébres de 1I’Indochine, 
Mr. DawyporF cite 59 espéces de Foraminiféres, 157 de Poriferes, 72 
d’Hydrozoaires, 70 d’Aicyonnides, Helioporidae, Xoenidae, 29 de Pen- 
natulides, 50 de Gorgonides, 172 d’Hexacorallides, 250 de Polychétes 
(Plus de 10,000 spécimens), 20 de Vermidiens Echuiens, 40 de Sipon- 
culiens, 70 de Bryozoaires; 800 espéces de Mollusques gastéropodes et 
lamellibranches, 85 de Nudibranches, 13 d’Amphineures, 11 de Cepha- 
lopodes; 63 espéces d’Holothuries, 40 d’Astérides, 50 d’Ophiures, 60 
d‘Echinides et 50 de Crinoides; 65 de Crustacées Cirripedes, 47 de Cu- 
macées, 24 d’Isopodes, 23 d’Amphipodes, 35 especes de Decapodes ano- 
moures et 50 de Macroures, 300 de Brachyoures, 37 de Stomatopodes; 
40 especes de Chordes. L’ensemble couvre environ 3,000 espéces. Les 
collections correspondant a cet inventaire ont malheureusement été dis- 
persées entre les differents specialistes qui en ont assure l'étude. Elles 
comprenaient plus de 50 espéces nouvelles; par exemple 10 nouvelles 


REPORT ON OCEANOGRAPHY 113 


especes de Cténophores, 15 espéces nouvelles et 3 genres nouveaux d’Ho- 
lothuries. 

D’Institut Océanographique de Nhatrang a depuis 1949 constitue 
a Nhatrang un Muséum de la Faune marine du Vietnam dont les col- 
lections n’intéressant encore que les Poissons, les Crustacées, les Mollus- 
ques et les Coraux, ont enregistres, de 1949 a 1953, 30,000 echantillons, 
correspondant a environ 3,000 especes determinées. Le catalogue de 
ce Muséum constitue un nouvel inventaire faunistique, qui celue-ci 
porte références aux specimens des collections du Musée de Nhatrang. 
Sur les 3,000 espéces de ce catalogue, il y a environ 1,000 espéces de 
poissons, les autres étant des invertebres. 

L’étude des collections pour 1|’établissement de ce catalogue de dé- 
ja permis la mise au point de diverses questions de faunistique, qui 
ont fait l’Object de publication, spécialement sur les Stomatopodes et 
les Brachyures. 

La flore algologique de la Baie de Nhatrang a été établi par le 
Professeur DAWSON, qui presente une communication sur le sujet au 
présent Congres. 

Au point de développement ou se trouve actuellement les recher- 
ches d’Océanographie biologique au Vietnam, l’établissement préalable 
d’un tel musée de référence faunistique était indispensable avant d’en- 
treprendre toutes recherches de Biologie; cellesci sont actuellement 
amorcées, spécialement en liaison avec le Bureau d’études des péches et 
portent sur les principales especes de poissons a interet economique; le 
laboratoire de planctonologie et d’Océanographie physique repredront 
leur activité en 1954 en relation avec ces recherches. 


ETUDES DE PECHES 


La creation en 1952 d’un Service des péches du Vietnam a conduit 
a preciser le rdle du Bureau d’études des péches de 1’Institut Océano- 
graphique de Nhatrang comme organe de liaison entre les recherches 
scientifiques et techniques des laboratoires et les recherches d’applica- 
tion ptatiques du ressort du Service des péches. 

Ce bureau forme du personnel technique pour le Service des péches 
et étudie a les principales espéces de poissons et produits de la mer a 
interet economique alimentaire: Taxonomie vernaculaire, biologie, mi- 
grations, etc. . . . (la technologie des engins et methodes de péches), 
la technologie de la preparation des produits alimentaires d’origine 
marine. 

Pour tout cela, il procéde a des enquetes et tient a jour une do- 
cumentation sur l’état de ces questions, principalement dans les pays 
de la zone indo-pacifique. Par depouillement des publication, il a éta- 


114 EIGHTH PACIFIC SCIENCE CONGRESS 


bli par exemple un fichier iconographique et descriptif des engins de 
péche de la region indo-pacifique (2,500 engins fiches). 

S’appuyant sur cette documentation, il diffuse des documents sur 
les questions de péche du Vietnam et publie des études sur les techni- 
ques de péche es Vietnamiens. Son programme d’activité est établi en 
liaison avec les travaux du Conseil Indo-Pacifique des Péches. 


November 17, 1953—2:30 P.M. 


DIVISIONAL DISCUSSIONS: PROBLEMS IN THE DEVELOPMENT 
OF METEOROLOGY AND OCEANOGRAPHY IN THE PACIFIC 


Convener: Dr. THomas G. THOoMpsoN, University of Washington, 
Seattle 5, Washington, U.S.A. 
Secretary: Mr. Ricarpo G. Lao, Bureau of Fisheries, Manila. 


This meeting was held jointly with the Division of Meteorology. 
Discussed in the meeting were the problems in the development of 
Meteorology and Oceanography in the Pacific. 


115 


November 18, 1953 


SYMPOSIUM ON EXPLOITATION AND UTILIZATION 
OF PRODUCTS FROM THE SEA 


Convener: Dr. W. A. CLEMENS, Institute of Oceanography, University 
of British Columbia, Vancouver, Canada. . 
Secretary: Mr. Nazario A. PipLAoaAN, Bureau of Fisheries, Manila. 


PROCEEDINGS 


The symposium started at 8:55 am. Dr. Clemens made the open- 
ing remarks by saying that he was greatly honored to be the chairman 
and wished to acknowledge the great assistance given him by Dr. D. V. 
Villadolid, Director of Fisheries in the Philippines. He pointed out 
that this is the region of the sea which has always been exploited but 
stated that certain areas are still underexploited with respect to certain 
species of fish. He mentioned that the tunas could support a major 
fishery in the high seas, and since the papers presented in the symposium 
cover a wide range, he is certain that a vivid picture of conditions 
existing in various parts of the Indo-Pacific region could be obtained. 
But on account of the limited time not all the papers could be presented. 
in full. He stated that a committee composed of Dr. Hiyama, Dr. 
Miller, Mr. Pidlaoan and himself had determined those papers in which 
the author would be given 10 minutes for reading and 5 minutes for 
discussion; papers in which the abstract should be read, and papers 
which would be read only by the title. “The committee had also agreed 
to arrange the program in an order a little different from that of the 
original program for the purpose of putting together papers relating to 
the same subject. For example, papers related to tunas were put to- 
gether; papers related to the open sea were put together, and then pa- 
pers in shore work resources were put together. 


The order of the presentation of papers was as follows: 

1. Biological Oceanography. W. A. Clemens, Institutes of Oceano- 
graphy and Fisheries, University of British Columbia, Vancouver, 
Canada. 

The author after reading his paper said that we are far behind 
European workers in knowing and recognizing the organisms that live 
in our waters. So we have a great deal of descriptive work to do along 
taxonomic lines. 


116 


PROCEEDINGS 117 


Dr. R. W. Hiatt said that the flora and fauna in the Pacific is ex- 


ceedingly large that the life time of a generation would probably not 
be enough to study them taxonomically. He suggested that the im- 
portant plants and animals which characterized the different types of 
zonation be recognized first rather than be lost in the bulk of animals 
present in a particular region. 


2 


A New Approach to the Study of Marine Resources—the California 
Cooperative Oceanic Fisheries Investigations. Robert C. Miller, 
California Academy of Sciences, San Francisco, California, U.S.A. 


. Nourishment of Central Pacific Stocks of Tuna by the Equatorial 


Circulation System. Oscar E. Sette, Pacific Oceanic Fishery In- 
vestigations, Fish and Wildlife Service, Honolulu, Hawail. 


. Development and Conservation of the Tuna Fisheries of the Pacific. 


Milner B. Schaefer, Inter-American Tropical Tuna Commission. 
(Abstract read by Dr. W. A. Clemens) 


. Recent Studies on Tunas and Marlins in Japan. Hiroshi Nakamu- 


ra and Yoshio Hiyama, Nankai Regional Fisheries Research Labo- 
ratory, Kochi, Japan, and Fisheries Institute, Faculty of Agriculture, 
Tokyo University, Japan, respectively. 


. Are the World-wide Declines in Sardine Catches Related? John 


C. Marr and James E. Bohlke, South Pacific Fishery Investigations, 
U.S. Fish and Wildlife Service, 450-B Jordan Hall, Stanford, Califor- 
nia, U.S.A. 

(Title) 


. The Products of the Sea and Their Exploitation and Utilization 


in Pakistan. M. R. Khan, Central Fisheries Department, Govern- 
ment of Pakistan, Karachi, Pakistan. 


. Some Factors Bearing on the Utilization of Marine Products of the 


West Coast of Canada. Neal M. Carter, Pacific Fisheries Experi- 
mental Station, Fisheries Research Board of Canada, Vancouver, 
B. C., Canada. 

(Abstract read by Dr. W. A. Clemens) 


. Fabrication, Definition et Reglementation de la Sauce de Poisson 


Vietnamienne “Nuoc-mam’, J. Guillerm and A. Vialard-Godou, 
Laboratoire du Nuoc-mam a l'Institut Pasteur de Saigon, Vietnam. 
(Title) 


. Studies on Agar-agar in Japan. T. Yanagawa and K. Tani, Doshi- 


sha University, Kyoto, Japan, and Northeast Sea Regional Fisheries 
Research Institute, Shiogama City, Japan, respectively. 
(Title) 


118 EIGHTH PACIFIC SCIENCE CONGRESS 


1]. A Report on the Studies Made in Japan on Pearl Culture. Yoshi- 
ichi Matsui, Nippon Institute for Scientific Research on Pearls, 
Kyoto, Japan. 

(Presented by Dr. Okada) 

12. Fundamental Studies on the Fish Lamp. N. Y. Kawamoto, Faculty 
of Fisheries, Prefectural University of Mie, Tsu, Mie Prefecture, 
Japan. 

(Presented by Dr. Y. Hiyama) 

13. Coaction in Lamp-Communities. Hiroshi Maeda, Shimonoseki Col- 

lege of Fisheries, Yamaguchi Prefecture, Japan. 
(Presented by Dr. Y. Hiyama) 

There was a lively discussion on this subject. Some one in the 
crowd raised a question in the use of the word synecological. But since 
the author of the paper was not present, no one was able to answer the 
question. 

By this time it was 12:00 o’clock. The session was adjourned, to 
resume at 2:00 o’clock in the afternoon. 

The afternoon session was started with the six papers from Chile. 
Since none of the authors were present, they were read by the title and 
Dr. Milton W. Lobell was requested by the chairman to speak briefly 
on the fisheries of Chile. The important points brought out by Dr. 
Lobell were as follows: 

A considerable amount of work has been done on the movement of 
waters in the coast of Chile and a great deal has yet to be done. From 
these studies, it appeared that the great productivity of the water is 
due to certain periodic upwelling in certain specific areas. ‘The fisheries 
in Chile are imminently tied with certain oceanographic factors. The 
warm oceanic waters along the coast in a number of towns in Peru for 
instance accounts for the existence of tunas, sword fish and other similar 
tropical fishes in these places. 

The anchovies are found in great abundance in the Northern coast 
of Chile. They constitute the favorite food of the guano birds, so there 
is at the present time some controversy whether this be allowed to con- 
tinue or whether the fishermen should be allowed to fish the anchovies 
and convert them directly to fish meal. 

The southern part of Chile is very rich in mollusc and crustacean. 
An interesting thing to note is the striking parallelism between the fishes 
found in the northern and southern Pacific areas. There is, for instance, 
a type of sardine in Chile which is taxonomically quite similar to the 
California sardine. 

The fisheries in Chile have been increasing quite rapidly. Chile 
has to increase the phases of her export market rather than domestic 


PROCEEDINGS 119 


consumption because the population of the country is very small. The 
fishery product is based to a large extent on the hake production. Fil- 
leting of fish was started quite recently. This product finds a tre- 
mendous market in public institutions, which are required by law to 
sell fish at least twice a week. 

Chile has always been interested in the development of her fishery 
resources and the good number of men coming up will surely make 
significant contribution to the knowledge of her oceanography and 
fisheries biology. 


14. The Hake Fisheries off the West Coast of Chile. Erik M. Poulsen, 
International Commission for the Northwest Atlantic Fisheries, St. 
Andrews, N. B.,. Canada. 

(Title) 

15. Report on the Algae of the Chilean Seas. Hector Etcheverry-Daza, 
Botany Section, Marine Biological Station, University of Chile, Mon- 
temar, Chile. 

(Title) 

16. The Fisheries of Chile. B.F. Osorio-Tafall, Oficina Regional para 
Sudamerica Occidental, Santiago de Chile, Chile. 

(Title) 

17. Preliminary List of Chilean Fishes and their Vernacular Names. 
Fernando de Buen, FAO Fisheries Expert, Technical Assistance 
‘Program, Chile. 

(Title) 

18. Edible Shellfish of the Chilean Coast. Francisco Riveros-Zuniga, 

Estacion de Biologica Marina de la Universidad de Chile. 
(Title) 

19. Notes on the Commercially Important Fishes of Chile. Parmenio 
A. Yanez, University of Chile, Marine Biological Station, Montemar, 
Chile. 

(Title) 

20. Oceanographical and Fisheries Research in India. N. Kesava Pa- 
nikkar, Central Marine Fisheries Research Station, Mandapam, S. 
India. 

(Presented by Dr. N. K. Panikkar) 

21. Oceanography and Fisheries. G. L. Kesteven, Marine Fisheries Sec- 

tion, Food and Agriculture Organization, Rome, Italy. 
(Presented by Dr. C. Miles) 

22. Factors in the Utilization of Canada’s Pacific Marine Resources. 

J. L. Hart, Pacific Biological Station, Nanaimo, B. C., Canada. 
(Abstract read by Dr. W. A. Clemens) 


120 EIGHTH PACIFIC SCIENCE CONGRESS 


23. Poisonous Fishes and their Relationship to Marine Food Resources 
in the Pacific Area. Bruce W. Halstead, School of Tropical and 
Preventive Medicine, College of Medical Evangelists, Loma Linda, 
California, U.S.A. 

This paper was presented with great enthusiasm. It seemed every- 
one wanted to say something on the subject. Mr. Domantay told the 
audience that the Moros remove certain organs of the poisonous fish 
and ate the rest. Mr. Martin and Mr. Umali spoke on the poisonous 
fishes in the Philippines. 

The author has signified his eagerness to communicate with any- 
one interested in poisonous fishes. 


24, Simple and Rapid Colorimetric Method for the Estimation of Am- 
monia in Fish Meat. Uyuo Ota, Faculty of Fisheries, Kagoshima 
University, Japan. 

(Title) 

25. A New Method for Investigating Fish Meat Putrefaction. Kiichi 

Murata and Keiichi Ohoishi, Hokkaido University, Japan. 
(Title) 

26. Recent Trend of Research on the Freshness of Fish Meat in Japan. 
Koishi Amano, Tokai Regional Fisheries Research Laboratory, 
Tokyo, Japan. 

(Title) 
The symposium lasted up to 4:10 p.m. 


27. Some Aspects of Fisheries Problems in the South Pacific Area. A. 
H. J. Kroon, Economic Development, South Pacific Commission, 
Noumea, New Caledonia. 

(Paper submitted after the Congress sessions.) 


BIOLOGICAL OCEANOGRAPHY 


By W. A. CLEMENS 
Institutes of Oceanography and Fisheries 
University of British Columbia 
Vancouver, Canada 


The study of the ocean is usually referred to as oceanography. 
Various sciences are involved such as physics, chemistry, biology, geo- 
logy, meteorology,—in other words, oceanography is not a single science 
but the application of many sciences in the study of the ocean. ‘The 
phases have been designated as physical oceanography, chemical ocea- 
nography, and so on. 

I have been trying to visualize the place of biological oceanography 
within the general compass of oceanography. In doing so I have had 
in mind the fact that the “Challenger” expedition is usually referred 
to as the beginning of the science of oceanography and, as Merriman 
(1949) has pointed out, this expedition was primarily a biological one 
having for its objective the exploration of life in the depths of the sea. 
Fortunately men interested in the physics and chemistry of the ocean 
were included in the project and so there was laid the foundation for 
the co-operation of representatives of the various sciences in the study 
of the sea. 

I am inclined to suggest that there are possibly four phases of 
biological oceanography. The first has to do with the contribution of 
biological processes to the physical and chemical conditions in the 
ocean, that is, the relations of living organisms to the oxygen, carbon 
dioxide, phosphate, nitrate, silicate and other chemical states and pro- 
cesses; to light penetration, sound transmission, bottom deposits, coral 
reef building, etc. For these aspects, terms might be used, such as: 
bio-oceano-chemistry and bio-oceano-physics. 

A second phase involves the use of organisms, planktonic or other, 
for the identification of water masses including the movements of these. 
I recall for example the paper by Kemp (1938), in which he tells the 
story of how the water masses entering the English Channel may be 
identified by the species of Sagitta present. Certain species of fishes 
may be used as indicators. 

A third phase and the one which has received most attention is 
the study of ocean conditions as an environment for populations of 
living organisms. It is this aspect of biological oceanography which 


121 


122 EIGHTH PACIFIC SCIENCE CONGRESS 


resembles marine biology or ecology. ‘The difference between the two 
is in viewpoint or outlook. In biological oceanography, the investigator 
thinks in terms of the ocean and how the conditions throughout their 
ranges and cycles are related to the production, behaviour, distribution, 
etc. of the plant and animal populations. On the other hand in marine 
ecology, the investigator thinks in terms of the organisms and _ their 
responses to factors in the environment. There does appear to be a 
definite difference in approach, although the end results may be essen- 
tially similar in some instances. However, I think it important to em- 
phasize the fact that the biological oceanographer should be, not merely 
a biologist, but an oceanographer in the broadest sense with a thorough 
understanding of the physico-chemical and dynamic conditions in the 
ocean. 

A fourth phase has to do with the interrelations between the phys- 
ico-chemical conditions and the biological productivity of the ocean. 
In this all plants and animals are involved and the final objective is a 
comprehension of total productivity. Most frequently attempts are 
made to correlate the physico-chemical conditions with the quantities 
of plants and animals at specific times and places. These particular 
studies have to do with standing crops or biomass. Much attention 
has been centred on phytoplankton as the basic element in the complex 
food chains. In the investigation of plankton, there are two phases 
to be considered. One is the broad survey or synoptic type which 
should accompany and parallel the physico-chemical. The physico- 
chemical oceanographer gathers many data on the distribution of tem- 
peratures, salinities, oxygen, etc., and develops broad pictures of states 
and circulation systems. The biological oceanographer needs to pro- 
ceed to obtain his data in a parallel manner. He needs to develop a 
plankton sampler which will operate with much the same facility as 
the water bottle and the bathythermograph and develop methods for 
processing the collections by standard procedures which permit as 
speedy analyses as in the case of the physico-chemical data. The other 
phase of plankton study relates to detailed specific problems within 
limited areas. Here the physico-chemical and biological procedures 
may be modified, elaborated and otherwise developed as the specific 
problems may require. The time element may be less important than 
it is where a series of stations is being occupied over a wide geo- 
graphical range. 

On the basis of the above remarks, I shall attempt to present a 
brief statement concerning a few problems in biological oceanography 
occurring on the Pacific coast of Canada. 

In the field of bio-oceano-chemistry there is a problem concerning 
the origin and abundance of phosphate in Georgia Strait. Lucas and 


BIOLOGICAL OCEANOGRAPHY 123 


Hutchinson (1927), Hutchinson (1928), Hutchinson, Lucas and Mc- 
Phail (1929), and Lucas (1929), stated that the contribution from 
rivers, especially the Fraser River, was considerable and that this phos- 
phate tended to be stored or “conserved” thus forming a reservoir of 
phosphate. The water of Juan de Fuca Strait, which enters Georgia 
Strait in the tidal flows, is relatively high in phosphate and may also 
be a factor in maintaining the high values. ‘Throughout the seasons 
and from one location to another the amount of phosphate may vary 
according to the “blooming” of the phyto-plankton and the disintegra- 
tion of both phyto- and zoo-plankton. A detailed study of the phos- 
phate cycle in this body of water, including the interchange between 
the water and the bottom sediments, with their contained living or- 
ganisms, would contribute much to an understanding of a series of 
fundamental processes. 

The current system off the west coast of Vancouver Island is be- 
ing steadily elucidated by Tully (1942) and associates. In brief, the 
freshwater from the Fraser River and from the various inlets moves 
northwest along the coast. The water of this current is of slightly re- 
duced salinity and low temperature. Beyond the margin of the conti- 
nental shelf, some hundred miles offshore, the California current flows 
southeastward. ‘This water is of high salinity and, during the sum- 
mer, of relatively high temperature. Between these two currents is a 
region of complex eddies with mixing of the two above-mentioned 
water masses. In addition, upwelling occurs during certain portions 
of the year. Knowledge of the character of the plankton organisms in 
these areas is very limited. It would seem that a plankton investigation 
coincident with the physico-chemical program might provide useful 
information in regard to plankton organisms as indicators of the two 
water masses and of the nature and extent of mixing. It is possible 
also that the distribution of plankton organisms in inlets may be used 
to confirm some of the complicated circulation features as determined 
by physical dynamic studies. 

As a result of oceanographic studies by many investigators, the 
physical and chemical characteristics of the waters of Georgia and Juan 
de Fuca Straits as well as the dynamics of these waters, with their com- 
plicated features by reason of the outflow of the Fraser River and the 
strong tidal flows, are well known. On the other hand the fishery biol- 
ogists have accumulated a very great deal of information concerning 
the life history of the Pacific herring. In late spring and early summer 
very large numbers of young herring go out from Georgia Strait to the 
region off the entrance to Juan de Fuca Strait and to some extent 
northwestward off Barkley Sound. There they feed and grow and 
eventually, as three-year-old fish for the most part, enter Juan de Fuca 


124 EIGHTH PACIFIC SCIENCE CONGRESS 


Strait in late summer and early fall, appear in large schools among 
the various channels off the east coast of Vancouver Island, and spawn 
in March. This cycle of events in the life history of the herring is es- 
sentially similar to that of the sockeye salmon, and I suggest that the 
basic factors are similar to those which I have postulated for the sal- 
mon (Clemens 1951). I am confident that a careful investigation will 
reveal an intimate relationship between the annual cycle of the environ- 
ment and the physiological cycle of the fish. 

It has been well-established that the California current divides 
off the British Columbia coast with a portion turning northwestward 
to form the Alaskan gyro while the main current proceeds southeast- 
ward. It is suspected that considerable variations occur throughout 
the years in the division point of the current. It is possible that such 
vagaries of the water masses may be related to the variations in the 
distribution of the albacore and in the migrations of Pacific salmon. 

Finally in the field of biological productivity no attack has been 
made on the problem since the work of Hutchinson, Lucas and asso- 
ciates in 1927 to 1929, when they investigated the relation of the phys- 
ical and chemical properties of the water of Georgia Strait to the 
quantities of phytoplankton occurring during the summer months. The 
coastal waters of British Columbia with all their complicated features 
by reason of heavy river discharge, strong tidal currents and channel 
turbulence, offer a challenging field of fundamental research in biol- 
ogical productivity. 

The examples may serve to illustrate a few of the exciting problems 
existing for the biological oceanographer on the Pacific coast of Canada. 


REFERENCES 


1. CLEMENS, W. A. On the Migration of Pacific Salmon (Oncorhynchus). 
Trans. Roy. Soc. Can., Vol. XLV, Ser. III, Sect. V, 9-17, 1951. 


2. HutcHINSON, A. H. A Bio-Hydrographical Investigation of the Sea Ad- 
jacent to the Fraser River Mouth. Trans. Roy. Soc. Can., Vol. XXII, 
Ser. III, Sect. V, 298-310, 1928. 


3. HUTCHINSON, A. H., C. C. Lucas and M. McPuHatrL. Seasonal Variations 
in the Chemical and Physical Properties of the Waters of the Strait of 
Georgia in Relation to Phytoplankton. Trans. Roy. Soc. Can., Vol. 
XXIII, Ser. III, Sect. V, 177-183, 1929. 


4. KEMP, STANLEY. Oceanography and the Fluctuations in the Abundance 
of Marine Animals. Rept. Ann. Meeting Br. Assoc. Adv. Sc., Cam- 
bridge, 83-101, 1938. 

5. Lucas, C. C. and A. H. Hurcuinson. A Bio-Hydrographical Investigation 
of the Sea Adjacent to the Fraser River Mouth. Trans. Roy. Soe. 
Can., Vol. XXI, Ser. III, Sect. V, 485-520, 1927. 


BIOLOGICAL OCEANOGRAPHY 125 


6. Lucas, C. C. Further Oceanographic Studies of the Sea Adjacent to the 
Fraser River Mouth. Trans. Roy. Soc. Can., Vol. XXIII, Ser. III, 
Sect. V, 29-58, 1929. 


7, MERRIMAN, DANIEL. Biological Problems of the Ocean. Sc. Monthly, 
Vol. LXVIII, No. 1, 12-16, 1949. 


8. TULLY, J. P. Surface Non-tidal Currents in the Approaches to Juan de 
Fuca Strait. Journ. Fish. Res. Bd. Can., Vol. V, No. 4, 398-409, 1942. 


A NEW APPROACH TO THE STUDY OF MARINE RESOURCES 
—THE CALIFORNIA COOPERATIVE OCEANIC 
FISHERIES INVESTIGATIONS 


By Rosert C. MILLER 
California Academy of Sciences 
San Francisco, California, U.S.A. 


The importance of integrating oceanographic and fisheries re- 
search is too obvious to require restatement. Such integration has been 
achieved in specific areas, especially in the North Sea and perhaps rather 
generally in the North Atlantic. In the Pacific Ocean, which occupies 
well over one-third of the globe and is so vast that even its preliminary 
exploration has not been completed, such integration has rarely been 
achieved. To this statement there are a few notable exceptions, among 
them the Philippine Fishery Program and the POFI operations base 
on Hawaii. 

When the California sardine fishery, which used to be one of the 
great fisheries of the world, began a sudden and disastrous decline from 
an approximate six hundred thousand tons a year to a point where the 
fishery is practically non-existent, fisheries biologists discovered that they 
had no backlog of oceanographic information to explain this pheno- 
menal decline, nor to predict the future of the fishery. 

In 1947 the State of California embarked on a remarkable experi- 
ment in scientific research. Legislation was adopted establishing a 
Marine Research Committee of nine members, representing the Fish 
and Game Commission, the fishing industry, and the public. Under 
the sponsorship of this Committee five agencies have been asked to co- 
operate in solving the sardine problem—the California Academy of 
Sciences, the California Department of Fish and Game, the Hopkins 
Marine Station of Stanford University, the Scripps Institution of 
Oceanography of the University of California, and the U.S. Fish and 
Wildlife Service. The research program is laid out and coordinated by 
a Technical Advisory Committee made up of representatives of these 
operating agencies. 

It is significant that the legislation under which the Marine Re- 
search Committee was established was sponsored by the fishing industry 
itself, and that the industry requested the Legislature to increase the 
landing tax on sardines by an amount of fifty cents a ton, the revenue 
from this tax to be used specifically for research on the sardine. Sub- 


126 


CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATIONS 127 


sequently when the income from this tax proved inadequate, the Legis- 
lature, again at the request of the fishing industry, increased the special 
tax to a dollar a ton, and extended it to landings of anchovy, jack 
mackerel, Pacific mackerel, and squid. ‘This may well be the first time 
in history that an industry has requested an increase in its own taxes 
to finance research, and the attitude that prompted it represents an 
encouraging trend away from the concept of reckless exploitation to- 
ward that of scientific management and conservation. 

The reasons for developing a cooperative program involving several 
agencies were the magnitude of the undertaking and the desire to utilize 
as effectively as possible the available scientific manpower, experience, 
and research facilities. Some idea of the immensity of the project can 
be gained from the fact that hydrographic stations have been occupied, 
many of them on a monthly schedule, over an area of 670,000 square 
miles. 

Each cooperating agency has accepted responsibility for one or 
more specific phases of the investigation: 

(1) The California Academy of Sciences is working on the be- 
havior and physiology of sardines as these can be studied under aquar- 
ium conditions. 

(2) The California Division of Fish and Game is concentrating 
on statistical studies of year classes, on young fish surveys, and on meth- 
ods of locating and identifying sardine schools. 

(3) The Hopkins Marine Station of Stanford University is study- 
ing temperature patterns and changes throughout the year, in and near 
Monterey Bay. 

(4) The Scripps Institution of Oceanography of the University of 
California is conducting extensive oceanographic surveys, (including 
plankton studies), and processing all the physical and chemical ocean- 
ographic data obtained by any of the cooperating agencies. 

(5) The U.S. Fish and Wildlife Service is responsible primarily 
for spawning surveys, and is also conducting some more general phases 
of the investigation. 

This division of work is not rigid and inflexible; often personnel 
from two or more agencies work on projects together. 

Although the investigation is still far from completion, the follow- 
ing conclusions may be drawn: 

(1) The decline of the fishery was due to a combination of intense 
fishing effort and a succession of poor spawning years. Even though 
overfishing may not be the primary cause of the decline, when a fishery 
declines for any reason, overfishing then inevitably occurs, because 
greater fishing effort is concentrated on a smaller population. Thus 


128 EIGHTH PACIFIC SCIENCE CONGRESS 


a vicious circle is established which, unless the fishery is regulated, will 
continue until the catch becomes so small that it is unprofitable to fish. 

(2) Spawning of sardines occurs in two principal areas, one off 
Southern and one off central Baja California. Spawning in the former 
of these areas has been poor in recent years, and it is not definitely 
known whether sardines spawned off central Baja California contri- 
bute significantly to the California fishery. 

(3) Spawning is limited to a rather narrow temperature range (of 
the order of 12.5°C. to 16.5°C.), so that changes in the temperature of 
the water from year to year may result in poor spawning or a shift of 
the spawning areas. 

(4) The amount of upwelling of nutrient-rich water from the 
ocean depths appears to be an important factor in providing food for 
young and mature sardines, and perhaps affects spawning by its influ- 
ence on surface temperatures. Along the California coast, upwelling 
varies from year to year, especially with the velocity of the prevailing 
northwest winds. ‘These winds also, by their effect on the velocity of 
the California current and the inshore counter current, may directly 
affect the movement and the availability of sardines at a given time and 
place. 

A further general observation may be made. The decline in the 
sardine fishery has resulted in a diversification of fishing effort, which 
is, in the long range view, desirable. As shown in Figure 1, there has 
been a rather rapid increase in the take of other fishes since the sardine 
fishery began its rapid and catastrophic decline. Obviously not all of 
this increase has been due to the lack of sardines, but certainly some 
of it has been due to the fact that sardine fishermen have been forced 
into other lines of fishing endeavour. 

It is now necessary to conduct studies on other fishes (some of 
which are referred to as ‘‘substitute sardines’) to insure that they do 
not suffer a similar fate to the sardine. The research program, known 
as the California Cooperative Oceanic Fisheries Investigations, is being 
expanded to include anchovy, Pacific mackerel and jack mackerel. 
Other species are also given attention as they come to notice incidental- 
ly in the course of the work. 

It is believed that the oceanographic information being obtained 
in these investigations will be of importance in the solution of many 
other fisheries problems in the future. It is believed also that this type 
of cooperative undertaking, in which a number of institutions offer 
their facilities and trained personnel toward the solution of a major 
fisheries problem, provides an effective method of advancing our knowl- 
edge of the science of the sea. 


CALIFORNIA COOPERATIVE OCEANIC'FISHERIES INVESTIGATION 129 


[[@ JO sBurpuey, yAIaA patedutoo ZEGT 01 9TGT Wolf SoUuTpPles BIUTOFI[eD JO ssulpue][—] “iy 
YYV3IA 


096! 


“(dayIMIWOD -YBadsoy oULIBY 9}BIG BIULOJI[VD Jo AsoazinoD) BiusoseQ Ul YSsYy Tey{o 


906i 


OvG! S€6i 


YSIf 49440 IV 


Of6! 


S26! 


026! 


ST, 


002 


(SPpuNnoG 40 SuUONIw) HILVD 


(oer 4) 


Coe 


— 
BT | Sa 
en 


ay 


ity cheese 

7 yl OR oO i 
hey ey Mf 
PAY Au (ol 


s 
Tye 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 
BY THE EQUATORIAL CIRCULATION SYSTEM 


By Oscar E. SETTE 
Pacific Oceanic Fishery Investigations 
Fish and Wildlife Service 
Honolulu, Hawaii 


An extensive program pursued by the Fish and Wildlife Service 
from its Honolulu laboratory for Pacific Oceanic Fishery Investigations 
has been directed toward discovery of high-seas fishery resources through 
study of oceanic productivity. ‘This program, uniting oceanography, 
biology, and fishery investigation probably has amassed more informa- 
tion regarding the physical and chemical properties of the upper-level 
waters, the structure of the upper-level current system, the abundance 
and distribution of plankton, and the occurrence of harvestable fish 
in the low latitudes of the east-central Pacific than has been available 
previously for any mid-ocean area anywhere. 


Up to March 1953 we have occupied 390 hydrographic stations 
forming 22 sections transverse to the equatorial current system at various 
longitudes from 140°W. to the 180th meridian (Fig. 1). Most of these 
have been accompanied by quantitative zooplankton hauls and addi- 
tional plankton hauls have been made on fishing voyages, making a 
total of 399. There have been 218 fishing stations, forming 20 transects 
of the equatorial zone (Fig. 2), as well as several additional patterns 
of fishing survey over special areas. Hydrographic and fishing trips 
have provided 4,442 bathythermograms. Reports have been published, 
are in preparation, or are planned to cover various aspects at various 
stages of our progress. At this time, it is possible to give a broad prelt- 
minary outline of the results as they are now emerging. 


The dominant energy source for equatorial ocean circulation is 
the trade wind system. In the oceanic portion of the eastern half of 
the equatorial Pacific, where there is practically no emergent land to 
impose topographical modifications, the direction and force of the wind 
govern rather completely the details of the equatorial current system. 
As a consequence of the circulation there results a chain of biological 
events that culminate in an abundant stock of equatorial yellowfin 
tuna, Neothunnus macropterus, Temminck and Schlegel. We shall 
examine first in cross-section and then in plan view this oceanic equa- 
torial production system. 


131 


132 EIGHTH PACIFIC SCIENCE CONGRESS 


In a paper now in press Cromwell? has erected a hypothetical 
model which postulates the effect of winds from various directions on 
the ocean circulation and which is consistent with the empirically de- 
termined hydrographical and biological conditions. He has kindly per- 
mitted our use here of Figure 3 (Fig. 6 of his paper) and has prepared 
the following statement on the particular effects of wind which are most 
significant to the present discussion. 


“Figure 3 shows directions of current transport (solid arrows) that 
would exist near the equator under various wind conditions were there 
no pressure gradient force acting.? For each wind direction the meri- 
dional components of current transport (dotted arrows) are drawn to 
emphasize the regions of divergence (Div.) and convergence (Conv.). 
The magnitude of the current is drawn everywhere constant, and hence 
the regions of divergence and convergence shown are associated with 
differences in current direction only. Upwelling can occur in the re- 
gions of horizontal divergence. 


“The intensity of the horizontal divergence is partially dependent 
on the current magnitude which increases with increasing wind speed. 
Thus, during strong trade winds near the equator, horizontal diver- 
gence and upwelling will be intense and the sea surface temperature 
will be low. 

“Figure 3 shows further that the position of the convergent and di- 
vergent currents depend on the wind direction. During a steady east 
wind horizontal divergence is centered at the equator. When the wind 
is southeast there is horizontal convergence in the northern part of 
the equatorial region between the 3° parallels, with the divergent cur- 
rent now centered somewhat south of the equator.” 


As an empirical example for examining the distribution of proper- 
ties in the meridional plane, for inferring the circulation, and for see- 
ing the effect of the circulation on plankton and tuna distribution, we 
shall use Cruise 11 of the Fish and Wildlife Service vessel HUGH M. 
SMITH (Fig. 4) which occupied the period August 20 to October 6, 
1951. On this cruise the SMITH proceeded southward along meridian 
150° W. occupying fishing stations, and returned northward along the 
same meridian occupying hydrographic stations (Fig. 5). Bathythermo- 
grams and zooplankton hauls were taken on both transits. ‘The south- 


‘Cromwell, Townsend: “Circulation in a meridional plane in the central equatorial Paci- 
fic.’ In Press. Journal of Marine Research. 

°In Figure 3 the vectors at the 3° parallels are in accordance with Ekman’‘s theory of the 
pure wind drift current (Ekman 1905), i.e., the current transport is indicated at one right 
angle cum sole with the generating wind. Ekman’s theory is considered to apply 3° from the 
equator in accordance with a recent paper by Weenink and Groen (on the computation of sur- 
face current velocities in the equatorial regions from wind data. Proc. of Koninkl. Nederl. 
Akad. van Wetenschappen, Amsterdam, Ser. B, 55, No. 3, pp. 239-246, 1952) in which they 
conclude that at ‘“‘*. . . 2 or 8 degrees -'’ and higher latitudes the internal frictional 
force is small compared to the Coriolis force. Cromwell has discussed completely the assump- 
tions involved in eonstructing the figure. 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 133 


bound transit was interrupted for 15 days at 2°N. latitude to occupy 
an east-west line of fishing stations. “These will be omitted from our 
discussion.’ The observations on temperature, phosphate, plankton, and 
tuna are diagramed in Figures 6 and 7. 


The upwelling at or very near the equator is evident at the sur- 
face from the drop in temperature, and in cross section by the extension 
to the surface of the water cooler than 26.7°C (80°F) and richer in 
phosphate than 0.4 microgram atoms per liter. The transport near the 
surface of the upwelled water northward and southward from the equa- 
tor is evident from the extension of the higher phosphate concentration 
in both directions from the equator. It is also evidenced by the north- 
ward component in the direction of longline drift + north of the equator 
and the southward component when they were fished south of the equa- 
tor (Fig. 6B). 

The movement of the water in surface layers toward the north 
away from the equator decelerates and may terminate. In either event 
there is convergence and probably sinking. The northern limit of the 
convergent zone was at 4°50/N. latitude at the time of the northbound 
passage of the SMITH and is clearly marked by the abrupt change in 
surface temperature at that latitude (Fig. 7A). This also approximates 
the southern boundary of the countercurrent. A month earlier, during 
the southbound passage, this feature was about one degree farther 
south judging from the change in slope of the 15.6° and 26.7°C iso- 
therms and from the drift of the longline gear (Figs. 6A and B). 


Yellowfin tuna were markedly concentrated between the equator 
and the northern limit of the convergence, the catch averaging four 
times as many fish per unit of fishing effort between 1° and 6°N. as 
elsewhere (Fig. 6D). 


In the sequence of events between the enrichment of the water 
at the equator and the production of food for the tuna, several trophic 
levels intervene. According to stomach examinations tuna eat prac- 
tically all but the largest members of the bathypelagic nekton, small 
fish and squid forming their main diet. ‘The fish and squid feed on 
other nekton or on the zooplankton, which in turn feeds on phyto- 
plankton. Time must intervene and transport of the biota takes place 
between enrichment of the surface waters and the production of feed 
for the tuna. 


3 They are reported by Murphy and Shomura: “Longline fishing for deep-swimming tunas 
in the central Pacific, 1950-51.’’ Department of the Interior, Fish and Wildlite Service, Special 
Scientific Report: Fisheries No. 98, May 1953. 

* The longline fishing gear is a system of horizontal and vertical lines suspended from the 
surface by buoys. It is allowed to drift freely in the water during the fishing operation, 
which occupies most of the daylight hours. The drift of this gear is mainly determined by 
the movement of the upper 100- to 150-meter stratum of water, though it is also influenced 
somewhat by surface wind and waves. The gear usually drifts far enough for its course and 
direction to be determined by celestial navigation. 


134 EIGHTH PACIFIC SCIENCE CONGRESS 


Therefore it is not surprising to find the tuna feeding ground 
displaced from the upwelling area in the direction of movement of the 
water in the meridional plane. However, it would be expected that 
the plankton, occupying an intermediate trophic level, would also oc- 
cupy an intermediate geographic position. ‘This it does according to 
some of our other sets of data for trans-equatorial sections. But pre- 
ponderantly the peak of zooplankton abundance lies closer to the up- 
welling area than to the fish concentration and sometimes, as in the 
SMITH Cruise 11 example, it almost coincides with or even lies slightly 
south of center of upwelling, while the tuna are located well north of it. 

This may not be as anomalous as it appears at first sight. Our 
plankton catches are proportional to the standing crop. The standing 
crop, in turn, is the product of inter-action between replenishmeut and 
losses from mortality, including particularly consumption by other 
forms in a given water mass. As a consequence the plankton concen- 
tration should everywhere be lower than at its center of production, 
which in the present instance appears also to be the center of upwelling. 
Simultaneously with the drift of plankton away from the production 
center and its decline in abundance, it is passing through successional 
forms, some of them being successive stages in development of indivi- 
duals, others being successive stages in a food chain. If we may postu- 
late that particular successional forms of zooplankton are required by 
the particular nektonic forms which constitute forage for the tuna then 
we have an explanation for the displacement of tuna away from the 
center of plankton production. Unfortunately we have not yet learned 
how to sample quantitatively the nekton of tuna-forage size or to learn 
its feeding habits, and this explanation remains conjectural. 


North of the concentration of tuna in the convergence zone lies 
the equatorial countercurrent marked by elevated surface temperature, 
upward tilting from south to north of the thermocline (Figs. 6A and 
7B) and the eastward drift of longlines (Fig. 6B). Here the surface 
layers are poor in phosphate (Fig. 7C) and the zooplankton catches are 
also poor (Figs. 6C and 7B). However, near the northern boundary 
of the countercurrent, the upper portion of the thermocline, roughly 
located by the 26.7°C (80°F) isotherm, lies only 50 meters below the 
surface and water from the thermocline layer might occasionally be 
stirred by the wind into the overlying warm layer. Possibly such stirring 
accounts for the distribution of properties found by the Carnegie as 
depicted by Sverdrup, Johnson, and Fleming (‘The Oceans’, Fig. 198, 
p. 710) and interpreted by them to indicate upwelling at the northern 
boundary of the countercurrent. Some of our hydrographic sections 
contain indications of enrichment at this location, but the indications 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 135 


are feeble and do not appear regularly as should be true if upwelling 
at the northern boundary of the countercurrent were a fundamental 
part of the circulation. 

The surface upwelled water immediately south of the equator may 
move northward across the equator or it may move southward away 
from the equator depending on wind direction. At the time of SMITH 
Cruise 11, the phosphate values, the temperatures, and the plankton 
catches suggest that it was moving southward away from the equator. 
There is no evidence of convergence and indeed Cromwell’s model calls 
for none south of the equator unless winds blow from the north as well 
as from the east. Without convergence, the biota produced in the water 
drifting south from the center of divergence, upwelling, and enrich- 
ment may simply disperse without producing concentrations of tuna 
such as appear in the convergent zone north of the equator. 


However, good catches of albacore taken by our research vessels 
on several occasions between 5° and 17°S. latitude, suggest that the 
southward drifting biota may not always completely disperse before 
high trophic levels are reached. 

We may conclude from our examination of the distribution of 
physical, chemical, and biological properties of sea water in the meri- 
dional plane across the equatorial current system at 155° W. longitude: 
(1) divergence at the equator is induced by easterly winds; (2) up- 
welling associated with the divergence brings inorganic nutrient salts 
to the surface layers; (3) plankton develops in the enriched water; 
(4) the enriched water bearing the plankton moves away from the 
equator; (5) convergence may occur either north or south of the equator 
depending on the meridional component of the wind direction; (6) with 
a northward meridional component, as in southeast trade winds, the 
convergence is north of the equator; (7) enhanced productivity resulting 
from equatorial divergence, coupled with the concentrating effect of 
convergence on the biota as it passes through the successive trophic 
levels, provides a feeding ground for tuna in the convergent zone; 
(8) yellowfin tuna concentrate abundantly on this feeding ground. 

Turning away from the meridional aspect and remembering that 
the divergence-convergence system described above will be most effec- 
tive when there is a strong, steady wind of long reach from an easterly 
direction, we may examine the east-west distribution of elements perti- 
nent to equatorial productivity. In August, when southeast trade winds 
are best developed over the equator, the wind conditions for diver- 
gence and upwelling are at their best in the eastern half of the Pacific 
as may be seen from Fig. 8A. Arrows representing wind vectors are 
shown for the tier of five-degree squares lying on each side of the equa- 


136 EIGHTH PACIFIC SCIENCE CONGRESS 


tor. These are drawn proportional to the weighted mean resultant 
travel of the wind. The arrows are longest and travel most nearly from 
the southeast between 100° and 150°W. longitude. Farther west they 
lose much of their strength and most of their northward component. 


Note also that the winds themselves are divergent in the eastern 
part of the Pacific and become convergent in the western half. The 
effect of this equatorial wind divergence on the water has not been 
studied by oceanographers as far as ] am aware. In the absence of a 
deflecting force at the equator and assuming there is no pressure gra- 
dient, the transport of the water should be in the direction of the wind 
and the wind divergence itself should produce water divergence at the 
sea surface along the equator east of 180° (and convergence west of 
180°). It is not known how strong this effect may be, but any diver- 
gence induced directly in this manner should reinforce and strengthen 
the divergence caused by the forces considered in Cromwell’s model. 


The east-west trend of plankton abundance is consistent with the 
results expected from the pattern of the equatorial winds. As shown 
in Fig. 8B the better catches were made east of 150°W. longitude and 
there is a decided decline from there toward the west. However, to 
gain enough material to plot plankton by latitude we have had to com- 
bine all seasons of the year over an arbitrary span of latitude and we 
cannot rely on these data to faithfully show the finer details of plank- 
ton distribution. 

Similarly the material on yellowfin tuna is not sufficient to consi- 
der August alone as was done with the wind data. In Fig. 8C, however, 
the combined results of a group of fishing cruises during the months of 
July to November are charted with shading proportional to the catch- 
ing rate. As expected from the meridional aspect of equatorial circu- 
lation the center of abundance is displaced northward from the equator 
and as expected from the fact that the divergence-convergence structure 
is contained within the westward flowing South Equatorial Current, 
it is also displaced to the west of maximum divergence as judged from 
wind pattern and plankton concentration. The relatively small dis- 
placement northward is consistent with the relatively weak meridional 
circulation and the large displacement westward is consistent with the 
very much stronger zonal circulation. 

In assembling the above materials bearing on equatorial produc- 
tivity and on the mechanisms involved, I have been highly selective. 
In part this selectivity has been purposeful and intended to emphasize 
the major elements of the productivity system. In part the selectivity 
has been imposed by incompleteness of available information. It should 
be noted particularly that the meridional aspect was portrayed by a 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA liom 


specific example, and zonal aspect by averages exemplifying a particu- 
lar period of the year. For neither aspect have I indicated the varia- 
bility in location and magnitude of the various elements of the system. 
Likewise there are neglected the peculiarities which crop up in each set 
of data collected. This portrayal therefore is certainly much distorted 
in the direction of over-simplification and most probably distorted to 
an unknown degree in the direction of specific peculiarities of the par- 
ticular sets of data employed. When more complete data are at hand 
and when there has been a more thorough study, a different and pro- 
bably more complex concept will be necessary. 


In the meantime there appears to be very complete agreement in 
the gross features of equatorial circulation, of plankton distribution, 
and of fishing ground location as to time, place, and relative magni- 
tude. ‘The correspondence is such as to leave little doubt that the 
yellowfin tuna stock south of Hawaii owes its existence to and is nour- 
ished by the equatorial current system. 


Perhaps of interest equal to the facts themselves is the demonstra- 
tion that a rich fishing ground may be discovered through the scientific 
study of the particular features of ocean circulation pertinent to the 
existence of fish stocks. 


It is, of course, obvious that the attainment of the present degree 
of understanding has resulted from the participation of a considerable 
number of persons ranging in specialization from expert fishermen to 
senior scientists united in a concerted drive toward a common objective. 
Milner B. Schaefer, John L. Kask, and Donald L. McKernan have suc- 
cessively led the scientific team. “Townsend Cromwell, until recently, 
has been in charge of the oceanographic program; Joseph E. King has 
been the chief researcher on plankton and on the food of tuna; while 
Fred C. Cleaver initiated, and Garth I. Murphy has carried on, the 
longline fishing surveys. I am especially grateful to our present ocea- 
nographer, Thomas S. Austin, for invaluable assistance in assembling 
the materials for this report. 


138 EIGHTH PACIFIC SCIENCE CONGRESS 


ILLUSTRATIONS 


Figure 1.—Hydrographic stations occupied by the U.S. Fish and Wildlife 
Service vessel HUGH M. SMITH for the investigation of equatorial cir- 
culation, January 1950 to February 1953. 


FiGuRE 2.—Longline fishing stations occupied by the U.S. Fish and Wildlife 
Service vessels HUGH M. SMITH, JOHN R. MANNING, and CHARLES H. GIL- 
BERT, and the M/V CAVALIERI (chartered) for investigating the distribu- 
tion of tuna, October 1950 to March 19538. 


FIGURE 3.—Direction of current transport (Small solid arrows), which would 
exist near the equator under various wind conditions, were there no 
pressure gradient force acting. The current magnitude is drawn every- 
where constant (small solid arrows). For each wind condition (large 
solid arrows) the meridional components of the current transport (dotted 
arrows) are drawn to emphasize the regions of meridional divergence 
(Div.) and convergence (Cony.). From Cromwell’s ms. Figure 6. 


FicguRE 4.—The Fish and Wildlife Service research vessel HUGH M. SMITH, 
a tuna-clipper type to which have been added laboratory, winches, and 
other special instruments for oceanographic research. 


FIGURE 5.—Location of the hydrographic and the fishing staticns of HUGH 
M. SMITH Cruise 11, August 20 to October 6, 1951. 


Figure 6.—Diagrams of certain data resulting from the southbound passage 
on HUGH M. SMITH Cruise 11 along the 150th west meridian, August 
24 to September 25, 1951. A. Temperature section showing the water 
layer warmer than 26.7°C (unshaded), between 26.7°C and 15.6°C 
(shaded) and colder than 15.6°C (black), as taken from bathythermo- 
graphs. B. Direction of drift of longline gear at each fishing station. C. 
Volume of zooplankton taken in a plankton net of one meter in diameter 
at the mouth and towed obliquely for approximately one-half heur through 
the upper 200 meters of water in the daytime. Volumes were measured 
by displacement and adjusted to a standard quantity of 1000 cubic meters 
of water strained based on flow determined by a current meter installed 
in the mouth of the net. D. Rate of catching yellowfin in number per 
hundred hooks per day fishing as determined by fishing 40 baskets of gear 
each comprised of 210 fathoms of longline suspended by 10-fathom float- 
lines and bearing 6 hooks spaced 30 fathoms apart and suspended by 
10-fathom droppers. 

FIGURE 7.—Diagrams of certain data resulting from the northbound passage 
on HUGH M. SMITH Cruise 11 along the 150th west meridian, Septem- 
ber 25 to October 4, 1951. A. Temperature at the sea surface. B. Tem- 
perature section showing the water layer warmer than 26.7°C (un- 
shaded), between 26.7°C and 15.6°C (shaded) and colder than 15.6°C 
(black), as taken from bathythermographs. C. Phosphate section show- 
ing water with less than 0.4 microgram atoms per liter (unshaded) be- 
tween 0.4 and 1.0 microgram atoms per liter (shaded) and more than 
1.0 microgram atoms per liter (black). D. Volume of zooplankton taken 
and treated as stated in the title of Figure 6, except that the hauls were 
made at various hours of the day and night and received further ad- 
justment for diurnal variation according to the formula: V, = antilog 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 189 


(log V + 0.1 sin t) where V, is the adjusted volume, V the unadjusted 
volume, and ¢ the angle of rotation of the hour hand on the 24-hour 
clock at the time of the mid-point of the hauling period, with zero rota- 
tional angle such that the angle whose sine is 1.0 occurs at midnight 
and —1.0 at noon. 


FIGURE 8.—Diagram of wind vectors, plankton abundance, and tuna distribu- 
tion in the equatorial zone. A. Resultant wind vectors were computed 
as the weighted means of frequency and speed from the several compass 
points for 5-degree squares bordering the equator as published in U.S. 
Hydrographic Office Pilot Chart for the North Pacific for August 1952, 
the arrows point in the direction of travel and their shafts are propor- 
tional to the weighted mean speed. B. Mean plankton volumes at se- 
veral longitudes computed as the mean of all hauls taken from between 
latitudes 5°S to 10°N at or near the given longitude. C. Distribution 
of yellowfin tuna in the mid-Pacific equatorial region as estimated from 
longline catches. The lightest stipling represents less than 3 yellowfin 
tuna per hundred hooks, the heaviest represents more than 9 per hun- 
dred hooks and the intermediate stipling represents intermediate catch- 
ing rates. For orientation as to location and area there is given by 
light stipling the area of the Japanese prewar longline fishery and by 
dashed outline the area of the American west coast live bait and purse 
seine fishery for yellowfin and skipjack tunas. 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 141 


©8638 Ce0n00%0000 
) 


® 
® e889 0S ERE 500 S8EPeG00 
8 6 


3 | Senate 


— 


e SOs 8 teoveeseoagoeseoece 


8 
x 
Sis: 
ST 
Q 


FIGURE 1 


142 


EIGHTH PACIFIC SCIENCE CONGRESS 


ed 


MARQUESAS 


PHOENIX: 
nS) =. 


EQUATORIAL LONGLINE FISHING CRUISES 


FIGURE 2 


143 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 


e AYA 


ANOOD AId 
(=) 
{ | = 
dst CULO > Cee > reer ease <x. fe) > Pere = 
f= 
ep) 
fe 
— els 
2m ro) mw 9 
SqnLiiv1 
ANOD AIG 
re) <: <Licdnel icsesce Grocerees Geevece <Qeeee < fe) S 
4 
ag 
& ¥ ro) 
(op) 
zi b mo 
Sanity 
Aig 


~N 
~~ 
an 
wi 
: 
Gece: 
EAST WIND 


SONLILV1 


NORTHEAST WIND 


Zo NS 
ro) mw 


zm 
Sanity 
AId ANOOD 
ce} “> sec tee eee’ > > > eee D> —> fe) S 
> 
; c 
A = 
| \ Xs Be ee ce a Jee / | uw 
(2) 
° ° ° Zz 
=m oO mw 
Sgn Liiva 
ANOS 


| 

\ 
‘\ 

™ 
aaa 

Va 

f 
ral 

wamacd) 
WEST WIND 


zm b mw 


SONLILV1 


EIGHTH PACIFIC SCIENCE CONGRESS 


144 


7 Ayn 


NOURISHMENT OF CENTRAL PACIFIC STOCKS OF TUNA 145 


‘HUGH M SMITH _GRUISE {1 


O LONGLINE STATIONS 
@ HYDROGRAPHIC STATIONS 


POS [SOx 


FIGURE 5 


146 EIGHTH PACIFIC SCIENCE CONGRESS 


PEP IC ere? te (lo 0? (es? ey? (Ki? (ei 


DEPTH( METERS) 


(B) LONGLINE DRIFT 
S = wwWvdw Fs = 


(C) ZOOPLANKTON 


m 

= 
° 
Oo 
Se 
> 
—_ 
= 


(D) YELLOWFIN CATCH 


NUMBER/ 100 HOOKS 


0 I 
Sr Racine er tle (Gy nlenrec Se .40n Or Genres Gem Sel Ocul toa lea Saul Sem 


S——LATITUDE ——N 


FIGURE 6 


[20 SOF 4 OSS OP GOmli(O2 a SO> lizOe |6O2 5 15025 1402 a 13028 1202s aIO2 100% 9025. B02 


148 


EIGHTH PACIFIC SCIENCE CONGRESS 


Via 
KI fF 
MW«W GG 


mole 
(«CWC G 


¢W OOOI/ IN 


120° 130° 140° 150° 160° 170° [807 N02 602s 1502 140° 130° 120° 110° 1002 90° = 80°| 


FIGURE 8 


DEVELOPMENT AND CONSERVATION OF THE TUNA 
FISHERIES OF THE PACIFIC 


By MILner B. SCHAEFER 


Inter-American Tropical Tuna Commission 
Scripps Institution of Oceanography 
La Jolla, California, U.S.A. 


In recent years, it has often been pointed out that in order to keep 
up with the food demands of a growing population, man must turn 
to the sea as a major source of protein food. In point of fact, the 
utilization of the food resources of the sea has been increasing at a 
rapid rate for some decades. With the development of steam propul- 
sion for fishing craft late in the last century, followed by the develop- 
ment of diesel engines, the sea fisheries have expanded rapidly in scope 
and intensity of fishing. At the same time, improved techniques of 
preserving and transporting fish have broadened the market for the 
catches. ‘This expansion of the fisheries has been most rapid, of course, 
in those seafaring nations whose technological development is most 
advanced (Canada, the United States and Japan in the case of the 
Pacific Ocean). Other nations, however, have also participated in the 
development, and there is, at present, considerable time and money 
being expended by various agencies to assist the nations with little 
development of fisheries to expand them by the application of modern 
technological advances imported from other areas, or by the forced 
evolution of their indigenous methods. 

Because of problems of preservation of the catch, as well as econo- 
mic factors, the fisheries closest to the ports of landing tend always to 
be most heavily exploited. Furthermore, the hazardous nature of sea- 
faring, with the consequent need for larger and more costly craft to 
exploit distant oceanic fishing areas, favors the development of the in- 
shore fisheries. In consequence, many of the demersal and inshore fish 
populations are now fully or nearly fully exploited. The Pacific sal- 
mon fisheries, for example, are certainly not capable of any increase in 
catch, except as better management may increase somewhat the effi- 
ciency of utilization of the populations of these species. “The Eastern 
Pacific halibut stocks are controlled by scientific management, having 
been overfished in the 1920’s and 1930’s. The formerly large fisheries 
for sardines have declined both on the western and eastern sides of the 
Pacific. ‘There is some question as to how much of the decline of the 


149 


150 EIGHTH PACIFIC SCIENCE CONGRESS 


sardine catch is due to fishing, and how much is to be attributed to 
changes in the oceanic environment; but there seems to be no question 
that the populations of this species have no possibility of supporting 
a much greater catch than has been attained in the past. The herring 
fisheries of the North Pacific, on both sides of the ocean, seem to be 
rather fully exploited. The great Japanese trawl fisheries of the East 
China Sea and adjacent areas have been so heavily fished that they are 
now subject to regulation to curtail the intensity of fishing. Certainly 
there are yet demersal and inshore fish stocks that are little utilized, 
such as the hake and pollock of the Northeastern Pacific. In the main, 
however, the new frontier of commercial fishing is the exploitation of 
the oceanic fishes of the high seas. 

The potential food production from fisheries of the high seas is 
doubtless very large. The cost of harvesting this crop is, however, also 
large. Under present economic circumstances, therefore, development 
of high sea fisheries is confined to those species which occur in high 
local concentration and have a relatively high unit value, so that the 
catch per unit of fishing effort has sufficient value to offset the high cost 
of production. Few pelagic oceanic organisms meet these requirements 
at the present time. The whales are, of course, an outstanding example. 
Among the fishes, the tunas support one of the few major fisheries of 
the high seas in the Pacific. The several species of tunas aggregate in 
sizable schools, occur in relatively large concentrations in certain areas 
of the sea, and command a high market price. ‘They have, therefore, 
become the object of increasingly extensive and intensive fisheries. 


TUNA FISHERIES OF THE PACIFIC 
Five kinds of tunas are the objects of important commercial fish- 
eries in the Pacific. ‘They are: 
Albacore—Thunnus germo 
Yellowfin—Neothunnus macropterus 
Skipjack—Katsuwonus pelamts 
Bigeye—Parathunnus sibi 
Bluefin—Thunnus thynnus, T. orientalis, T. maccoyt 
Several other species support fisheries of a local nature and of 
minor importance, including Kishinoella tonggol, the northern bluefin 
of Australia, and the several species of Euthynnus. The bonitos, genus 
Sarda, which support important fisheries, are not usually considered 
tunas in the strict sense. 
The fisheries for tunas in the Pacific have developed rapidly dur- 
ing the last three decades, and at present are among the most valuable 
fisheries of this ocean. In the United States, the tunas rank first in 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 151 


total value of all categories of fish products. In Japan, they are of 
major importance both for domestic use and for export. They support 
an important industry in Peru, and are of growing importance in Aus- 
tralia. It is, perhaps, most convenient to consider the development 
and present status of the fisheries by species. 


Albacore 


The albacore (Thunnus germo) occurs in commercial quantities 
in temperate waters of both northern and southern hemispheres. Tuna 
fishing in the Eastern Pacific had its inception in the first decade of 
this century in Southern California, where albacore occur during the 
summer and fall months in inshore surface waters, where they may be 
captured by trolled lures or by pole and line, using live bait for chum. 
Small craft, fishing only a few miles from shore, supplied the infant 
canning industry. Since the fishing depended on the seasonal occur- 
rence in inshore water of an oceanic, migratory fish, availability was 
notably erratic from year to year. By 1925, however, the fishery pro- 
duced 22 million pounds of albacore. In 1926 the albacore failed to 
appear in appreciable numbers, and the landings dropped to two-and- 
a-half million pounds. They continued scarce for a decade in waters 
of California and Baja California covered by the tuna fleet. The er- 
ratic and seasonal occurrence of albacore led the fishermen tv turn to 
the tropical tunas, the yellowfin and skipjack, which range north to 
California during the summer, and to extend their operations south- 
ward, first off the Mexican coast and later farther south, in order to 
extend the season of fishing and to find greater concentrations of these 
species. The failure of the albacore fishery in 1926 gave tremendous 
impetus to the development of the fishery for tropical species, which will 
be discussed further below. 

In 1936, albacore began to appear again in greater numbers in 
California inshore waters, and have since continued to support an im- 
portant amount of fishing. In 1937, fishermen off Oregon, Washington, 
and British Columbia discovered that albacore occurred there, too, in 
the summer at some little distance offshore, and began to fish for them. 
They have continued to do so since. 

The present albacore fishery of the Eastern Pacific extends from 
Baja California to British Columbia, being pursued only during the 
summer and fall months when the fish appear in surface schools in 
waters not far from shore, and can be captured by trolling lures or by 
pole and line using live-bait chum. Some fishing is done as far as 150 
miles from the coast, but most of it is done within a much narrower 
range. Albacore are known, from observations of research vessels, to 
occur a good deal further offshore than they are now fished. Because 


152 EIGHTH PACIFIC SCIENCE CONGRESS 


of the dependence of the fishery on the seasonal, inshore occurrence of 
the fish, which varies a good deal from year to year, probably in re- 
sponse to variations in oceanographic factors, the success of the fishery 
varies widely, the variability increasing as one goes north. Present 
magnitude of the fishery is indicated by the statistics for 1950, when 
73 million pounds were landed, 62 million of these in California. 

On the western side of the Pacific, tuna fishing is much oldei. Fish- 
ing for tunas in the waters adjacent to Japan has been engaged in by 
fishermen of that nation since ancient times. Not until the introduction 
of motorized fishing vessels in the first decade of the present century, 
however, did the fishery begin to assume any large proportion, so that 
the development of the modern fishery is contemporary with that of 
the Eastern Pacific. 

The ‘summer’ albacore fishery, in the adjacent seas of Japan, is 
similar to the fishery in the Eastern Pacific. It depends on schools of 
fish which appear in inshore waters about April or May, reach their 
greatest abundance in about June, and disappear in the late summer 
or fall. 

Albacore, and other tunas as well, are also fished in Japan in sub- 
surface waters by means of floating long-lines. “Ine long-line fishery 
for albacore has, as a result of explorations by Japanese research vessels, 
been extended eastward to the longitude of the Hawaiian Islands. 
The long-line fishery has its greatest success during the winter months 
and appears, according to Uda and Tokunaga (1937), to be most pro- 
ductive in the region of the North Pacific convergence near latitude 
30°N. 

Albacore is not a preferred species for domestic consumption in 
Japan, but finds a ready market in the United States. Therefore, much 
of the catch is exported either as canned tuna, or as frozen tuna which 
is canned in the United States. The Japanese albacore catch in 1950 
amounted .to 65 million pounds, and was nearly double that amount 
oy ey 

Small quantities of large albacore are captured on long-lines by 
the local fishery in the Hawaiian Islands, incidental to fishing for yel- 
lowfin and bigeye tuna. Small commercial quantities are fished off 
Chile and southern Peru. 

The albacore fisheries of the Pacific appear to be capable of con- 
siderable expansion, both by development of fisheries in the southern 
hemisphere, which are now little exploited, and by further offshore 
development of the North Pacific fisheries. Exploration of the offshore 
distribution of albacore in the Northeastern Pacific is planned to be 
undertaken during the coming winter by agencies of the U. S. Govern- 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 153 


ment and the State of California, so development of an offshore fishery 
in this area may not be far distant. 


Bluefin 


These are tunas of temperate waters, occurring in both the northern 
and southern hemispheres. Commercial fisheries are conducted for them 
off California, Japan and southern Australia (Sydney to Tasmania). 
The bluefin tunas of these three regions are probably distinct species 
(Thunnus orientalis of Japanese waters, T. thynnus in the Eastern 
Pacific, and T. maccoyi in the Australian area), according to morpho- 
logical data of Godsil and Holmberg (1950), although some taxono- 
mists, for example Fraser-Brunner (1950), place them all in a single 
cosmopolitan species. In any event, it seems quite certain that the three 
groups being fished in the Pacific are quite distinct from one another. 

The bluefin of California waters is taken commercially only by 
purse seines. ‘The fishery is normally confined to the summer months, 
June to September, with best fishing in July and August when the 
schools of fish appear near the surface in waters not far from shore. 
The supply is erratic from year to year, and average total production 
is small, and highly variable, between 3 million and 22 million pounds 
in various years of the past decade. 

The Japanese fishery for bluefimn tuna is also pursued mainly in 
oceanic waters within a hundred miles or so of land, by means of nets, 
traps, and long-lines. A considerable catch is made with nets and traps 
close to the shore in certain regions. Some bluefin are, however, taken 
by long-lines, incidental to fishing for ether species, on the high seas 
many hundreds of miles from land. Available statistics on bluefin tuna 
landings in Japan indicate that there, also, the production is erratic, 
varying irregularly between 2 million and 52 million pounds in various 
years from 1936 to 1951. 

The Australian representative of the bluefin tuna, unlike that of 
the California fishery, bites readily on both trolled lures and live bait. 
According to Serventy (1941) these are small, immature fish ranging 
from 6 to 35 pounds in weight. The fishery is conducted by small ves- 
sels during the summer months in inshore waters. Presumably the 
larger, adult fish occur elsewhere. Until 1951, fishing was done by trol- 
ling only. In that year a live-bait vessel conducted fishing trials with 
some success, and in 1952 and 1953 a small fishery has been prosecuted 
using the live-bait, pole and line technique. 

It appears that the Australian fishery, which now produces only a 
few hundred tons per year, is capable of considerable expansion. 
Prospects for increased production in other areas are not possible to 


154 EIGHTH PACIFIC SCIENCE CONGRESS 


estimate at this time, in the absence of adequate information on the 
distribution and biology of fish involved. 


Yellawfin 

The yellowfin tuna (Neothunnus macropierus) is a tropical species 
occurring everywhere in Pacific equatorial waters between approx- 
imately, the surface isotherms of 18°C. It is the object of a large 
fishery on both sides of the Pacific Ocean and in the Central Pacific 
westward of the International Date Line. Considerable stocks, not now 
exploited, are known to exist in the eastern equatorial Pacific between 
the International Date Line and the presently fished seas adjacent to 
the American West Coast. 

As noted previously, the fishery for the tropical tunas began in 
California shortly after the initiation of fishing for albacore. The sea- 
sonal and erratic nature of the albacore fishery led the fishermen and 
canners to turn to the tropical yellowfin and skipjack tunas. The 
fishery began as a seasonal one in waters of Southern California and 
Northern Baja California, but the fishermen soon learned that by going 
farther south yellowfin and skipjack could be taken during a greater 
part of the year, more regularly, and in greater abundance. ‘This 
stimulated the building of large vessels which could stay at sea longer 
and range further from port. The failure of the albacore fishery in 
1926 gave strong impetus to the expansion of the tropical tuna fishery. 
By 1930 vessels were fishing regularly far down the Mexican coast, and 
beginning to venture even farther south. 

As the vessels ventured further into the tropics on longer voyages, 
problems of preserving the catch multiplied. During the 1930's ex- 
periments were made with mechanical refrigeration, and finally brine 
freezing of the fish was developed. At the same time, the vessels evolved 
into large craft of the high seas capable of operating thousands of miles 
from home on long voyages. By 1938 vessels from California ports were 
operating over the entire area from Southern California to Ecuador, 
and offshore over 200 miles. ‘The outbreak of World War II curtailed 
sharply the long range fishing, because many of the larger vessels were 
converted to military duty and various restrictions were placed on the 
operations of the remaining vessels. With the cessation of hostilities, 
however, the fleet again grew rapidly and prosecuted the fishing even 
more vigorously. The long range fishery has been extended to northern 
Peru, and provides now an even greater share of the catch than before 
the war. 

This fishery by United States vessels produces by far the major 
part, over 90%, of the catch of yellowfin, as well as of skipjack, tuna 
taken in the Eastern Pacific. Small local fisheries developed during 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 155 


the 1920’s and 1930’s in Mexico and Costa Rica. During the war, with 
' the increased demand for tuna in the United States, a local fishery was 
started in Peru for yellowfin and skipjack tunas, and this continues to be 
an important part of the Peruvian fishing industry, greatly exceeded 
in production, however, by the fishery for bonito. Recently a small 
local fishery has been initiated in Ecuador. 

The growth of the production of yellowfin tuna from the Eastern 
Pacific is illustrated in Figure 1, in which the production of skipjack 
is also depicted. These two tropical tunas are taken in the same waters 
on the same voyages. The very rapid postwar growth of the fishery is 
evident from this chart. There is evidence that the production of yel- 
lowfin is no longer increasing, but the upward trend of skipjack produc- 
tion is being maintained. 

Over 75% of the yellowfin and skipjack tunas taken in the Eastern 
Pacific are captured by means of pole and line, live bait being employed 
to chum the tunas to the vessel and to induce them to strike the lures. 
Bait fishes are several species of small fishes, mostly of the families Clu- 
peidae and Engraulidae, captured in the territorial waters of the several 
countries bordering on the Eastern Pacific. “The remainder of the catch 
is made by means of purse seines. “These methods capture only the 
surface-schooling component of the population. No commercial fishery 
has been developed for the large, old yellowfin tuna, analogous to the 
Japanese and Hawaiian long-line fisheries. 

A parallel, but geographically even more extensive, development 
of the yellowfin tuna fishery has taken place in the Western Pacific 
Ocean. Yellowfin tuna occur during the summer months in Japanese 
home waters, and for many years have been fished there by nets, long- 
lines, and pole and line, but did not contribute an important share of 
the tuna catch until the southward expansion of the 1930’s. 

Surveys by government vessels and commercial companies, about 
1931, discovered that yellowfin tuna and bigeye tuna (Parathunnus sibi) 
are distributed throughout the tropical southwest Pacific, and can be 
taken commercially in sub-surface waters of the high seas by means of 
long-lines. This led to the initiation of a commercial fishery which 
was, of course, very soon terminated by World War II. Immediately 
following the war, the Japanese fishery expanded back into this area 
as rapidly as permitted by the Occupation authorities. ‘This fishery is 
still expanding, and at the present time operates throughout the tropical 
western Pacific as far east as the Phoenix Islands and south to the Coral 
Sea, Arafura Sea and Banda Sea. This long-line fishery captures, in 
addition to yellowfin tuna, quantities of bigeye tuna, spearfishes, and 
sharks. The tunas captured by this means are mostly very large fish, 
a good deal larger than those taken at the surface. Available recent 


156 EIGHTH PACIFIC SCIENCE CONGRESS 


records of the Japauese fishery indicate that it is annually producing 
about 30 million pounds of yellowfin tuna and a similar quantity of 
bigeye tuna, with the catch increasing year by year. 

Fishing of surface schooling yellowfin tuna is not extensive in the 
western Pacific. During the 1930’s the Japanese developed a moderately 
large fishery for surface-schooling skipjack in the Caroline, Marshall, 
and Marianas Islands, employing the live-bait technique. Small quanti- 
ties of yellowfin were taken incidentally. ‘This fishery depended, of 
course, on supplies of live bait which are not extensive in the Mandated 
Islands (now the Pacific Trust Territories), and which have not been 
available to Japanese fishermen since the war. Except for local sub- 
sistence fishing by islanders of the ‘Trust Territories, and some fishing, 
mostly by means of traps, in the Philippines, the tuna fishery of the 
western tropical Pacific is almost exclusively a long-line fishery at the 
present time. 

There is also a small fishery for yellowfin tuna and bigeye tuna in 
the immediate vicinity of the Hawaiian Islands. During the summer 
months, skipjack tuna are taken by live-bait techniques from surface 
schools, and a few yellowfin are taken incidentally. The main catch 
of yellowfin, however, is made by long-lines, which capture large sub- 
surface tunas, averaging over 100 pounds each. The catch is almost 
entirely marketed for local consumption as fresh fish, and, hence, the 
volume is limited by the local market. The catch is about two million 
pounds a year, two-thirds of it being yellowfin and one-third bigeye. 

Research by the Pacific Oceanic Fishery Investigations of the U. S. 
Fish and Wildlife Service, during the past three years, has demonstrated 
that large concentrations of sub-surface yellowfin and bigeye tunas are 
to be found in equatorial waters of the Central and Eastern Pacific, 
east of the present Japanese fishery. Greatest concentrations occur 
between the equator and the southern boundary of the counter-equa- 
torial current, being associated with a zone of current convergence in 
those latitudes. Sizable surface schools have also been observed in the 
vicinity of the Line Islands and Phoenix Islands. It has also been dem- 
onstrated by various commercial explorations that surface-schooling yel- 
lowfin occur in some numbers in the Marquesas, Societies, and Tuamo- 
tus. These stocks of yellowfin are at present not fished commercially. 

It would appear that the yellowfin tuna production from the Pacific 
Ocean will continue to increase, both by expansion to presently unfished 
areas and by further increase in production from some regions now 
being fished. 

Bigeye 

The bigeye tuna, Parathunnus sibi, is fished in the same regions 

as the yellowfin tuna, and by the same gear. It constitutes an important 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 157 


part of the long-line catches, as noted above. Occurrence in surface 
schools is less frequent, so that this species is an incidental and insig- 
nificant part of the catch where surface fishing, using live bait or by 
purse seines, is the means of production. 

In the Eastern Pacific fishery along the coasts of the Americas, the 
few bigeye captured are included with the yellowfin in the catch statis- 
tics. “The exact percentage of bigeye included is not known, but exam- 
ination of landings on a sampling basis indicates it is not large, probably 
not over 2 or 3 per cent. 


Skipjack 

As indicated above (pp. 154-155) the skipjack, Katsuwonus pelamis, 
occurs in surface schools in the region of the Eastern Pacific fishery in 
the same general localities as the yellowfin. It occurs sometimes in pure 
schools and sometimes in mixed schools with yellowfin of similar size. 
It is fished both by live bait and by purse seine, just as is the yellowfin. 

The development of the fishery for yellowfin and skipjack in the 
Eastern Pacific has already been described. The growth of the skipjack 
catch is shown with that for yellowfin in Figure 1. Although both species 
have been fished since the initiation of the fishery, yellowfin has been 
the preferred species, commanding a higher price and being somewhat 
easier to preserve, particularly before the days of brine freezing. In 
consequence, the expansion to distant areas during the 1930’s was 
directed primarily at the yellowfin tuna. The postwar growth of the 
fishery has, on the other hand, depended on skipjack to an increasing 
extent. It appears that with the increasing exploitation of the yellowfin 
stock of the Eastern Pacific, and the inevitable accompanying decrease 
in catch per unit of effort, the fleet has turned increasingly to skipjack, 
the catch of which has, in recent years, risen a good deal in relation to 
that of yellowfin. 

Skipjack is the most important species in the Japanese tuna fishery, 
the landings at the present time being over 200 million pounds per year. 
This species of tuna has been an important article in the Japanese diet 
since ancient times, but its capture was confined to coastal waters unul 
introduction of powered fishing vessels early in this century. The off- 
shore fishery grew rapidly thereafter, encompassing not only Japanese 
home waters, but regions to the south to well below the equator, and 
eastward through the Mandated Islands. The fish are captured almost 
exclusively by pole and line, using live bait for chum. Negligible 
quantities are taken incidentally by long-lines. Purse seining is reported 
to have been tried experimentally in recent years. 

During the 1930's, skipjack fishing in the Caroline, Marshall, and 
Marianas Islands was rapidly developed, in spite of scarcity of live bait 


158 EIGHTH PACIFIC SCIENCE CONGRESS 


in those areas, through combined activities of government agencies and 
commercial companies, until in 1937 a peak production was ‘obtained 
amounting to 40 thousand metric tons. ‘The advent of the war, of 
course, terminated this fishery. At present it is inactive except for local 
fishing by islanders on a subsistence basis. 

A small fishery for skipjack occurs during the summer months in 
the vicinity of the Hawaiian Islands, producing, on the average, about 
9 million pounds per year. ‘The limiting factor here is the great scar- 
city of live bait which is required for the capture of skipjack. 

Essentially unexploited regions in which skipjack are known to 
occur in commercial quantities include all of Oceania and the seas to 
the north of New Zealand, the Coral Sea, and the Arafura and Banda 
Seas. In addition to problems of transportation and marketing, the 
scarcity of live bait in part of this area deters the development of 
fisheries there. 


POTENTIAL FOR FUTURE DEVELOPMENT 


From the foregoing very brief review of the Pacific tuna fisheries, 
it is evident that the several species are very unevenly exploited in dif- 
ferent parts of their range. Certain regions support rather intensive 
fisheries, while no fishing at all is done in others. 

With the demand for tuna increasing year by year, utilization of 
presently unexploited and underexploited tuna stocks may be expected 
to follow in due course, as their exploitation becomes profitable, either 
as a result of increased demand, and consequently increased price, or 
as a result of lower harvesting costs due to improved or novel fishing 
methods. Certainly the potential annual harvest from the Pacific tuna 
fisheries is a good deal larger than that being taken at the present time. 


PROBLEMS OF CONSERVATION 


Since the tuna resources throughout much of the Pacific Ocean are 
obviously not being exploited to anywhere near their maximum yield, 
problems of maintaining the supply through management are, from the 
broad viewpoint, of secondary importance at the moment, and the in- 
terests of most tuna researchers have, consequently, been centered on 
problems connected with expansion and development of the fisheries. 
The tuna stocks are not unlimited, however, and the rapid growth of 
the fisheries will inevitably bring forth in the not too distant future the 
necessity of conservation of the stocks to produce maximum yields. The 
fishery for the tropical tunas of the Eastern Pacific is already sufficiently 
intense and some of the nations having interests in that fishery have be- 
come concerned about the possibility of the approach of overfishing. 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 159 


Intensive fishing of a tuna species in one part of a large geograph- 
ical area, while it is unfished in other parts, can scarcely result in over- 
fishing if the species consists of a single large population migrating 
freely throughout the area. It may happen, however, that there are a 
number of sub-populations, so that the fishery is bearing very heavily 
on one or more of these while leaving the others untouched. {n the 
latter case, the sub-populations being fished may easily be overfished 
while the others remain untouched. 

Like much else concerning the biology and life history of the tunas, 
the degree of distinctness of the tuna populations of the several regions 
of the Pacific is imperfectly known. For the yellowfin tuna, it has been 
fairly well demonstrated by morphometric studies by Godsil and Green- 
hood (1951), Schaefer (1952) and Royce (1953) that the yellowfin 
tuna of the Eastern Pacific are distinct from those of other parts of the 
Pacific. Royce’s work shows that there are also further distinctions be- 
tween populations in other regions of the Pacific. For the albacore, on 
the other hand, morphometric comparisons of fish from the eastern and 
western north Pacific have, so far, failed to show significant differences, 
and the recent recovery off Japan of a specimen tagged off California 
tends to indicate that the North Pacific albacore may be a single large 
population. Respecting skipjack, work in progress by the author in- 
dicates that the skipjack of the region of the Eastern Pacific fishery are 
probably morphometrically different from those of Oceania. This work 
has, however, not been completed. So far as the tropical yellowfin and 
skipjack tunas of the Eastern Pacific are concerned, then, there is evi- 
dence to support the belief that they are distinct from those of the other 
regions of the Pacific, so that a very intense fishery could reach the 
point of overfishing. 

The very rapid growth of the Eastern Pacific fishery for these 
species, and the very incomplete knowledge of their biology, ecology, 
and life history, has caused concern that the fishery could become over- 
developed, with consequent overfishing of the tuna stocks of this area. 
Since most of the tuna catch is made by means of live bait, there has 
also been concern lest the populations of bait fish be overfished with 
disastrous effects on the yield of tuna. ‘This situation, obviously, re- 
quires that scientific investigations be conducted, in order to provide 
an adequate foundation of knowledge of the biology and ecology of 
the fishes concerned, and of the effect on them of the increasingly in- 
tense fishery. 

Although our knowledge of the ways of life of the tunas is small, 
certain things we do know. We know that they are creatures of the 
open sea, inhabiting the reaches of the ocean beyond the territorial 


160 EIGHTH PACIFIC SCIENCE CONGRESS 


limits of any nation. ‘They spawn in the open sea far from land, the 
juvenile stages require no littoral nursery grounds, and the adults are 
completely oceanic in their foraging. Such knowledge of their move- 
ments and aggregations as we have, indicates that they are oriented to 
the water masses and currents of the ocean rather than to any geo- 
graphical feature per se. The fisheries which harvest them are, for the 
most part, completely oceanic; nearly all of the catch is made well out- 
side the territorial limits of any nation. 


THE INTER-AMERICAN TROPICAL —TUNA COMMISSION 


Under accepted concepts of freedom of the seas, and free access to 
the resources thereof, the tunas are truly an international resource, and 
their scientific investigation and conservation is an international prob- 
lem. Being cognizant of the need for adequate knowledge of the re- 
source on which the tropical tuna fishery is based, the governments of 
the United States of America and the Republic of Costa Rica in 1950 
entered into a Convention establishing an Inter-American Tropical Tuna 
Commission having as its objectives gathering and interpretation of 
factual information to facilitate maintaining the populations of yellow- 
fin and skipjack tunas, and of other fishes taken by tuna fishing vessels 
in the Eastern Pacific Ocean, at a level which will permit maximum 
sustained catches year after year. The Convention provides for the 
subsequent adherence of any other nations having a mutual interest 
in these fish populations. 

The Commission employed a scientific staff and initiated its in- 
vestigations in January 1951. Headquarters are maintained at the 
Scripps Institution of Oceanography, with which the Commission’s staff 
works in close co-operation. A regional office at Puntarenas, Costa Rica, 
has also been established for the study of the biology and ecology of 
bait fishes. 

The scientists of the Commission have a unique opportunity to 
study the dynamics of an important commercial fishery during the 
period of its growth and development. Fortunately, suitable statistical 
and other records have been maintained to measure the changes in 
catch and abundance of the tunas during the period of greatest growth 
and development of the fishery from 1931 to the present time. ‘This 
is an unusual and most fortunate situation. Most often in the past, 
little interest has been evinced in the investigation of commercial 
marine fisheries, particularly those of an international character, until 
the fishery has become so intense that economic distress of the industry 
has demanded remedial measures. ‘This has most often been so long 
after the period of underfishing that suitable biological statistics for the 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 161 


period of early development of the fishery are fragmentary or unobtain- 
able. In the case of the tropical tunas, we have, then, a unique op- 
portunity for the study of the dynamics of a large, oceanic fishery, the 
results of which will be of far-reaching value not only to the welfare 
of the tuna fisheries, but to the knowledge of the dynamics of com- 
mercial fisheries in general. 

The investigations of the Commission have, so far, centered on the 
compilation and analysis of the records of the fishery in order to derive 
quantitative measurements of changes in the fish population in re- 
sponse to changes in intensity of fishing and catch, both currently and 
historically. For the adequate interpretation of such data, there is, of 
course, required considerable knowledge of the life histories and biology 
of the species concerned, and a fair start has been made on obtaining 
this. Knowledge of the relation of the behavior of the tunas to the 
spatial and temporal changes in the oceanic environment is also essen- 
tial to understanding of their population dynamics. Investigation of 
these matters is a costly line of research, requiring work at sea with 
large, expensive vessels. “The budget of the Commission has been in- 
adequate as yet to do as much in this direction as is desired, but, with 
the assistance of the Scripps Institution of Oceanography, the California 
State Fisheries Laboratory, and the U. S. Fish and Wildlife Service, 
a good deal of work in this direction has been gotten underway. 

Most of the investigations of the Commission are yet unready for 
announcement of results. Intermediate studies along some lines of re- 
search are, however, nearing completion and will be published in the 
near future. Scientific contributions of the Commission will be pub- 
lished in a series of Bulletins. Staff members also publish minor papers 
in standard journals. Annual progress of investigations is reported on 
to the member governments and to the public by means of publication 
of a series of Annual Reports. 


LITERATURE CITED 


FRASER-BRUNNER, A. 1950. The fishes of the family Scombridae. Ann. Mag. 
Nat. Hist., Ser. 12, vol. iii, pp. 131-163. 

GopsiIL, H. C.and E. K. HoLMBerc 1950. A comparison of the bluefin tunas, 
genus Thunnus, from New England, Australia, and California. Calif. 
Div. of Fish and Game, Fish. Bull. no. 77, 55 pp. 

GopsIL, H. C. and E. C. GREENHOOD 1951. A comparison of populations of 
yellowfin tuna, Neothunnus macropterus from the eastern and central 
Pacific. Calif. Div. of Fish and Game, Fish. Bull. no. 82, 32 pp. 

KISHINOUYE, K. 1923. Contribution to the comparative study of the so-called 
scombroid fishes. Jowr. Coll. Agriculture, Imp. Univ. Tokyo, vol. 8, 
no. 3, pp. 293-475. 


162 EIGHTH PACIFIC SCIENCE CONGRESS 


Royce, W. F. 1953. Preliminary report on a comparison of the stocks of 
yellowfin tuna. Proceedings, Indo-Pacific Fisheries Council. (in press) 

ScHAEFER, M. B. 1952. Comparison of yellowfin tuna of Hawaiian waters 
and of the American West Coast. U. S. Fish and Wildlife Service, 
Fish. Bull., vol. 52, pp. 353-378. 

SERVENTY, D. L. 1941. The Australian tunas. Australia, Coun. Set. Ind. 
Res., Pamphlet no. 104, 40 pp. 

Upa, M. and E. ToKUNAGA 1987. Fishing of Germo germo (Lacepede) in 
relation to the hydrography in the north Pacific waters. Bull. Imp. 
Soc. Sci. Fish., vol. 5, no. 5, pp. 295-3800. 


163 


DEVELOPMENT AND CONSERVATION OF TUNA FISHERIES 


YVAA 


‘ZGGT-SI6E ‘Oyloed [Rordo.y, Uleyseq oyy Wory seuny youfdrys pue uyMolfad Jo yoyeQ—T ‘dr 


ru 


2S, OS, 8b, 9b, bb, 2b, Ob, BE, IE, HE, SE, OF, BZ, 92, Hz, 22, 02, BIBI 


NISMO1N13SA 


O 
OS 
= 
001 = 
i 
Oo 
za 
Og 
oO 
nN 
00z2 
Cc 
za 
Oo 
WN 
OSz 
OO¢ 


OS 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 
By Hirosur NAKAMURA! and YosHIo HiyAMa 2 


Because the tunas and marlins fisheries are important in this coun- 
try, numerous works have been produced by our biologists over a long 
period of time, but here we shall describe some recent achievement of 
our biologists as regards these fishes. 


(1) Taxonomy 

Only a few amendments and additions have been made since Kishi- 
nouye (1923) reviewed the fishes of Thunnidae. Jordan and Evermann 
(1926) established gen. Kishinoella for Neothunnus rarus Kishinouye 
and added Neothunnus itosibi. Nakamura (1939) thought the latter 
had no difference from N. macropterus, and Serventy (1941) thought 
the former was a synonym of K. tonggol. Kamohara (1940) changed the 
name of the Japanese bluefin tuna to Thunnus thunnus Linn. and that 
of the albacore to G. alalunga. 

About Xiphiiformes, since Nakamura (1937) reviewed Istiophoridae 
and Xiphiidae of the West part of the Pacific, Hirasaka and Nakamura 
(1947) made a few amendments and additions. They established gen. 
Kajtkia for Makaira mitsukurii Jordan & Snyder, added K. formosana 
and established gen. Marlina for Makaira marlina Jordan & Hill, and 
added Eumakaira nigra N.g. n.sp. 


(2) DiIsTRIBUTION AND MIGRATION 


As most of the fishes are caught by the long line in this country, 
the method of tagging is quite difficult though so many efforts have 
been made. Now the tagging method for the pole and line fishing is 
under investigation with the cooperation of both authors. 

Therefore, our knowledge on the migration of these fishes is merely 
based on the seasonal change of the fishing grounds, about which so 
many data have piled up already. On the other hand, since Kishinouye 
(1923), so many biologists like Kimura (1941-1949), Uda (1935-52), and 
Aikawa (1933) have discussed the oceanographic conditions of the hab- 
itation of these stenothermal fish species from various points of view. 
Recently Nakamura worked out the distribution of these fish kinds by 


1 Nankai Regional Fisheries Research Laboratory, Kochi, Japan. 
2 Fisheries Institute, Faculty of Agriculture, Tokyo University, Japan. 


165 


166 EIGHTH PACIFIC SCIENCE CONGRESS 


the recent twenty-year records of Japanese Tuna fleet activities. His 
work was done mainly to see geographical distribution as regards the 
density of fish in fishing grounds throughout the seasons. To measure 
the density of fish, he used the number of certain species of fish caught 
by one hundred hooks in a long line by the records brought by com- 
mercial boats, which is a sort of average catch, catch per amount of fish- 
ing effort. Many maps showing the density distribution of each fish 
species for each month of each year and of the average of the past 
twenty years have been prepared for printing. Here a part of it is in- 
troduced as an example. 

Thunnus orientalis. Though Kishinouye (1923) thought the 
southern limit of the distribution would be 30°N, Nakamura (1936, 
’38, °43, ’49, 51) reported the existence of fishing ground from March 
to June in the Northeastern part of the South China Sea, North from 
15°N in the East of Luzon, and near Formosa and the Ryukyu Islands. 
Nakamura also thought that the fish in the East of Luzon would be in- 
dependent from the fish that appear near Tanegashima (130°E, 30°N) 
from March to December, judging from their size composition and 
sexual maturity. Beside these, Shimada (1951) reported the occurrence 
of this species in the equatorial area from June to September, and Jor- 
dan & Evermann (1926) reported its occurrence in Hawaii and in the 
U.S. Pacific coast. The northern limit reported by Isahaya (1935) is 
near 50°N in Karafuto. The amount of catch of this species by the 
Japanese fleet was near to nothing in 1940, but has been much better 
since 1950. 

Germo germo. Uda and Tokunaga (1937) thought the fish caught 
by the Japanese fleet can be divided into three groups: a small-sized 
group in coastal waters off Honshu, a medium-sized group in the grounds 
further off shore, and a large-sized group found further East from the 
former. Each ot the three groups migrates clockwise, and intermingle 
at the point near 155°E, 40°N, having its southern limit in subtropical 
convergence. From the data Nakamura compiled, he thought that al- 
though it is evident that the bigger size of fish is found in the more 
eastern grounds, it is hard to separate the group as the change is so 
continuous, and it might be caused by the economical size selection of 
fishing by the commercial boats. The fishing ground usually goes South 
during the fishing season at a speed of 2-6 miles per day, and in March 
it arrives at the Southern extremity, that is, subtropical convergence, 
and it goes back to somewhat North in April. ‘The size of the fish in the 
front line of this southward migration is usually bigger than that at 
the tail, which is found somewhere North from the former. South from 
the subtropical convergence to the equator, a large-sized group is found, 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 167 


though the density is thin. This is supposed to be the spawning group 
which came from the North, but this is not confirmed by accurate evi- 
dence. One somewhat distinct group of large-sized fish usually goes south- 
westward from October to February in a thick density, at 135°E, 12- 
25°N; but the relation with other groups is still not clear. 

Parathunnus mebachi. The previous works on the migration of 
this fish discuss mainly the oceanographic conditions of the fishing 
grounds, but Nakamura, by his density distribution maps, found the 
following facts. The two separate fishing grounds exist in this area. 
The one at about 40°N in the Northwest Pacific in September is 
stretched along the latitude line to the date line eastward, and then 
goes down South, like G. germo; but the speed is slower than that, so 
this fishing ground is always located at the North of the front of that. 
Another group of fishing grounds exists all year round at 8 to 12°N, 
a contact line of equatorial countercurrent and North equatorial cur- 
rent. These are not homogeneously stretched as a line, but form some 
isolated groups within them. He still has no definite idea on the rela- 
tionship between the two. Besides these, a fishing ground appears in 
20-25°N during a certain season. ‘The relationship of this to others is 
unknown. Kamimura (not printed) recognized the phenomenon that 
the modes in size-frequency curve differ every other year in the North- 
west Pacific. 

Neothunnus macropterus. Past works are concerned mainly with 
the oceanographic conditions of habitation, especially the temperature 
of the water. However, Nakamura by his density distribution maps 
cbserved the following facts. ‘The size of fish is generally smaller in 
the coastal area of Japan and gets larger in the grounds offshore to the 
Fast. A remarkable change of size composition is also recognized ac- 
cording to latitude in the same longitude in the same season, and the 
border lines of this change are at 3-4°N and 7-8°N, which, he thinks, 
are caused by the influence of the South equatorial current, the equa- 
torial countercurrent, and the North equatorial current. Also, he thinks 
that the different fish groups would come in and out by the influence 
of the monsoon in the seas which are surrounded by land or islands 
such as South China Sea, the Sulu Sea, the Celebes Sea, the Banda Sea 
and others. The same fact would be supposed to exist at the coastal 
waters off Timor, the Small Sundas and other equatorial areas in the 
Pacific. Before Nakamura’s work it was believed that most condensed 
grounds are in the equatorial countercurrent, but he thinks it would 
be somewhere South from the contacting area of the equatorial counter- 
current and the South equatorial current. 


168 EIGHTH PACIFIC SCIENCE CONGRESS 


Hiyama wants to add, seeing Nakamura’s distribution maps, that 
this species has less tendency of southward migration shown in the fore- 
going two species, and that the thick distribution is found in the area 
more influenced by the coast, or by the existence of islands or lands. 
Hiyama and colleagues are now working on the morphometry of the 
above-mentioned four species after the method used by U.S. biologists, 
but it is still too early to report the results. 

Neothunnus rarus. As the catch by the Japanese fleet is not enough 
to indicate the distribution and migration, the only fact that Nakamura 
can see is that this species is distributed in the area near the Indo- 
Australian Archipelago, with its northern limit at the Ryukyu Islands. 

Istiophoridae. Tetrapturus angustirostris has remarkable oceanic 
character in general and is thinly distributed in the tropical and sub- 
tropical area. A thick fishing ground appears usually off the east coast 
ef Formosa from November to January. 

Istiophorus orientalis has wide distribution in the West Pacific, 
having a rather coastal character. ‘The center of the distribution is 
thought to be in the Indo-Australian Archipelago, and its northern 
limit is in the North polar front. From May to August a thick fishing 
ground appears near the Philippines and Formosa. Kajikia mitsukuriz 
has more oceanic character than the former, and has also a wide dis- 
tribution extending to the North Pacific, with its center at subtropical 
convergence. ‘The dense fishing grounds appear at 30-40°N in autumn, 
and moves south in October. And from March to June the dense 
group of the grounds appears in 20-30°N. After K. mitsuwkurit went 
down south, fishing grounds in 30-40°N are occupied by X7phias gladius. 
The distribution of K. formosana is not yet well known. Eumakaira 
nigra has a remarkable oceanic character, distributed in tropical and 
subtropical area. ‘This species has its distribution range south of that 
of K. mitsukuri. ‘This shows a northward migration from May to 
July, with its northern limit at subtropical convergence, and reaches to 
20-26°N zone nearly one month later than K. mitsukuri. ‘The female 
of this species is always bigger than the male. The latter rarely exceeds 
100 kgm. in weight, so the size composition of the catch should be con- 
sidered based upon the sex ratio of it. Marlina marlina is confined 
within the coastal area of the Indo-Australian Archipelago, as already 
indicated. ‘This also has a size difference between the sexes, the male 
rarely exceeding 120 kgm. Xzphias gladius is thought to have world- 
wide distribution, but in the Northwest Pacific the dense distribution 
is recognized by Nakamura at the North from subtropical convergence 
beyond 43°N. In August a good fishing ground is usually formed in 
150-155°E, 40-43°N, which moves south thereafter, just like Germo 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 169 


germo, down to the east of Bonin Island in March, and fades away. 
Nakamura and others (1951) think that the spawning ground of this 
fish would be in the South from subiropical convergence, because they 
found sc many juveniles of this in this area. 


(3) SPAWNING HABIT 

In general, Nakamura thinks these oceanic fishes have a long spawn- 
ing season, sometimes almost all year round, and have their spawning 
grounds widely distributed throughout tropical and subtropical, and 
sometimes even in temperate zones in the Pacific, based upon the recent 
data of collection of eggs and juveniles of these fish kinds, done inten- 
sively by Japanese research vessels. Regarding the spawning grounds 
of Katsuwonus pelamis, many biologists, such as Schaefer & Marr 
(1948), Shimada (1951), and Wade (1950, 1951) reported juveniles 
from various parts in the Pacific. Yabe (unpublished) got ten indi- 
viduals of 5 to 10 mm. long juveniles of this species from the collection 
of our research vessels during 1947 to 1952 from near Ryukyu, off Hon- 
shu and in Micronesia in April to September. Suda (unpublished) 
found large numbers of juveniles from stomach contents of tunas and 
marlins caught from various parts of the Pacific, and found evidence 
that the smaller (5 to 20 mm. long) juveniles are obtained from the 
area south from subtropical convergence, and the larger ones (over 20 
mm. long) were found in the area to the north. About Thunnus ori- 
entalis, Kishinouye (1923) thought that this would spawn in June 
and July in the area off Honshu, but later Kawana (1935) reported its 
spawning in the Japan Sea, and Nakamura (1938, 1939) found the 
ripened ovarium in the fish caught near the Philippines from the middle 
of April through the middle of May. About Germo germo, Watanabe 
(1939) reported that he obtained the ripened ovarium in the fish caught 
near Midway Island, and Schaefer (1948) and Brock (1943) got some 
idea on this matter. The data obtained by Japanese research boats are 
now under investigation. About Parathunnus mebachi, Shimada (1951) - 
found ripened ova in the fish caught from the area 143-160°E, 1-10°N 
from June to September, and thought that the spawning season might 
continue later than this period. Recently biologists on board the re- 
search boat of Nankai Regional Fisheries Laboratory succeeded in the 
artificial fertilization of this fish in the equatorial region. About N. 
macropterus, Nakamura (1939, ’43, ’49, °51) reported that he found 
ripened ova in the fishes caught in the South China Sea from March 
to May. Wade (1950) thought the season near the Philippines was 
from May to August, and afterwards he obtained the juveniles (9.4—37.5 
mm. long) and could assure both the locality and the season. Shimada 


170 EIGHTH PACIFIC SCIENCE CONGRESS 


(1951) found spent fishes in the area 150-200 miles northwest off Ka- 
pingamarangi Island at the beginning of August. Schaefer (1948) and 
Schaefer & Marr (1948) found juveniles in Central America from 
January to May. About N. rarus we have nothing to add to Delsman 
& Hardenberg (1934) and Serventy (1942). 

About Tetrapterus angustirostris, Nakamura (1937, °38) found 
ripened ova in the fish caught east of Formosa and thought this would 
spawn in November and December in this area. About Istiophorus 
orientalis, Nakamura (1932) reported in December the ripened ovarium 
in the fish caught from Molucca Strait. And later he (1938, ’42, ’43) 
also found ripened ova and juveniles and witnessed the spawning be- 
haviour near Hainan Island, near Formosa and east of Luzon Island 
from April to September. Near Japan so many juveniles were found 
since Uchida (1937). Also, recently Nakamura and his stafi obtained 
so many juveniles from tropical areas such as Micronesia from June to 
September. However, they have some difficulty identifying these as 
this species, because the difference from E. nigra is not assured in juve- 
niles yet, and the latter species matures and grows abundant in the area 
in this season. About Kajikia mitsukuri, Nakamura found ripened 
ovarium as usual from April to May near Formosa, and thought that 
this also spawns in the same season around Bonin Island. Recently 
Nakamura and his staff found ripened ovaria in the fishes caught from 
the equatorial area from June to September. About Eumakaira nigra, 
Nakamura (1938, ’42, ’49) found ripened ovaria of fish caught east of 
Luzon Island, and thought this would spawn from April to August near 
Luzon and Formosa. Recently he and his staff found another spawning 
ground near Bonin Island in the same season, and in the equatorial 
area of the Pacific they also found grown-up fishes from June to October. 
About the above-mentioned four species Nakamura (1944) found the 
seasonal change of both size composition and sex ratio, which changes 
remarkably after the spawning season. The juveniles of Xiphias gladius 
in the Atlantic Ocean have been reported already. About that in the 
Pacific, Yabe (1951), Nakamura and others (1951) reported 11-35 mm.- 
long young, and there were plenty of larger young found in the stomach 
contents of tunas and marlins. 


(4) AcE AND GROWTH 


The age determination of these groups of fishes has been made by 
counting the number of rings in the centrum of the vertebrae. Aikawa 
(1937) reported the growth of K. pelamis by this method and size 
composition of the catch. Afterwards Aikawa and Kato (1938) worked 
on the growth of G. germo, N. macropterus and T. orientalis by the 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 171 


same method. Ban (1941), Higashi (1941), Ikebe (1939, ’40, ’41) re- 
ported the growth of K. pelamis, N. macropterus, P. mebachi, G. germo 
by the method of size composition of the catch. Kimura (1932, ’35) 
worked on the same problem about T. orientalis and N. macropterus, 
by the seasonal change of size of catch in the Izu Region. Recently 
Moore (1951) reported that of N. macropterus near Hawaii. ‘The 
growth rates obtained by these workers have big differences from each 
other. For example, about that of N. macropterus a big difference 
exists between Aikawa & Kato, Kimura and Moore. ‘To examine the 
numerous samples to get the accurate age composition of population, 
instead of size composition, the centrum reading method is inconven- 
ient. So now the scale reading method is going to be established by 
Hiyama, as the scale samples can be collected easily from numerous 
specimens before the fish is dissected. It is already affirmed by him that 
the ring in the scale is formed once a year during a certain long season. 
It will be published in the near future, and now the age determination 
by this method is going on to get the age composition of the catch. 


(5) Frepinc Hasir 


Many reports have already been published on the stomach contents 
of these fishes, but many of them are fragmental and not enough to 
see the relationship between foods and migration. Nakamura (1936) 
noticed the difference of the stomach content of N. macropterus in the 
Celebes Sea between the fish caught during the Northeast wind season 
and that caught during the Southwest wind season, and by this. he 
guessed the seasonal change of the fauna in this region. Suyehiro (1936) 
reported the stomach contents of K. pelamis and he also (1938) re- 
ported that of N. macropterus, P. sibi, and T. orientalis. A group 
of biologists with us are now working systematically on the stomach 
contents of these fishes, but the results are not ready for publication. 
In general, these carnivorous oceanic fishes have less tendency to be 
selective as to food, as so many various fishes may be found in their 
stomachs, sometimes including the garbage of vegetables thrown out 
from boats. Marlins are generally taking larger fish having greater 
swimming power than tunas. And the latter, though variation accord- 
ing to species is shown, generally has a tendency of a plankton feeder 
in any degree, and it is most conspicuous at G. germo. With reference 
to fishing, the reason why some school of tunas would not take the bait 
was investigated by Suyehiro (1938) and others. 


LITERATURE CITED 


AIKAWA, H., 1933. Fishery conditions on the Pacific coast for skipjack, tuna, 
and sauries. Proc. Sci. Fish. Assoc., vol. 5, No. 4, pp. 354-869. (Jap.) 


172 EIGHTH PACIFIC SCIENCE CONGRESS 


ArkAwa, H., 1937. Notes on the schools of bonito along the Pacific Coast 
of Japan. Bull. Japanese Soc. Sci. Fish., vol. 6, No. 1, pp. 18-21. (Jap.) 

—_———. and M. Karo, 1938. Age determination of fish. 1. Bull. Jap. 
Soc. Sci. Fish., vol. 7, No. 2, pp. 79-88. (Jap.) 

BAN, Y., 1941. Search for southern tuna fishing grounds. South Sea Fish., 
vol. 7, No. 9, pp. 10-21. (Jap.) 

Brock, V. E., 1943. Contribution to the biology of the albacore (Germo 
alalunga) of the Oregon Coast and other parts of the North Pacific. 
Stanford Ichth. Buli., vol 2, No. 6, pp. 199-248. 

DELSMAN, H. C. and J. G. F. HARDENBURG, 1934. De Indische zeevischen en 
zeevischerij. Biblio. Nederland. Ind. Nat. Ver., No. 6, pp. 330-343. 
GopsIL, H. C., 1948. A preliminary population study of the yellowfin tuna 
and the albacore. California Div. Fish and Game, Fish. Bull. No. 70, 

90 pp. 

-- 1949. A progress report on the tuna investigations. California 

Fish and Game, vol. 35, No. 1, pp. 5-9. 

and E. C. GREENHOOD, 1951. A comparison of the population of 
yellowfin tuna, Neothunnus macropterus, from the eastern and Central 
Pacific. California Div. Fish and Game, Fish. Bull. No. 82. 

HicasHl, H., 1941. Utilization of fishery by-products from the South Sea. 
(10). South Sea Fish., vol. 7, No. 3, pp. 36-438. (Jap.) 

IKEBE, K., 1939. On the age of yellowfin tuna taken in Palau waters. South 
Sea Fish News, vol. 3, No. 10, pp. 4-8. (Jap.) 

, 1940a. Age and measurements of tunas in Palau waters. Ibid., 
vol. 4, No. 1, pp. 2-4. (Jap.) 

, 1940b. Measurement of yellowfin tuna taken south of the Mar- 
shall Islands. Tbid., vol. 4, No. 2, pp. 2-5. (Jap.) 

, 1940c. Measurement of albacore and yellowfin tuna taken in 
Saipan waters. Ibid., vol. 4, No. 5, pp. 68-67. (Jap.) 

, 1941a. Measurement of yellowfin tuna from the Equatorial] Coun- 
ter Current area. Ibid., vol. 5, No. 3, pp. 5-13. (Jap.) 

, 1941b. A contribution to the study of tuna spawning grounds. 
Ibid., vol. 5, No. 4, pp. 9-12. (Jap.) 

JORDAN, D. S. and B. W. EvERMANN, 1926. A review of the giant mackerel- 
like fishes, tunnies, spearfishes and swordfishes. Occ. Paper California 
Acad. Sci. XII. 

and J. O. SNYDER, 1901. Description of nine new species of fishes 
contained in Museum of Japan. Jour. Coll. Sci. Imp. Univ. Tokyo, XV., 
po. 801-311. 

HrIrASAKA, K. and H. NAKAMURA, 1947. On the Formosa spear-fishes. Bull. 
Oceanogr. Taiwan, No. 8, pp. 9-24. 

ISAHAYA, T., 1986. On the bluefin tuna in the adjacent waters of Karafuto. 
Hokkaido Suishi Jumpo. (Jap.) 

KANAWA, T., 1935. Bluefin tuna spawns in the Japan Sea. Swisan Kenkyu- 
shi. 380, pp. 284-286. (Jap.) 

KAMOHARA, T., 1940. Fauna Nipponica, vol. XV, Fas. II, No. V. (Jap.) 

KimurA, K., 1932. Growth curves of bluefin tuna and yellowfin tuna based 
on the catches near Shigedera, on the west coast of Prov. Idu. Bull. 
Japanese Soc. Sci. Fish., vol. 1, No. 1, pp. 1-4. (Jap.) 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 173 


KimurA, K., 1935. Statistical analysis of the catch by deddle nets, along the 
coast of Suruga Bay. Rec. Oceanogr. Works, vol. 7, No. 1, pp. 1-36. (Jap.) 

, 1941. Skipjack fishing. Fish. Technol. Lect. Ser., No. 4, 36 pp. 

—-—————., 1942a. Tuna and spearfish fishing conditions. JIbid., No. 5, 122 
pp. (Jap.) 

, 1942b. Oceanic resources: Offshore fisheries. Sci. Sea, vol. 2, 
No. 3, pp. 142-147. (Jap.) 

, 1949. Atlas of skipjack fishing grounds, with data on the al- 
bacore grounds. Kuroshio-shobo. Tokyo. 

KISHINOUYE, K., 1919. The larval and juvenile stages of the Plecostei. Proc. 
Sci. Fish. Assoc., vol. 8, No. 2, pp. 49-53. (Jap.) 

, 19238. Contribution to the comparative study of the so-called 
scombroid fishes. Jour. Coll. Agri., Imp. Univ. Tokyo, vol. 8, No. 3, 
pp. 293-475. 

Moors, H. L., 1951. Estimation of age and growth of yellowfin tuna (Neo- 
thunnus macropterus) in Hawaiian waters by size frequencies. U. S. 
Fish and Wildlife Serv., Fish. Bull. 65, pp. 133-149. 

NAKAMURA, H. 1932. On the ripe ovarian ova of the sailfish (Istiophorus 
orientalis). Zool. Mag., vol. 44, pp. 272-283. (Jap.) 

, 1935. On the intersexuality of the skipjack (Katsuwonus pe- 
lamis.) Trans. Nat. Hist. Soc. Formosa., vol. 25, No. 141, pp. 197-198. 
(Jap.) 

, 1936. On the feeding habit of yellowfin tuna (Neothunnus ma- 
cropterus) from the Celebes Sea. Ibid., vol. 28, No. 148, pp. 1-8. (Jap.) 

, 1938. Preliminary report on the habits of the black tuna (Thun- 
nus orientalis). Zool. Mag., vol. 50, No. 5, pp. 279-281. (Jap.) 

, 1939a. Notes on the differences between Neothunnus macropte- 
rus and Neothunnus itosibi. Formosan Fish. Mag. No. 288, pp. 27-32. 
(Jap.) 

, 1939b. Report on the investigation of Thunnidae from Formosan 
waters. Formosa Gov.-Gen. Fish. Exp. Sta. Publ. No. 18, pp. 1-15. (Jap.) 

, 1943. Tunas and marlins. Sci. Sea., vol. 8, No. 10, pp. 445-459. 


(Jap.) 

, 1949. Tunas and tuna fishing. Takeuchi-shobo, Tokyo. (Jap.) 
, 1951. A review of the tuna fishing ground based on past in- 

vestigations. Rept. Nankai Regional Fisheries Research Lab. No. 1, 

(With appendix charts). (Jap.) 

, Studies on the fishes of the family Istiophoridae, in the adjacent 

Seas of Formosa. (Jap.) 

1. 1987a. Habits of the fishes of the family Istiophoridae in the Seas of 
Formosa. Especially on Furai-kajiki (Tetrapturus angustirostris) 
Zool. Mag., vol. 49, pp. 233-238. 

2. 1937b. Report on the investigation of marlins and swordfishes from 
Formosan Waters. Rept. Formosan Gov.-Gen. Fish. Exp. Sta. No. 
105-84 pp: 

3. 1938. On the spawning habit of Kuro-kajiki (Wakaira mazara). Zool. 

Mag., vol. 50. 

4. 1940. On the spawning habit of the sailfish (Istiophorus orientalis). 
Tbid., vol. 52. 


174 EIGHTH PACIFIC SCIENCE CONGRESS 


5. 1941. On the body temperature of some fishes of the family Thunni- 
dae and Istiophoridae. Proc. Sci. Fish. Assoc., vol. 8, Nos. 3 and 4, 
pp. 256-268. 

6. 1942. Habits of the marlins observed in the adjacent seas of For- 

mosa. Ibid., vol. 8. 

7, 1944a. Sexual differences of the sizes of the fishes of the family 

Istiophoridae. Nat. Hist. Formosa., vol. 35, Aug. 

8. 1944b. Seasonal differences of the sizes of the fishes of the family 

Istiophoridae. 

a. Kurokajiki Makaira mazara. Ibid., vol. 35, Oct. 
9. 1944c. Seasonal differences of the sizes of the fishes of the family 

Istiophoridae. 

b. Shirokajiki Makaira marlina. 
c. Other marlins. Jbid., vol. 35, Dec. 

NAKAMURA, H. and others, 1951. Note on the life history of the swordfish 
Xiphias gladius. Jap. Jour. Ichth., vol. 1, No. 4, pp. 264-271. (Jap.) 
ScHAEFER, M. B., 1948a. Morphometric characteristics and relative growth 
of yellowfin tuna (Neothunnus macropterus) from Central America. 

Pacific Sci., vol. 2, No. 2, pp. 114-120. 

, 1948b. Size composition of catches of yellowfin tuna (Neothun- 
nus macropterus) from Central America, and their significance in the 
determination of growth, age and shoaling habits. U.S. Fish and Wild- 
life Serv. Fish. Bull., vol. 51, No. 44, pp. 197-220. 

, 1948e. Spawning of Pacific tunas and its implications to the 
welfare of the Pacific tuna fisheries. Trans. 13th North Amer. Wildlife 
Conf., pp. 366-371. 

—-——— and J. C. Marr, 1948a. Spawning of yellowfin tuna (Neothun- 
nus macropterus) and skipjack (Katsuwonus pelamis) in the Pacific 
Ocean off Central America with description of juveniles. Jbid., vol. 51, 
No. 44, pp. 187-195. 

SERVENTY, D. L., 1941. The Australian tunas. Couneil Sci. Indust. Res., 
Australia, Pamphlet No. 104, pp. 1-48. 

, 1942. Notes on the economics of the northern tuna (Kishinoella 
tonggol). Jour. Council Sci. and Indust. Res. Australia, vol. 15, No. 2, 
pp. 94-100. 

SHIMAD, B. M., 195la. Juvenile oceanic skipjack from the Phoenix Islands. 
U. S. Fish and Wildlife Serv., Fish. Bull. 64, pp. 129-131. 

---__—__—.,, 1948b. Contribution to the biology of tunas from the Western 
Equatorial Pacific. Jbid., Fish. Bull. 62, pp. 111-119. 

Supa, A., 1953. Juvenile skipjack from the stomach contents of tunas and 
marlins. (not issued) (Jap.) 

SUYEHIRO, Y., 1936. The reason why the bonito does not take baits. Fish. 
Invest. (Suppl. Rpt.) Imp. Fish. Expt. Sta., No. 3, Paper No. 31, 
pp. 14-16. (Jap.) 

, 1938. The study of finding the reason why the bonito does not 
take to the angling-baits. Jour. Imp. Fish. Expt. Sta., No. 9, Paper 
No. 69, pp. 87-101. (Jap.) 

TAUCHI, M., 1940a. On the stock of Thunnus orientalis (T. & S.). Bull. Jap. 
Soc. Sci. Fish., vol. 9, No. 4, pp. 183-185. (Jap.) 

, 1940b. On the stock of Neothunnus macropterus (T. & S.). 
Ibid., vol. 9, No. 4, pp. 136-188. (Jap.) 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 175 


TaucHI, M., 1940c. On the stock of Germo germo (Lacepede). I[bid., vol. 9, 
No. 4, pp. 139-141. (Jap.) 

, 1941. On the stock of Huthynnus vagans (L.). Bull. Jap. Soc. 
Sci. Fish., vol. 11, Nos. 5 and 6, pp. 179-183. (Jap.) 

Upa, M., 1935a. On the estimation of favourable temperature for longline 
fishing of tunny. Bull. Jap. Soc. Sci. Fish., vol. 4, No. 1, pp. 61-65. (Jap.) 

, 1935b. The result of simultaneous oceanographical investigations 
in the North Pacific Ocean adjacent to Japan made in August 1933. 
Jour. Imp. Fish. Expt. Sta., No. 6, Paper No. 48, pp. 1-180. (Jap.) 

, 1936. Locality of fishing center and shoals of “katuo” Euthyn- 
nus vagans (Lesson) correlated with the contact zone of cold and warm 
currents. Bull. Jap. Soe. Sci. Fish., vol. 4, No. 6, pp. 385-390. (Jap.) 

, 1938. Correlation of the catch of “katuo” in the waters adjacent 
to Japan. Ibid., vol. 7, No. 2, pp. 75-78. (Jap.) 

, 1939. On the characteristics of the frequency curve for the 
catch of “katuo” Euthynnus vagans (Lesson) referred to the water 
temperature. JIbid., vol. 8, No. 4, pp. 169-172. (Jap.) 

, 1940b. A note on the fisheries condition of “katuo” as a function 
of several oceanographic factors. Ibid., vol. 9, No. 4, pp. 145-148. (Jap.) 

, 1940c. On the recent anomalous hydrographical conditions of 
the Kuroshio in the south waters off Japan proper in relation to fisheries. 
Jour. Imp. Fish. Expt. Sta., No. 10, Paper No. 74, pp. 231-278. (Jap.) 

, The body-temperature and the bodily feature of “katuo” and 
“samma.” Bull. Jap. Soc. Sci. Fish., vol. 9, No. 6, pp. 231-236. (Jap.) 

, 1952. On the relation between the variation of the important 
fisheries condition and the oceanographical condition in the adjacent 
waters of Japan. Jour. Tokyo Univ. Fish., vol. 38, No. 3. 

and E. ToKUNAGA, 1937. Fishing of Germo germo in relation 

to the Hydrography in the North Pacific waters. Bull. Jap. Sec. Sev. 
Fish., vol. 5, No. 5, pp. 295-300. (Jap.) 

Ucuipa, K., 1937. Kagaku (Science), vol. 7, pp. 540-546, 591-595. (Jap.) 

WADE, C. C., 1950. Juvenile forms of Neothunnus macropterus, Katsuwonus 
pelamis and Euthynnus yaito from Philippine seas. U.S. Fish and Wild- 
life Serv., Fish. Bull. No. 58, pp. 395-404. 

-——_———, 1951. Larvae of tuna and tuna-like fishes from Philippine 
waters. Ibid., Fish. Bull. 57, pp. 445-485. 

YaABE, H., 1951. Juvenile swordfish, Xiphias gladius. Jap. Jour. Ichth., vol. 
1, No. 4, pp. 260-263. (Jap.) 


rie aa Bt Liv a 


eee) Tay meter 


\ 
Geil eae ous ate 
: mY, 1 ay . 
’ ; h ae ah i f ee 
. rite ; 7 4 ‘ 4 ‘e 
H " “t 
’ Lice 
; Hees Tee Pe ‘oy 
a DE Lain ne i 
ri als Vin Gaeta tie Rae ' ha he oni a 
Ww ’ o a f M y n k 
a . , > ASO ee ov Wier * AK Z jee Bg a ta ‘s ri es Be ™ cong ae 
y . 29! Sil ae ; ux bs iy 
od sar : CM eee eG ee sind oe a 
I vf 


a Si ; { Oh Vy waa ge a) ig Ligh) - _ 
Lay r TS, WEA: sat V'< da ane ie 
Liss : hg ; yy 156, 2 AR 1 ren, ; 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN 177 


ee 
LEE 


Co 
= = ae = * 


a cnet es eg emt 


178 EIGHTH PACIFIC SCIENCE CONGRESS 


an 


co 


pet 


eye eee IG Oe 
seteaperouae: 


egepees 
ee 


8 
eae pee 


AGC ie Bh 
pera 
8 ih Fas 
LAB OH 
PA 


tae 
IS CET 
ae 


Res 
Weane 


—& 


RECENT STUDIES ON TUNAS AND MARLINS IN JAPAN lg) 


180 EIGHTH PACIFIC SCIENCE CONGRESS 


4 RS a: 


181 
LEAD SEER OT 
pare rrr tics 


pares 


yr eas 
ae 
nt 


= 


prea 


wie 


ee eee 
FSS 


Soe teay, 


ss) 


eee 
tics 


Be ig eee 


Z 
<< 
Ay 
x 
> 
Va 
— 
op) 
a 
4 
fata} 
aH 
= 
a 
a 
< 
wm 
= 
Z 
=) 
isa 
Zz 
oe) 
wy 
e 
_ 
=) 
=) 
i= 
c2 
Bi 
4 
& 
S 
os 


EIGHTH PACIFIC SCIENCE CONGRESS 


182 


ARE THE WORLD-WIDE DECLINES IN SARDINE 
CATCHES RELATED?:* 


By Joun C. Marr and James E. BOHLKE 
South Pacific Fishery Investigations, U.S. Fish and Wildlife Service 
450-B Jordan Hall, Stanford, California, U.S.A. 


Large fluctuations in the catches of marine fishes, especially pelagic 
species, have long been known and may, in a sense, be considered to 
have given the original and major impetus to the birth and growth of 
the science of fishery biology. Indeed, such fluctuations have been 
observed to occur in so many different species and areas that one might 
suppose them to be a characteristic feature of the great fisheries. It is 
significant, however, that fishery biologists are not in general agreement 
as to the causes of these fluctuations. 

Recently there have been major declines in the catches of some of 
the sardines; declines which have caused great economic hardship and 
have, at least in one instance, resulted in a greatly expanded research 
effort (Anonymous, 1950). We refer especially to the Japanese land- 
ings of Sardinops melanosticta, the North American landings of S. caeru- 
lea, and the Portuguese landings of Sardina pilchardus. ‘These landings 
are shown in Figure 1. 

The North American data include landings in Canada and the 
United States. Relatively small landings made in Mexico are also in- 
cluded since 1940. It has been demonstrated (Schaefer, Sette and Marr, 
1951) that from the inception of the fishery until 1942, the growth 
of the fishery, as shown by the annual catches, followed a logistic curve 
characteristic of the growth of many industries. Some of the deviations 
about the curve are clearly related to economic conditions; the eco- 
nomic depression of the early 1930's, for example, is reflected in the 
reduced catches during that period. From 1934 until 1944 the annual 
catch fluctuated around an average of about 550,000 metric tons. Fol- 
lowing 1944 the catches have declined, in some seasons catastrophically 
so, but with a short-lived partial recovery in 1949 and 1950. The basic 
causes of this decline have not been completely elucidated, but the 
major immediate causes include a series of smaller than average year- 
classes and a probable shift in the distribution or migratory behavior 
of the fish; the relation of an intensive fishery to these factors has not 


* Published by permission of the Director, U.S. Fish and Wildlife Service. 


183 


184 EIGHTH PACIFIC SCIENCE CONGRESS 


been determined to the satisfaction of all concerned (California Marine 
Research Committee, in press). 

The Japanese data include only the landings made in the Japanese 
islands; they do not include landings in continental Asia. In some 
years the latter were as large or larger than the Japanese landings. In 
addition, it is not certain that the data include all Japanese landings, 
nor that they refer entirely to the sardine. Nevertheless, and on a big- 
ger scale, the curve of annual catches in the Japanese fishery is remark- 
ably similar to that of the North American fishery. The peak catch 
was obtained in the same year, but the decline started about two years 
earlier. In 1951 there was a partial recovery. 

The Portuguese data include only the landings made in poral 
Obviously this fishery has never attained the magnitude of the other 
two. Properly, this curve should include the catches of Sardina pilchar- 
dus landed in all European and North African countries, but these data 
are not available to us at the moment. The Portuguese landings are 
therefore used as an example of the northeastern Atlantic sardine catch- 
es. There is a peak, although not a pronounced one, in the Portuguese 
catches occurring at about the same time as in the other two fisheries. 
There is a decline occurring slightly later than in the North American 
fishery. We understand that more recent seasons have shown a recovery 
of the Portuguese fishery, but have thus far been unable to secure exact 
data. : 

These same catch data are also shown in Figure 2, but here, for 
each fishery, the catch in each year has been expressed as a percentage 
of the largest annual catch made in that fishery during the period re- 
ported. This shows the relative fluctuations in the three fisheries with- 
out respect to their absolute magnitudes. ‘The similarities already men- 
tioned are even more strikingly shown in this figure, especially the rela- 
tive magnitudes of the declines in catches and their close relation in 
time, even though not simultaneous. 

It is often inferred that when the catch of a particular species be- 
comes less, the absolute size of the population is also reduced. This 
is not necessarily true and it should be remembered that the data just 
presented refer only to catches. The relation of these catches to the 
size of the populations from which they were drawn is not known. 

The reasons for a major decline in catch in any fishery must be 
found among one or more of the following: (1) a decrease in the amount 
of fishing effort expended per unit of time; (2) an increase in the 
rate of natural mortality; (3) a decrease in the rate of recruitment 
(i.e., a decrease in year-class size); or (4) a decrease in the availability 
of the fish to the fishery, through a change in behavior or distribution. 


WORLD-WIDE DECLINES IN SARDINE CATCHES 185 


For the three sardine fisheries mentioned, we may safely rule out (1) as 
a cause of the decline in the catches (barring war-caused interruptions 
in fishing); one or more of the other three must be responsible. 

In order to examine the possibility of the other causes being oper- 
ative, various types of information are needed. In the case of natural 
mortality rates, some estimates have been made, but they are not very 
precise. In addition, for sardines, or practically any marine fish for that 
matter, we have only general ideas about the various sources of natural 
mortality and practically no ideas about how they operate. In any case, 
they are not subject to modification by man, except as fishing mortality 
may replace natural mortality. 

Variations in rate of recruitment are probably one of the two major 
causes of fluctuations in catch (the other being variations in availabil- 
ity). Here again, we have only general ideas about the natural causes 
of variation in year-class size and how these causes operate. So far as all 
present evidence goes, such variations are natural. However, in theory 
at least, the size of the spawning stock could influence the size of the 
resulting year-classes. If the theory holds, Man could control year-class 
size by controlling stock size, but this remains to be demonstrated in 
practice. Data on relative year-class sizes as they appear in the catches 
are of record, at least for the North American sardine fishery. What 
we need, however, are data on year-class sizes as they exist in the popu- 
lation. 

Variations in the availability of fish to the fishery are, as indicated, 
a major cause of fluctuations in catch. Accurate availability data are 
extremely difficult to obtain and, in general, availability phenomena 
are among the least understood in the field of fishery biology. For most 
marine fisheries, however, it is difficult to see how they could be any- 
thing but natural and not subject to control by Man. 

So, the problem of the causes of these declines falls into two major 
divisions: (1) What are the effects of Man’s activities and how do these 
operate, and (2) What are the effects of natural phenomena and how 
do these operate? Solution of these two sets of problems will require 
not only additional observation, but also the development and testing 
of theory. 

Returning to our original question, if the declines in catches of 
sardines were caused solely by Man, then the declines are indeed re- 
lated. Such a relationship is not within the province of the fishery bi- 
ologist, although the mechanics of its operation obviously must be. 

On the other hand, if the declines are natural ones, how could they 
be related? Such relationship could only be through a pandemic, which 
has greatly increased the rate of natural mortality and for which, inci- 
dentally, there is not much evidence, or, through some rather world- 


186 EIGHTH PACIFIC SCIENCE CONGRESS 


wide meteorological or oceanographic change. The latter possibility 
has, in fact, already been suggested by Nair and Chidambaram (1951) 
and by Uda (1952). 

With the data at hand, it is not possible now to answer the ques- 
tion posed by our title. Before the answer is attained, some, at least, 
of the problems need to be more clearly formulated; data need to be 
assembled, some of which are published in relatively obscure sources 
or are not published at all; plans need to be laid and implemented; 
and, finally, means must be found to promote greater exchange of ob- 
servations and ideas among fishery biologists and oceanographers who 
face these common problems. All of these objectives might be best 
attained through the medium of international conferences. 


LITERATURE CITED 


Anonymous, 1950. Research projects examine fluctuating sardine popula- 
tions. FAO, Fish. Bull., vol. III, no. 3, pp. 56-8. 

California Marine Research Committee. In Press. Progress Report, 1 July 
1952 to 30 June 1953. 

Narr, R. VEDAPPAN and K. CHIDAMBARAM. 1951. A review of the Indian 
oil sardine fishery. Proc. Nat. Inst. Sci. India, vol. XVII, no. 1, pp. 71- 
85, 2 figs. 

SCHAEFER, MILNER B., Oscar E. SETTE, and JOHN C. Marr. 1951. Growth 
of the Pacific Coast pilchard fishery to 1942. U.S. Fish and Wildlife 
Service, Res. Rept. 29, 31 pp., 6 figs. 

UpA, MICHITAKA. 1952. On the relation between the variation of the im- 
portant fisheries conditions and the oceanographical conditions in the 
adjacent waters of Japan 1. Jour. Tokyo Univ. Fish., vol. 38, no. 3, pp. 
363-389, 11 figs. 


THOUSANDS OF METRIC TONS 


WORLD-WIDE DECLINES IN SARDINE CATCHES 187 


1,600 
1.500 
1,400} 
1,300 } 
1,200} 
1,100 / \ 
babel 

900 

800 

700 1 
660 ‘ 
500 1 
4350 ry PMA 


fs 
300 } hea Wy 


100 


Sy SR eV | ! kine fas l 
19iD (915 i920 [225 1939 1935 1940 1945 1950 


Fic. 1.—Total sardine catches for the United States (- ), Japan 
(----- ), and Portugal (— ). Data obtained from the following sources: 
United States-Calif. Fish and Game, vol. 34, no. 2, p. 83 (1948) and unpub- 
lished information; Japan-U.S. Fish and Wildlife Service Fishery Leaflet 
279, p. 83 (1948), and from personal communication from Dr. N. Nakai of 
the Tokai Regional Fish. Res. Lab.; Portugal-Bull. Stat., Cons. Perm. Inucern. 
VExplor. Mer, and unpublished information. 


EIGHTH PACIFIC SCIENCE CONGRESS 


188 


“UOIYB.LepIsuod tapun polled oy} SUlInp Usyey Yo}eO [enuUUR 4seysIY oY} JO sosequoderd se ‘A.roysy 
yovo oF possardxs ‘(——-—) |[esnjz10g pue ‘(----- ) weder ‘(——-) 507839 poeqrugQ ey} Fo seya}e0 ouIpreg—z ‘DI 


~ 


oséi Sv6l Ov6i Seél O¢eél S26 O26) Si61 O16! 


02 


og 


Ov 


Os 


109 


OL 


{08 


06 


oo} 


THE PRODUCTS OF THE SEA AND THEIR EXPLOITATION 
AND UTILIZATION IN PAKISTAN 


By M. R. KHAN 


Central Fisheries Department 
Government of Pakistan, Karachi, Pakistan 


A comprehensive study of the Sea as a store-house of immense 
mineral, vegetable, and animal wealth is beyond the scope of the pre- 
sent paper. Only those products of the sea which are important from 
the fisheries point of view and which occur in the waters off the coast 
of Pakistan will be considered. 

The demand for protein food in Pakistan is far in excess of the 
present supply. Availability of grazing grounds and fodder imposes 
limitations on the increased production of livestock in the country. 
Faced with the problem of short protein food supply, Pakistan has 
turned particular attention to her aquatic protein food resources. 

Fish has a pronounced dietetic importance in Pakistan. During 
1952 consumption of fish in Pakistan stood at 295.2 million pounds, 
of which 242.8 million pounds were consumed in East Pakistan. Rice 
and fish constitute the staple food of the population in East Pakistan 
and no less than 90% of the people consume fish as a regular item of 
diet. In West Pakistan consumption of fish is low except along the 
coast and the riverine tracts. Annual per capita consumption of fish 
in Pakistan has been estimated at 6.4 pounds. In East Pakistan in 
certain localities where the supply is plentiful the per annual capita 
consumption may be quite high. 

Economically the importance of fishery to Pakistan is considerable. 
It is estimated that there are over 200,000 fishermen families in the 
country and as many as 800,000 subsist by fishing. In East Pakistan 
alone there are 160,000 fishermen families and over 650,000 make a 
living out of fishing. These figures include fishermen engaged in fresh 
water fisheries. Furthermore, the economy of Pakistan is basically 
agrarian. It is desirable that the country’s agriculture be supplemented 
by a well-organized fisheries industry. 


THE RESOURCES 


Pakistan has a total of 700 miles of coast line, 500 miles in West 
Pakistan and 200 miles in East Pakistan. The coast of West Pakistan 
is bounded by 23°-40’N to 25°-30’N latitudes and 61°-40’E to 68°-10’E 


189 


190 EIGHTH PACIFIC SCIENCE CONGRESS 


longitudes. The coast of East Pakistan lies between 20°-50’N to 22°- 
5O’N latitudes and 89°-00’E to 92°-20’E longitudes. The coast of West 
Pakistan falls into two distinct divisions: the Mekran coast and the 
Sind coast. The Mekran coast extends over a length of 350 miles from 
Hub River, about 20 miles West of Karachi, to Gwatar Bay on the 
Iranian Border. The coast has a number of bays and is interrupted 
by two breakwaters. ‘The most important breakwater on this coast 
known as Miani Hor lies about 60 miles West of Karachi. It is approx- 
imately 40 miles long and at places 10 miles broad. There are no peren- 
nial rivers on the coast; all the rivers and streams remain dry except 
for a few days of occasional rain brought in by the southwest mon- 
soons during summer and northeast cyclones during winter. The total 
rainfall on the coast is less than 3 inches a year. Hills, some of which 
rise up to 3500 feet, are bleak and barren, and run parallel to the 
coast sloping steeply into the sea. 

The Sind coast extends from Karachi to Sir Creek over a length 
of 180 miles, and is marked by a network of creeks which extend to a 
considerable distance inland. ‘These creeks have been formed by the 
Indus and other rivers as they change course from time to time. Hills 
are noticeably absent on this coast. 

The coast of East Pakistan is broken by the mouths of the Ganges, 
the Brahmaputra and numerous other rivers. “The 200-mile-long coast 
is plain except for a fringe of hills on the southeast. These hills are 
a continuation of the northeastern wing of the Himalayan ranges. 

Beyond the territorial limits of Pakistan lie the waters of the Bay 
of Bengal in the east and the waters of the Arabian Sea in the west. 
The floor of the Bay slopes slowly from the shores and the 100-fathom 
line lies 100 miles from the coast. “The bottom topography is smooth 
except for a submarine canyon directed southward from the mouth of 
Pusur river. The ocean bottom is covered with thick layers of terrig- 
enous ooze. ‘The salinity, turbidity and other physical, chemical and 
biological features of the waters of the Bay are greatly influenced by 
the heavy discharge of the Ganges, the Brahmaputra and other rivers. 
The wind movement and revolution of the earth give a rotary move- 
ment to the waters of the Bay. 

In contrast to the Bay of Bengal, the Arabian Sea is open and its 
waters are subject to influences of the South-East current, of current 
movements originating in the Mozambique channel and the rotary move- 
ment in the Arabian Sea. ‘These movements undoubtedly influence 
the physical, chemical and biological properties of waters of the Ara- 
bian Sea. ‘The discharge of the Indus also exerts pronounced influence 
on the character of the water in that part of the Arabian Sea which 


PRODUCTS OF THE SEA—EXPLOITATION AND UTILIZATION 191 


lies off the Indus estuary. The continental shelf area of the Arabian 
Sea is restricted. It is about 100 miles only off the Indus estuary and 
shrinks to about 30 miles off the Mekran Coast. The edge of the con- 
tinental shelf lying at the 100-fathom line falls steeply into deep water. 
A submarine canyon cuts the shelf opposite the Indus estuary. The 
area adjacent to this is subject to a considerable amount of silting. 

Fauna: The fauna and flora of these waters are fairly known from 
a systematic point of view. Schools of ‘Sczaena, Tuna, Polynemus and 
Pristtipoma’ have been observed to be present in seasonal pattern on 
the surface of the off-shore waters. In mid-waters ‘Cybium and Elas- 
mobranchs’ are present, whilst the fauna of the bottom waters com- 
prise ‘Synaptura, Cynoglossus, Lutianus, and Elasmobranchs’. The in- 
shore fauna which are endemic and which share some elements of the 
off-shore, brackish, and fresh-water fauna, consist of stocks of ‘Mugzl, 
Sillago, Chrysophrys, Gerres and Lutianus’ in addition to a very sub- 
stantial fauna of ‘Penaeidae.’ The brackish water areas which are ex- 
tensive, totalling about 7,500 square miles, include a vast network of 
waterways which are inhabited by a varied fauna of ‘Mullets, Perches, 
Herrings’ and an extensive stock of oysters. “The brackish water con- 
ditions which penetrate the main river course influence to a great extent 
the up-stream ascent of the very important fish Hilsa or Palla—‘Hilsa 
ilisha’. 

Beyond the faunistic lists, knowledge of the resources is seriously 
limited. Whilst the general distribution of a few of the more important 
species is known, the precise distribution of these, and the variation of 
the limits of distribution from season to season, is not known. Little 
information is available on the life history in terms of spawning sea- 
sons and habits, feeding habits, and migratory movements of these 
species. There is no record of any estimate having been attempted, 
of the natural abundance of any species of the area. Certain species 
are known to be more abundant than others; at least, greater catches 
are taken by the fishermen. But whether these catches approach or 
exceed the proper limits which the natural stocks can sustain, is not 
known. 


‘THE INDUSTRY 
The primary phase of the fishing industry consists of the following 
major divisions: 
(1) Capture operations in the off-shore waters, 
(2) Capture operations in the brackish waters and open waterways 
of the Gangetic and Indus delta and 
(3) Culture operations in the estuarine areas. 


192 EIGHTH PACIFIC SCIENCE CONGRESS 


Culture operations in East Pakistan chiefly take place in the estua- 
rine areas. ‘The operations which concentrate on mullets, perches and 
prawns are simple and involve basically the construction and main- 
tenance of bunds, the control of water movement and, where necessary, 
some feeding. It is estimated that over 20,000 persons are engaged in 
these culture operations. 

Fishing by capture operations is carried out in surface, middle, and 
bottom waters. ‘These operations at present are confined at 8-10 miles 
from the shore and the 10-fathom line. While these operations are 
thus confined they are also restricted in their along-shore extent. The 
fishermen do not carry any navigational equipments nor do they have 
any knowledge of the science of navigation. It is impossible for them 
to go beyond the visibility of the shore. 5 

Fishing Season: During the months of June to August the south- 
west monsoons are in full swing and there are heavy swells in the sea 
making it impossible for any fishing operations to be conducted in the 
open sea. Limited fishing is carried out in the protected waters of the 
estuarine areas. ‘Throughout the rest of the year fishing is conducted 
with varying degrees of intensity in all waters. 

Fishermen: The number of fishermen engaged in marine fishing 
in Pakistan has been estimated at 85,000. In addition to active fisher- 
men there are those concerned in handling and transport, processing 
and preservation, the middlemen and merchants, and market operatives. 

The fishermen live in important port towns and in isolated villages 
along the coast. During seasons for particular fisheries, temporary col- 
onies may also be set up. ‘The villages are built on the sandy and un- 
protected beaches; the huts and tenements are made of mangrove and 
bamboo sticks, and weed mats. 

Fishing is essentially a whole-time occupation for the majority of 
the fishing group. During the monsoons when no fishing can be con- 
ducted in the disturbed sea, the fishermen engage themselves in making 
and mending nets and repairing boats and fishing in protected waters. 

The fishermen are generally illiterate and unskilled. Their knowl- 
edge of the behaviour of fish, of the weather, currents, bottom and of 
the operation of crafts and gears is seriously limited. ‘They are also very 
much impoverished; their annual money income is probably, on the 
average, 400-500 rupees (125-150 U.S. dollars) per head. 

Crafts and Gears: The crafts are plank-built, wind-driven vessels 
ranging from 15—60 feet in length and 14 to 50 tons in capacity. They 
are not decked in and provide no living accommodation even in the 
larger crafts. “The storage of fish is provided merely by wooden boxes 
and holds without any ice or refrigeration. Smaller crafts carry crew 


PRODUCTS OF THE SEA—EXPLOITATION AND UTILIZATION 193 


of three to four and operate on single day journeys. Larger crafts 
carry from eight to ten persons and stay at sea for four to five days. 
Sometimes larger vessels stay away from ports for longer periods. In 
such cases the catch is salted on board and the vessels move every third 
or fourth day to convenient spots on the shore for drying the salted 
fish. 

In addition to the local operations with country crafts, the Gov- 
ernment’s experimental trawler ‘ALA’ has been operating in the waters 
off the coast of West Pakistan. ‘ALA’ is 80 feet long and has a gross 
tonnage of 81.24. She has a steel hull, and a Ruston diesel engine of 
150 B.H.P. The fish hold is refrigerated and has a capacity of 30 tons. 
The trawler employs a Peter Carey trawl, 75 feet long. The operations 
of the trawler has not extended beyond the 30-fathom line. 

The Trawler has made a number of trips. The results so far have 
not been encouraging. Although the tropical waters are known not to 
be rich in bottom fauna, the possibilities of trawling in these waters 
cannot be ascertained until after exhaustive surveys. “The operations 
of ‘ALA’ are limited both in seasonal and geographical co-ordinates for 
the purpose of any conclusions. 

The gears commonly employed in Pakistan are (1) fixed or stake 
nets, (2) boat seines, (3) beach seines, (4) drift and gill nets, (5) cast 
nets, (6) traps and weirs, and (7) hooks and lines. Non-searching type 
of a gear, e.g. stake nets, drift and gill nets, are numerically predom- 
inant and their total catch is more than that of the searching gear. Of 
the latter group, the boat seines are most important. These nets catch 
sardines, herrings, drums, croakers and threadfins, depending on size 
and mesh. 

The nets are prepared by hand, using mostly cotton, occasionally 
hemp, and nylon whenever it is available. Net preservation practices 
consist of their treatment with lime and occasionally with extracts of 
some indigenous barks. 

The crafts and gears are not mechanized. ‘This severely restricts 
the fishing operations in their range along seasonal and geographical 
co-ordinates. 

Capital: A reliable estimate of capital invested in the primary 
industry is not available yet. Preliminary figures place it anywhere from 
10-12 million rupees (3—4 million U.S. dollars). Of this nearly 55 per- 
cent is invested in crafts and the rest is invested in gears and as recur- 
ring expenditure. Capital in Pakistan is noted for its shyness; on the 
other hand, the manipulations of the middlemen place impediments to 
the flow of fresh capital in the fisheries industry. 

Economics and organisation: The number of owner-operators who 
work alone as single units is negligible. Some outfits are operated by 


194 EIGHTH PACIFIC SCIENCE CONGRESS 


the crew; the owner of the outfit generally has a share in the operations, 
even if only their supervision. The people who operate the gear do so 
cn a share basis. As is usual elsewhere, the boat and gear used in share 
fishing, count equally with the operatives in drawing a share. In some 
cases of sharing of earnings the owner makes advances to the crew and 
undertakes some responsibility for food, either providing it against 
shares, or guaranteeing the necessary credit. Under such circumstances 
an arrangement is made by which the fish must be sold to the owner 
or his agent. 

Quite frequently the crew are employed on wage basis. Such crew 
are provided with gear and are completely ‘found.’ In East Pakistan the 
owners of boats and gears engage their agents to assemble parties, of 
up to 200 or more, of fishermen, curers and others; the workers of the 
party are engaged on wage basis whilst the agents are contracted to 
take the catch to the owners, of boats and gears, to sell on an agreed 
basis. ‘The owners supply food and advance money. 

Amount of Production: Annual production is estimated to be in 
the order of 100,000 tons, wet landed weight of fish. The bulk of this 
is landed in East Pakistan. Wide variations in the catch exist in dif- 
ferent localities, seasons, and in species. Variations of this kind are 
characteristic of the fishery and have considerable effects on it in every 
way. 

The catch in East Pakistan is composed of 30% Clupeoids, 25% 
Crustaceans, 15% Bombay ducks and Hairtails, 7% Elasmobranchs, and 
11°% miscellaneous fish. In West Pakistan the catch consists of 25.5% 
of Elasmobranchs, 18.5% Perches, 18.0% Crustaceans, 11.5% Mackerels, 
10.5% Clupeoids, and 16% miscellaneous fish. In addition there are 
3-5 thousand dozens of oysters and clams produced each year. 

In the absence of any reliable data regarding production by units 
of time, of area, the number of crafts and gear, the number of men who 
fish, it is not possible to measure accurately the total amount of effort 
and catch per unit effort. 


SECONDARY INDUSTRY 


The secondary phase of the industry leaves much to be desired. 
The equipment for handling, transport, marketing and distribution are 
inadequate and inefficient, this being especially true of ice-making 
equipment. Processing methods are also not satisfactory and yield prod- 
ucts of inferior quality. 

Estimates of production passing through various channels of dis- 
posal are extremely variable. It is held that of the total production in 
West Pakistan approximately one third is handled and consumed fresh 


PRODUCTS OF THE SEA—EXPLOITATION AND UTILIZATION 195 


and two thirds processed. In East Pakistan roughly 80 per cent is con- 
sumed fresh. The products of processing are cured fish, cured prawns, 
fish fertilizer, fish meal, shark fins, isinglass and liver oil. 

Handling and Transport: Of the fresh fish the greater proportion 
is handled with primitive apparatus and without any means of pre- 
servation. The catch generally must suffer the exigencies of inefficient 
transport, careless handling and inadequate use of ice. 

Transport facilities are varied and primitive. Use is made of head- 
loads, bicycles, animal carts and some motor transport. Some use is 
also made of water transport. In estuarine areas salt is used if the fish 
is to travel more than 50 miles. The fish rarely arrives at the market 
and less often reaches the consumer in good condition. 

Processing: Fish is commonly processed by (1) sun-drying, (2) 
salting, (3) salting and sun-drying, and (4) smoking. Salting and sub- 
sequent sun-drying is most extensively used in West Pakistan whilst in 
East Pakistan sun-drying and wet-salting are equally important. Smok- 
ing, which is of minor importance, is employed only in East Pakistan. 
Fertilizers are produced by sun-drying the fish or fish offals and subse- 
quently crushing them. Shark livers are heated in pans by direct fire 
except in the case of a small quantity of medicinal liver oil produced 
in East Pakistan by the Provincial Directorate of Fisheries. 

The curing yards are inefficient. “They provide no elevated plat- 
form for dressing fish and most of all, supply of running water in these 
curing yards is tetally absent. Brining tanks where available are built- 
in and cannot be drained out. 

Fish are dried on bare ground or on woven mats. Wooden racks 
are uncommon. 

The smoking kiln is an open pit where local wood or sawdust is 
allowed to smoulder. No care is taken in the choice of wood or in 
regulating the rate of burning. 

Salt employed for curing is mixed with sand and mud and contains 
high amounts of sulphates, calcium, and magnesium. 

The finished product is generally of poor quality. Unsatisfactory 
colour and texture, off-flavour and signs of rancidity are noticeable 
in the cured fish. Considerable damage is caused to the product dur- 
ing storage as the product is left under inadequate and unsatisfactory 
storage conditions for long periods. 

Marketing and Distribution: Fish supplies are accumulated at 
various collection centres. These centres do not have established market 
places, nor are they hygienic or efficient in any sense of these words; 
many of the operations take place on bare ground. In general, the ‘fish 
market’ consists of little more than some space and perhaps a few 
benches allotted in the general market for the selling of fish. In Karachi, 


196 EIGHTH PACIFIC SCIENCE CONGRESS 


however, a cement floored building is used as a wholesale market. This 
building does not have sufficient space for handling the total landing 
nor is it supplied with running water. 

The fisherman delivers his catch at the point of landing to an 
agent who may auction it on his behalf to wholesalers, retailers and fish 
curers or may buy it from the fishermen where financial arrangement 
exists between the agent and fishermen. The wholesalers in turn sell 
the fish to the retailers who sell it to the consumers. ‘The fish curers 
mainly export their products. The agent who first receives the fish 
from the fishermen is the individual who provides finance to the fisher- 
men. Apart from the collection of sales tax under certain circumstances 
the Government takes no part whatsoever in this marketing process at 
any stage. 

Trade: Although there is an overall deficit in the country, in re- 
stricted areas there is a surplus in fish supply which is particularly due 
to inadequate facilities of handling and transport. Pakistan exports 
some of this localised surplus. During 1952 over 10,000 tons of fresh 
fish were exported to India. The main bulk of it consisted of fresh- 
water fish and came from East Pakistan. The total export of processed 
fish stood at 9,635 tons. In addition, during the same year Pakistan ex- 
ported over 2,000 tons of fish fertilizers, 160 tons of shark fins and fish 
maws. As against the export, 460 tons of processed fish, 520 tons of 
fish oils and 173,500 pounds of vitaminous fish oils are shown as having 
been imported during 1952. The total value of the export trade during 
1952 stood at 12,300,000 rupees (3.2 million U.S. dollars) whilst that 
of the import trade during the same year stood at 1,527,000 rupees 
(500,000 U.S. dollars) . 

Socio-Economics: “The economic problems of fishermen in Pakistan 
concern his methods of production, purchase of domestic and production 
requirements, provision of credit, and the sale of his produce. The craft 
and gear and other equipment which the fisherman uses are primitive, 
inefficient and wasteful though effective in their own way. The middle- 
men to whom, in many cases, the catch is sold in advance, generally, 
supply the fishermen with his domestic and production requirements, 
and with other credit accommodation that he may need. He is compelled 
more often than not by circumstances of trade to buy dear and sell cheap 
and thus the fisherman sinks irretrievably into debts. Belonging to an 
economically and socially backward community, ignorant and unedu- 
cated, he has generally neither the will nor the means of organising 
himself for self-emancipation. 

Although the fishermen are impoverished and illiterate, these de- 
ficiencies of wealth and education may not be presumed to apply to 


PRODUCTS OF THE SEA—EXPLOITATION AND UTILIZATION 197 


their technical qualifications. The Pakistani fishermen are competent, 
skilled sailors, proficient in the use of their traditional equipment. There 
seems to be no reason to doubt that these men at least will be capable 
of learning the use of new equipment and the operation of new craft. 

The fishermen are unable to attempt on their own behalf develop- 
ment of their equipment and operations. This situation may be attri- 
buted to the combined effects of the improvidence of the fishermen, the 
inefficiency of the equipments, and the manipulation of the middlemen. 
Certain external influences, such as the demand for fish and the purchas- 
ing power of the consuming public, also have a bearing on the situation. 
There exist considerable differences of taste among people in different 
parts of the country; coupled with this is the inadequate marketing 
system, which would seem to make the demand for fish uncertain and 
weak. 


CONCLUSIONS AND RECOMMENDATIONS 


The status of fisheries in Pakistan is low. The resources are capable 
of yielding a much greater supply of fish than they do at present. The 
procurement of that increase will require in some cases the introduction 
of new methods and in others an intensification and improvement of 
existing methods. Such changes in methods imply comparable changes 
in the craft and gear, and in certain cases will require adjustment of 
fishermen. Undoubtedly these changes will demand substantial re- 
orientation of the secondary phase of the industry in order that it may 
be capable of handling the increased supply and giving a better quality 
of service. 

Increased production, adequate distribution and disposal of the 
produce are the chief tasks in the development of Pakistan fisheries. 
Extension of the fishing grounds, improvement and increased employ- 
ment of gear, and mechanization of the craft will enhatice production. 
Construction of markets at important fish landing centres, provision of 
sufficient ice and cold storage, railway refrigerated cars and trucks, and 
of various processing facilities will ensure proper distribution and dis- 
posal of the produce. 

Well-organised central and provincial Fisheries Departments are 
formulating schemes for the development of the fisheries resources of 
the country. As a member Pakistan has received help in this task from 
the Food and Agriculture Organisation of the United Nations. A 
thorough survey of the resources has been undertaken in the waters off 
the coast of Karachi where already a number of good fishing grounds 
have been located. A scheme for the construction of a fish harbour at 
Karachi has been approved by the Government of Pakistan. This har- 


198 EIGHTH PACIFIC SCIENCE CONGRESS 


bour is intended to provide all modern facilities for berthing of fishing 
boats, modern curing and other processing facilities for fish and fish 
products, ice and cold storage, and wholesale marketing of marine fish. 
Similar schemes for mechanisation of craft and gear, refrigerated trans- 
port, refrigerated markets and processing plants in other parts of the 
country are in their final form. 

Private enterprise is also stepping forward, although rather slowly. 
A fish meal plant will go into production within the next month or 
two; another plant for freezing shrimps is expected to start operation 
before the end of 1953; and keen interest is being displayed by several 
concerns in the possibilities of fishing with mechanised craft and gear, 
of canning fish, particularly of shrimps, and producing vitaminous shark 
liver oil. 

Implementation of the proposed development measures in fisheries 
will, no doubt, require considerable capital investment. On the other 
hand, the economic condition of the fishermen does not make it possible 
for them to invest in the development of the industry. Except a minor 
fraction, the capital so far invested has come from Government account 
and from the Colombo Plan and the U.S. Technical Co-operation funds. 
Recently Sweden has also offered some aid. Although pilot scale 
development plans may seem advisable at present some well-integrated 
overall policy will induce expeditions and increased flow of private 
capital into the fisheries industry. Effective efforts should be made to 
improve the economic condition of the fishermen so that they may them- 
selves be in a position to invest in the development of the industry. In 
this respect the fishermen should be organized into cooperative societies. 
These societies should provide credits and link credits with purchase of 
necessities of the industry and of life on the one hand and the sale of 
the produce on the other. 

Viewed in the general context of the economic and nutritional 
problems of Pakistan, and of the world food situation, the need for the 
development of fisheries in Pakistan cannot be over-emphasised. The 
development plans should be co-ordinated and integrated into an over- 
all policy so that the development of the industry may serve the interests 
of the producers, the middlemen and the consumers alike. 


BIBLIOGRAPHY 


AHMED, M. Hilsa Fisheries in Sind. Agri. Pak., Vol. III, No. 1 & 2, 1952. 
KESTEVEN, G. L. Report on the Fisheries of Pakistan, Ministry of Food and 
Agriculture, Government of Pakistan, Karachi, 1950. 
and S. W. Linc. Report on the Fisheries of East Pakistan. (Ms.) 
1951. 


EXPLOITATIONAND UTILIZATION 199 


PRODUCTS OF THE SEA 


KHAN, M. R. A case for Pakistan Fisheries. Econ. Comm., Vol. I, No. 8, 


1952. 
Synthetic Vitamin A and the Future of Fish Liver Oil Industry, 


particularly in Pakistan. lAg7ri. Pak., Vol. IV, No. 1, 1953. 
Possibilities of Fish Meal Industry in Pakistan. (Ms.) 1952. 
and M. AHMED. Report on the Baluchistan Marine Fisheries. 
(Ms.) 1952. 
QuRESHI, M. R. Prospects of Marine Fisheries of West Pakistan. Bull. Kar. 
Geog. Soc., Vol. II, 1950. 
Marine Fisheries of Pakistan with a view on Trawling. Proc. 
I.P.F.C., April, 1950. 
Fishes of Mekran Coast. Agri. Pak., Vol. II, No. 4, 1952. 
and M. AHMED. Fish Trade in Pakistan. Agri. Pak., Vol. III, 
No. 3, 1952. 


SOME FACTORS BEARING ON THE UTILIZATION OF 
MARINE PRODUCTS OF THE WEST 
COAST OF CANADA 


By NEAL M. CarTER 


Pacific Fisheries Experimental Station 
Fisheries Research Board of Canada 
Vancouver, B.C., Canada 


Fish and shellfish have been a food of man from prehistoric times. 
Remains of fish bones and marine shells exist in the débris of Pleistocene 
period European cave dwellers, and the kitchen middens of Recent 
period Indians of the coast of British Columbia are composed principally 
of clam shells with a few fish bones. Because of the ease with which 
they can be secured, shellfish probably attracted prehistoric man’s at- 
tention before he recognized their edibility. Perhaps his first taste of 
fish followed seeing some animal or bird devouring a fish it had caught; 
seeking more of this delicate food, no doubt his first efforts at ‘‘fishing”’ 
consisted of picking up dead or stranded fish in shallow streams, on the 
beach, or in tidal pools. Soon (maybe a thousand years later) his grow- 
ing inventiveness developed the first true fishing methods. One of the 
earliest must have been the placing of a barrier of stones, stakes or 
branches in a shallow stream, or a circlet of rocks on a tidal beach in 
imitation of natural tidal pools. “The writer has seen such artificial tidal 
pools, constructed in modern times, still in use by the native British 
Columbia Indians not more than a hundred miles up the coast from 
Vancouver. ‘The chronology of the invention of such fixed barriers, in 
relation to the invention of transportable fishing gear, is lost in pre- 
historic antiquity. Examples of fish spears have been found in prehis- 
toric caves; nets and lines may have been used contemporarily but owing 
to their more perishable nature traces of them have vanished. Pictorial 
records of fishing nets antedate those of fish spears, and it is known that 
the spear, net, line, and rod flourished synchronously as early as the 
XUth Egyptian Dynasty. ‘The earliest picture of angling and hand 
lining is dated at about 2000 B.C. 

Once adequate methods of capturing fish for food became developed, 
it 1s interesting to note the very great esteem accorded to fish as an article 
of commerce and diet in early historical times. ‘The Bible alone con- 
tains some 80 references to fishing, fishermen, fish and other aquatic 
products, though curiously enough in no instance is any kind of fish 


200 


UTILIZATION OF MARINE PRODUCTS OF CANADA 201 


mentioned by name. It has been facetiously suggested that there had 
not yet been time after the Flood to assign, names to the fishes, for 
because of the very nature of that catastrophe there was no neces- 
sity to make provision for the fishes when cataloging “every living thing 
of all flesh, two of every sort . . . male and female” as they entered the 
Ark. In the Indian legend of the Flood it was a fish, not a Deity, that 
gave warning of the coming deluge; a fish, not a dove returning with an 
olive leaf, signaled the recession of the waters and drew the ark-like 
vessel to rest on a northern mountain. 

Among the many records of the popularity of fish the Bible ac- 
count of the miracle of the loaves and fishes is well known. Fish played 
an important role in the food of the early Egyptians; King Rameses III 
was in the habit of presenting many thousands of fish to the temples for 
the benefit of the priests’ employees and the populace, and Rameses IV 
maintained “officers of the Court Fishermen” whose duty it was to 
provide large quantities of fish for the monarch, his entourage and servy- 
ants. Carefully mummified fish bearing a royal cartouche have been 
found, symbolizing the esteem bestowed upon them. ‘The Egyptian city 
Latopolis was named in honour of the fish Lates niloticus. But it was 
in the heyday of the Greeks and Romans that fishes really came into 
their own as luxuries. Seas and rivers were exploited far and wide for 
their delicacies. Mullet, sturgeon and turbot commanded fabulous prices 
for the epicurian table. Pliny records that although mullet weighing 
under two pounds were plentiful and cheap, a large one was worth 
8000 nummi (about $300), the value of nine bulls. ‘The Greek come- 
dians lamented that fish cost their weight in money, as was the case also 
in Rome. Martial upbraided a glutton who sold a slave for about $50 
to purchase a dinner, then complained of its lack of variety because near- 
ly all the money was spent for one mullet. At a Greek Attic feast, 
thirty-two kinds of fish were served; at a banquet given by the Roman 
emperor Vitellius in honour of his brother no less than 2000 choice 
fishes were served. A treatise of ten volumes on recipes for new dishes, 
attributed to Apicius, describes many sauces for fish, one of which calls 
for twenty-five ingredients. Some Roman nobles varied the custom of 
taking a cognomen from the name of a victorious battle by assuming 
a name derived from their favorite fish, e.g., Licinius Muraena, Sergius 
Aurata. Among the Greeks, Diogenes the Cynic died from the eager 
haste with which he devoured a raw polypus, and Philoxenus the Poet 
after dressing, cooking, and eating all but the head of a 36-inch polypus 
was warned by his physician that he had but six hours to live. Much 
later, King Henry I of England died from overindulging in his favourite 
dish of lampreys, a primitive fish at present much despised in Canada 


202 EIGHTH PACIFIC SCIENCE CONGRESS 


and the United States because of its current depredations on the com- 
mercial fishes of the Great Lakes. 

What precautions were taken in these early days to maintain the 
delectable qualities of freshly caught fishery products? History tells us 
that much of the fish was net cured in any way, and the need for keep- 
ing fish cool was already appreciated. Nehemiah, Governor of Judaea, 
complained in the Biblical book of his name about the sale of food- 
stuffs in Jerusalem on the Sabbath, including fish brought by the men 
of Tyre from the shores of the Mediterranean some 35 miles away; he 
caused the gates of Jerusalem to be closed to such commerce over the 
Sabbath, but later it was allowed that a special gate, called the “fish 
gate’ should remain open so that fish could be sold before it would 
spoil. In Greece, runners were sent up the slopes of 8060-foot Mt. Par- 
nassus to collect snow for preserving fresh oysters for banquets in near- 
by Athens. The Romans constructed huge vivaria or fish ponds in which 
to keep fish alive during warm weather until required for the table. 
Lucius Philippus had a tunnel pierced through a mountain in order 
to bring cool sea water to his vivarium; Hortensius Varro placed more 
importance on the coolness of the water in his vivarium than on the 
coolness of a draught of water for a fevered friend. Archimedes is 
credited with planning the construction of a large live-well, made of 
planks lined with lead, in the bow of one of the large vessels plying 
between Egypt and Sicily for the corn trade and carrying live fish in 
this well in which the salt water was constantly renewed by hand pump- 
ing. In early Egypt fish for the fresh trade were usually dressed on the 
boat and quickly dispatched to market. By New Testament times fresh 
fish were roasted, baked, or boiled; eggs were sometimes combined with 
the boiled type. But what of the fish that could not be transported 
fresh to market? The Egyptians were familiar with the process of split- 
ting and salting then drying in the sun, and such salted fish, as well as 
pickled fish, were exported in baskets or barrels certainly as far as 
Palestine. 

‘Turning now from ancient times in the Old World to more modern 
times in the West Coast of Canada, the native Indians of this coast 
prior to the coming of the white man had developed not only their 
clam fishery attested by the huge clam shell middens already mentioned, 
but also a considerable adeptness in catching fish, particularly salmon 
and eulachons. ‘To preserve these fish for use out of season, salmon 
were cleaned, split, and subjected to a combined drying and smoking 
process in crude smoke houses; because the salmon ascends rivers to 
spawn hundreds of miles inland, many Interior tribes had access to this 
fish, though it lacked fat by the time it reached distant spawning beds. 


UTILIZATION OF MARINE PRODUCTS OF CANADA 203 


Eulachons, a small, marine, smelt-like fish taken principally only in the 
river estuaries, were hung from the head on large vertical racks for 
open-air drying and when dried were so oily that they could be ignited 
and used as candles. Probably the earliest fishery by-product industry 
in what is now British Columbia arose from the craving of both Coastal 
and Interior natives for fish oil as a cooking fat and as a protective or 
ceremonial lotion for the skin and hair. The fish were allowed to under- 
go some decomposition to partially free the oil and were then boiled in 
wooden tanks, the liberated oil was floated and skimmed off and stored 
in animal skins or (after congealing) in closely woven jar-shaped bas- 
kets. Trade in this oil with Interior tribes developed the well-trodden 
“grease trails’ over the lowest mountain passes and through the most. 
suitable valleys into direct routes that would be a credit to a modern 
road engineer. These native fishing and preservation methods still per- 
sist on some parts of the coast, though the modern Indian has been 
known to visit an Interior cousin via his own automobile or a com- 
mercial airline, taking a token of eulachon grease either upon or with 
him, to the olfactory discomfort of any white passengers. 

With the settlement of Canada’s west coast by the white man, fol- 
lowed in 1858 by the establishment of the Colony (now Province) of 
British Columbia, a much greater exploitation of the coast’s fishery 
resources began. Commercial salting of Fraser River salmon com- 
menced as early as 1829 and by 1835 some 3500 barrels were being ex- 
ported annually, principally to the Hawaiian Islands; salmon canning 
on the Fraser River began in 1870; fisheries for herring, trout, sturgeon, 
halibut, flatfish, dogfish, eulachon, seals and porpoises were reported by 
1875. It is not the purpose of this paper to summarize the subsequent 
growth of British Columbia’s fisheries or to describe the nature of the 
raw materials and the many processing methods used to turn these into 
finished products and by-products for local consumption, trade with the 
rest of Canada, or export. Government fisheries statistics commenced 
in 1876 are available for such purposes. Suffice it to state that the 
marketed value of British Columbia’s fisheries in 1911 was $13,677,125, 
and in 1951 was $85,500,000, while the marketed values of the whole 
of Canada’s fisheries for the same years were $34,667,872 and $200,125,000. 
British Columbia therefore contributes a very substantial portion to the 
total fisheries production of Canada, which exports more fish than it 
imports because it produces more fish than its population desires for 
their own consumption. ‘The 13.7 pounds per capita per annum (1951) 
consumption of fish by Canadians is quite low in comparison with that 
of most other countries, even some not so richly endowed with fisheries 
of their own. 


204 EIGHTH PACIFIC SCIENCE CONGRESS 


British Columbian and other Canadian fisheries, if encouraged by an 
increased desire on the part of Canadians to eat more fish per capita per 
annum, could meet this incentive and still continue to supply Canada’s 
export markets with the kinds of Canadian fish products which the 
peoples of some other countries appear to appreciate more than do 
Canadians themselves. Why is there this lack of incentive of Canadians 
to appreciate and eat their own fish to a greater extent? 

Apart from economic considerations such as the living standards of 
certain classes of Canada’s population, and the present still-increasing 
costs of labour and materials that contribute to the retail cost not only 
of fish products but of other foods as well, some of the reasons for 
Canada’s low fish consumption are: 

(a) Living standards, including those for food, are relatively high; 
a great variety of raw and processed foods are available for competing 
with fish from the standpoint of the Canadian’s purse and palate. Fish 
must be of high quality that will enjoy the confidence of the consumer 
before it will compete more successfully with other foods, particularly 
other animal products such as meat, fowl, and dairy products. 

(b) Unfortunately, some past experiences of the Canadian adult 
generation with quality of fish products, particularly fresh and frozen, 
have not been too happy, and these impressions have been heightened 
by reminiscences of the previous generation concerning still unhappier 
experiences. Even in present-day Canadian and American popular 
literature including comic strips and cartoons, one sees the expression 
“something fishy about that” as synonymous with an undesirable state 
of affairs. “To draw a red herring across a trail” is still used figuratively 
to express the original literal idea that a somewhat rancid salted herring 
would effectively baffle bloodhounds tracking a scent. A cartoon or 
comic strip character carrying a parcel of fish (usually with wavy lines 
representing odour arising from it) almost always encounters some em- 
barrassing situation, often resulting in the fish eventually reposing in a 
garbage can. Such allusions do not enhance the public’s desire for fish. 
Unlike the enthusiasm of the ancients already mentioned, reference to 
fish is practically never used in America in a euphemistic sense. Meat, 
on the other hand, is frequently used in a laudatory and even euphem- 
istic manner, e.g., “the meat of a subject” for the essence or truth of 
the subject; the word “meat” for the edible portion of even a vegetable 
product, such as “nut meats.” Fish flesh is very seldom referred to as 
“meat.” 

(c) Fishery products in Canada, with the exception of canned 
salmon, canned herring and dry salt herring from British Columbia, 
and a few other products of the fisheries from the Central and Atlantic 


UTILIZATION OF MARINE PRODUCTS OF CANADA 205 


Coast, are not subject to Federal Government inspection. Provincial 
sanitary regulations for fish processing plants apply in most Provinces, 
but do not always cover the products themselves. Voluntary inspection 
control is exercised by many processing firms, much to their credit, but 
unfortunately not by all to the same degree. This has an adverse bear- 
ing on the desirable confidence of the consumer of fishery products, 
mentioned under (a) above. On the other hand, meat products in 
Canada are processed under careful Federal Government control, and 
milk products receive considerable Federal or Provincial attention. 

(d) Because of the bounteousness of many fishery harvests, not only 
in British Columbia but in other parts of Canada, there is an un- 
fortunate tendency in times of glut to handle the raw product and its 
processing in a careless manner suggestive of the handling of cordwood, 
coal, or some other non-perishable material despite the fact that tish and 
shellfish flesh is more perishable than that of meat or fowl, which re- 
ceives more careful attention. It is true that in times of extreme glut 
some of the raw material is diverted to manufacture of products such 
as fish meal and oil not intended for human consumption. However, 
there is ample advice available from technological sources to show the 
way towards better handling of fishery products during every stage from 
the time of catch to display for the ultimate consumer. Not all of this 
advice has been heeded. 

(e) No matter how good may be the quality of a fishery product, 
particularly raw, fresh or frozen fish, there exists a certain aversion on 
the part of many ultimate consumers to the odours and other unpleasant- 
nesses of preparing the product for the table. Many housewives complain 
of the odour of cooking fish, and families may enjoy fish cooked in a 
restaurant more than they would at home, in order to avoid this in- 
convenience. However, most people do not eat in a restaurant as often 
as at home. This aversion to the odours of cooking fish may be a matter 
of opinion influenced by hearsay, for many families cheerfully accept 
the somewhat faecal odour of cooking cauliflower. 

(f) Some people just do not like fish. Vegetarians are included in 
this group. 

To offset some of the above reasons for lack of appreciation of fish 
in Canada, it must be stated that while Canada has lagged somewhat 
behind some countries, particularly certain Scandinavian countries, in 
rigorous control over the quality of its fisheries products for both home 
consumption and export, it is well ahead of many other countries in 
this respect. Fisheries technological stations were instituted by the 
Biological Board of Canada (now the Fisheries Research Board ot 
Canada) at Halifax on the Atlantic coast in 1925, at Prince Rupert on 


206 EIGHTH PACIFIC SCIENCE CONGRESS 


the Pacific coast in 1926 (later moved to Vancouver in 1942), and on the 
Gaspé coast of Quebec in 1936. These stations, with the assistance of 
the Federal Department of Fisheries and the collaboration of Canadian 
fish processers, have gone far in the investigation of the basic principles 
underlying the utilizations of fishery products, and the applications of 
these principles. 

The writer would draw attention, however, to the fact that not only 
some of the principles known to the Ancients, but also those developed 
through modern scientific research directed towards the handling and 
processing of fishery products in many countries, are sometimes over- 
looked or find delayed and slow application in the very countries where 
the principles were or are being evolved. Mention has been made of 
the opening of a fish gate on the Sabbath to allow fish to be sold in 
Jerusalem before it might spoil on further holding; in this so-called 
enlightened age there are still cases where fresh fish are held over for 
later sale to the detriment of its quality because of man’s cupidity, 
where a hint from the cited solution might improve matters. ‘The ex- 
ample of the Athenians in securing snow from Mt. Parnassus to preserve 
the delicacy of their oysters frequently is forgotten when fresh fishery 
products are transported long distances or held for considerable lengths 
of time without benefit of the crushed or “snow” ice now so readily 
available at many fishing ports. A publication only a month ago from 
the fisheries technological station with which the writer is connected 
described some experiments dealing with the transportation of freshly 
caught salmon in a tank of chilled sea water aboard the fishing vessel; 
already numerous inquiries have been received from Canada and several 
other countries for further details, yet it is merely an application of the 
cited invention of Archimedes in providing a tank of sea water on 
board a Roman vessel, and also almost a repetition of experiments car- 
ried out by another station of this Fisheries Research Board of Canada 
and published as a public Bulletin in 1931. 

Other instances could be cited to illustrate the lack of application 
of known beneficial principles, freely published and readily available, 
but often forgotten, that could be used to good advantage in the hand- 
ling and processing of fishery products from the West Coast of Canada, 
the rest of Canada, and elsewhere. But until more attention is paid to 
the condition and perishable nature of many such products, careless 
handling, gluts of raw materials, or undue haste in processing to fill 
a rush order will continue to give rise to instances of dissatisfied cus- 
tomers who will think twice before again buying a similar product. 

As for the odours from the household cooking of fish, even high 
quality fish products certainly can give rise to characteristic odours, but 


a a 


UTILIZATION OF MARINE PRODUCTS OF CANADA 207 


these should be considered just as normal as those from the cooking of 
meats, fowl, or certain vegetables. It is unfortunate that fish of slightly 
inferior quality causes cooking odours disproportionately more objection- 
able than those from a correspondingly inferior quality of most other 
food products. Means are known for mitigating the cooking odours 
from fish; among the simplest is dipping the fish or fish flesh in a dilute 
solution of lemon juice, or its counterpart of harmless citric or tartaric 
acid, just before cooking. Such flavour as may be imparted by the juice 
or the acids is practically indistinguishable from that imparted in the 
common procedure of squeezing a slice of lemon over the cooked fish. 

In conclusion, it should be stated that despite what has been im- 
plied above concerning sometime deficiencies of quality and home con- 
sumption of Canadian fisheries food products, the West Coast of Cana- 
da’s fisheries industries are well to the fore in the disposal of their waste 
materials not intended for human food. Good use of these materials 
is made in the manufacture of by-products. Descriptions of the process- 
ing, nature, and potentialities of these by-products have been given from 
time to time in publications from technological laboratories of the 
Fisheries Research Board of Canada and elsewhere, and current re-- 
search is promptly reported. Among recent commercially developed 
by-products now receiving considerable attention are fish and whale 
solubles resulting from the press liquor recovered from the manufacture 
of oil and meal, and liquid or semi-liquid digests made by acid, alkali. 
or enzymic action on whole fish or fish processing scrap. Both the above 
products are finding application in animal feeding and agricultural. 
fertilizer fields. 


FABRICATION, DEFINITION ET REGLEMENTATION DE LA 
SAUCE DE POISSON VIETNAMIENNE “NUOC-MAM” 


Par J. GUILLERM et A. VIALARD-GOUDOU 
Laboratoire du Nuoc-mam a& UInstitut Pasteur de Saigon, Vietnam 


Les diverses populations d’Extréme-Orient, de I’Inde au Japon trou- 
vent dans le riz la base de leur nourriture habituelle. Leur ration ali- 
mentaire peu sapide est complétée par des sauces azotces et salées qui 
en relévent le gotit et enrichissent les préparations culinaires. 

Certaines régions utilisent l’azote emprunté au regne végetal, lé- 
gumineuse comme le soja (Japon, Chine), d’autres l’azote d'origine 
animale des poissons ou crustacées (Cambodge, Indonésie, Laos, Philip- 
pines, Siam, Vietnam). 

Le nuoc-mam du Vietnam qui nous intéresse ici, comme le patis des 
Philippines (Avery, 1950), représente une préparation liquide qui se 
différencie par son nom méme qui veut dire “eau de mam’? des pre- 
parations pateuses dites “mam” qui sont a peu prés similaires au prahoc 
cambodgien, au padec laotien, au bagoong philippin, au trasi malais. 

Le nuoc-mam, véritable denrée alimentaire nationale est préparé 
en de nombreux centres saumuriers le long des cdtes du Vietnam depuis 
Vile de Phu-Quoéc au Sud jusqu’a Cat-Hai au Nord. 

Les grands centres de production sont ceux de I’ile de Phu-Quéc 
et surtout de la province du Binh-Thuan avec son cheflieu de Phan- 
Thiet. 

En 1944, derniere année de statistique normale la production était 
de 75 millions de litres. 

I] y aurait d’y ajouter le nuoc-mam fabriqué avec du poisson d’eau 
douce le long des rivieres du Sud-Vietnam et dont la production aug- 
mente de jour en jour. 

En 1914, sur la demande de I|’administration, Rosé de |’Institut Pas- 
teur de Saigon commenca l'étude scientifique du nuoc-mam. 

Le 21 décembre 1916, les autorités administratives adoptant les con- 
clusions de Rosé prenait le premier arrété qui donnait une définition 
légale du nouc-mam et permettait de lutter contre la fraude. 

Depuis l'industrie du nuoc-mam a fait l’objet de plus de 25 publica- 
tions de toute une série de travailleurs de l'Institut Pasteur de Saigon. 


1 Cette expression peut se traduire plus librement par jus de poisson fermentc¢. 


208 


SAUCE DE POISSON VIETNAMIENNE ‘“‘NUOC-MAM” 209 


FABRICATION Du Nuoc-Mam 


La fabrication du nuoc-mam minutieusement décrite par Rosé 
(1918 a et b) exige des cuves, du poisson et du sel marin. En voici un 
résumé d’aprés cet auteur. 

Poissons.—Une grande variété de poissons sert a la préparation du 
nuoc-mam, les plus petits sont les plus employés car leur lyse est plus 
rapide. 

Les principales especes péchées et identifiées par l'Institut Océano- 
graphique du Vietnam sont suivant Chabanaud (1924) et Chevey 
(1931). 

Ca nuc Decapterus russelli-Carangidés. 

Ca moi Dorosoma nasus et D. chacurda-Dorosomatinés-Clupeidés. 

Ca lam Spratelloides delicatulus-Dussumierinés-Clupeidés. 

Ca lep Divers Septipinna et Engraulis-Engraulinés-Clupeidés. 

Ca com Divers Stolephorus Engraulinés-Clupeidés. 

Ca tap poissons de différentes espéces. 

En dehors du Ca moi qui fournit une quantité appréciable d’huile, 
le Ca nuc et le Ca com sont les poissons de choix du saumurier. 

Sel.La qualité du sel est importante. Le sel le plus propre a la 
fabrication est le sel marin sec sans aucune matiére étrangére. Le sel 
fin n’est pas a recommander. Le produit fourni par le monopole des 
Douanes et Régies renferme environ 25 p. 100 d’humidité et de sels 
étrangers ol. dominent les sels de magnésium. 

Technique saumuriére.—La fabrication du nuoc-mam se fait sui- 
vant les mémes principes dans tout le Vietnam. Seuls varient quelques 
tours de main propres a chaque saumurier et qui déterminent le fumet, 
lee cru: 

Cette fabrication peut se diviser en: 

a) Mise en cuve du poisson et du sel. 

Les cuves sont en général des récipients en bois (parfois en terre 
cuite) de forme cylindrique au tronc conique dont le volume varie 
entre 200 et 4000 litres. Elles sont munies a la base d’un robinet dont 
lentrée est protégée par un filtre. On y place le poisson frais non €vis- 
céré et le sel en couches alternées a raison de deux, trois ou quatre 
paniers de poisson pour un de sel. 

b) Courte macération de trois jours environ qui fournit un premier 
jus rougeatre appelé nuoc-bdi.? 

Le nuoc-b6i est soutiré, placé dans des jarres ouvertes a l’air pendant 
un nombre de jours variable, puis replacé en entier ou par moitié sur 
la cuve. L’autre moitié, parfois réservée sert pour les lessivages. Apreés 


2 Boi: rejeter. Nuoc-boi: eau rejetée: jus non utilisable. 


210 EIGHTH PACIFIC SCIENCE CONGRESS 


extraction du nuoc-bdi, la partie supérieure de la cuve est recouverte 
d’une couche épaisse de feuilles de latanier qu’on maintient solidement 
pressée a l’aide de traverses en bois fixées par des coins. 

c) Soutirage du nuoc-nhut (premier jus). 

La cuve ainsi mise en pression est laissée au repos pendant deux 
A six mois, robinet fermé suivant le poisson, le taux de sel, un premier 
soutirage donne un liquide de qualité supérieure riche en azote, de 
caracteres organoleptiques tres appréciés. C’est le nuoc-nhut que l’on 
vend en partie mais dont la plus grande part est le plus souvent utilisé 
pour couper les eaux de lessivage ou pour rendre marchand les produits 
trop pauvres en azote des derniers épuisements. 

d) Soutirage du nuoc-mam. 

Le contenu de la cuve alors épuisé par lixiviation donne le nuoc- 
mam. Cette opération s’effectue a l’aide de liquides de macération 
provenant de cuves plus anciennes, puis a l’eau salée a 25 p. 100 environ, 
elle est renouvelée plusieurs fois et fournit des produits de moins en 
moins riches en azote solubilisé. Lorsque l'épuisement est terminé, cette 
opération dure parfois plusieurs mois, le liquide de soutirage peu coloré 
est trop pauvre et on le laisse dans la cuve pour servir ultérieurement 
aux lessivages de nouvelles cuves. 

Le résidu resté dans la cuve, constitué par le poisson épuisé est 
dénommé Xac mam. Ii est utilisé tel quel comme engrais. Toutes ces 
opérations ont leur raison d’étre, que les recherches de laboratoire de 
Guillerm (1930) ont permis de mettre en évidence. 

La teneur moyenne en azote des diverses espéces de poissons servant 
a la fabrication du nuoc-mam varie entre 2,28 a 3,58 p. 100 du poisson 
frais. 

Le rendement en nuoc-mam d’une cuve est conditionné par la qua- 
lité et la quantité du poisson qu’on y met, il est couramment de 70 p- 
100. Le fabricant ne pourra extraire de sa cuve plus d’azote qu'il en a 
mis. 

Le nombre de paniers de poissons peut servir de base au rendement 
et C'est ce qui se passe en réalite. 

Essai d’industrialisation. 

A part quelques sociétés vietnamiennes et chinoises, la fabrication 
du nuoc-mam constitue au Vietnam une industrie surtout familiale. 

Diverses tentatives de développement de la production par I’installa- 
tion d’usines disposant de moyens matériels modernes ont échoué, car 
la technique de fabrication généralement suivie consistait 4 exploiter 
divers brevets utilisant l’autoprotéolyse du poisson en milieu aseptique 
ou antiseptique. 


SAUCE DE POISSON VIETNAMIENNE ‘“‘NUOC-MAM” Vaal 


C’est une erreur fondamentale car |’autolyse seule de la chair de 
poisson n’aboutit pas au nuoc-mam. Les caractéres organoleptiques qui 
font apprécier ce produit par les consommateurs odeur, saveur, sont 
exclusivement dus a une fermentation microbienne, anaérobie stricte 
comme l’ont montré Boez et Guillerm (1930). 


DEFINITION ET CARACTERES DU Nuoc-Mam 


Le nuoc-mam est donc le produit résultant de la lyse de poissons 
avec fermentations limitées par la présence de sel marin. 

Au point de vue scientifique c’est le résultat de la protéolyse du 
poisson frais dans une solution concentrée de sel marin protéolyse réa- 
lisée par les diastases des organes digestifs et par une série de germes 
ana€érobies. En méme temps que la molécule protidique se transforme 
en acides aminés, il prend naissance toute une scrie de corps provenant 
de la dégradation qui donnent au nucc-mam son ardme spécial et ses pro- 
priétés apéritives et digestives tant prisées des Vietnamiens. (Vialard- 
Goudou 1953). 

Le nuoc-mam résultant d’actions biologiques complexes est un pro- 
duit a caractéres variables tout comme le vin. 

Les stades de la fabrication montrent en effet l’intervention de 
divers facteurs. 

Ainsi s'il n’y a pas assez de sels, l’action des bactéries deviendra 
putréfiante avec augmentation de l’ammoniaque formée, s'il y en a trop, 
la protéolyse sera retardée. Un lessivage trop abondant donnera des 
produits pauvres en azote utilisable et de faible valeur alimentaire. Un 
soutirage trop rapide donnera un nuoc-mam qui se conservera mal par 
insuffisance de désintégration des protides. 

Cependant un bon nuoc-mam représente certains caractéres qui ne 
varient que dans des limites bien déterminées. 

Quelle que soit la durée de la fabrication il n’est pas posible de 
dépasser la proportion de 75 a 77 d’azote dosable par la méthode au 
formol de Sérensen pour 100 d’azote total. Si la teneur en azote formol 
est inférieure a 50 p. 100 le nuoc-mam obtenu est instable; la moitié 
au plus de l’azote formol peut étre sous forme ammoniacale: un taux 
plus élevé d’azote ammoniacal indique une désamination des acides 
aminés avec altération du produit. 

La différence entre l’azote total et l’azote ammoniacal donne I’azote 
organique; la différence entre l’azote formol et l’azote ammoniacal 
donne l’azote des acides aminés. En outre un certain taux de sel, 25 p. 
100 en moyenne, est nécessaire pour assurer la conservation du nuoc- 
mam. 


212 EIGHTH PACIFIC SCIENCE CONGRESS 


REGLEMENTATION DU Nuoc-MAM 


Nous citerons simplement le dernier arrété du 17 novembre 1943 
qui reprend l’essentiel de l’arrété du 21 décembre 1916. Voici les cing 
premiers articles qui nous intéressent directement: 

Article premier.—En Indochine, il est interdit de fabriquer, d’ex- 
poser, de mettre en vente et de vendre, sous la dénomination de nuoc- 
mam ou de nuoc-nhut ou des termes synonymes, tout produit autre que 
celui obtenu par les usages courants et loyaux de la technique saumu- 
riere traditionnelle annamite. 

La dénomination de nuoc-nhut est réservée aux premiers jus des 
cuves, dont la fraction liquide est exclusivement constituée par l’eau de 
constitution du poisson. 

La dénomination de nuoc-mam deésigne les produits obtenus par 
la dilution du nuoc-nhut ou par |’épuisement des cuves a l'eau salée. 
Ces produits doivent répondre aux conditions exigées par les articles 
suivants. 

Art. 2._Les nuoc-nhut et nuocmam constitués par la dissolution 
de la chair de poisson a un certain degré de désintégration sont des 
solutions limpides sans dép6t appréciable, d’odeur et de saveur sui-gén- 
éris, suffisamment salées pour ne présenter aucun indice de putréfaction. 

Art. 3.—Les qualités substantielles du nuoc-nhut et du nuoc-mam 
dépendent: 

1°) de leur richesse en poisson; 

2°) du degré de désintégration de la chair du poisson; 

3°) de leur valeur alimentaire. 

La richesse du poisson est donnée par la teneur en azote total 
exprimée en gramme par litre. 

Le degré de désintégration de la chair du poisson s’exprime par 
la teneur en azote formol qui doit étre comprise entre 50 et 77 p. 100 
de l’azote total. 

La valeur alimentaire ou teneur en principes utiles exige que le 
taux d’azote ammoniacal ne dépasse pas la moitié de |’azote formol. 

Le nuoc-nhut et le nuoc-mam fabriqués et mis en vente devront 
répondre aux caractéristiques suivantes: 

Pour le nuoc-nhut: 


INES MORN Sola hob bob0 5 olawod ase 18 g. par litre au moins. 

LNAHTS: WOT GS Sob boo sou Soe de T 50 a 77 p. 100 de J’azote total. 

AZOLE vaImmoniaCaley | vers. el: 50 p. 100 au plus de Il’azote formol. 
Pour le nuoc-mam: 

AZOLE MLO Callig Paar naturel sve epee nnn cron is 15 g. par litre au moins. 

ENZO LE PLOTINO Mate torso tn tein rerelary. 50 a 77 p. 100 de l’azote formol. 


Azote ammoniacal vere ee 50 p. 100 au plus de l’azote formol. 


SAUCE DE POISSON VIETNAMIENNE “NUOC-MAM” 213 


Tout nuoc-nhut ou nuocmam dont le taux d’azote ammoniacal 
atteint ou dépasse 75 p. 100 de l’azote formol est considéré comme cor- 
rompu. 

Art. 4.—Est autorisé: l’addition du sucre caramélisé ou non, mélas- 
se, miel, thinh ou riz grillé dans les cuves de préparation. 

Art. 5.—Sont interdits et considérés comme manoeuvres illicites: 

a) la mise en cuve de poisson en mauvais état de conservation; 

b) V’enrichissement des eaux de lessivage ou des nuoc-nhut et nuoc- 
mam par toute matiere azotée autre que celle provement des cuves; 

c) lusage d’eaux de lessivage ammoniacales ou putrides; 

d) Vusage des antiseptiques, des produits chimiques, des matieres 
colorantes. 

Cet arrété supprime le privilege des nuoc-mam du Nord-Vietnam 
qui pouvaient contenir seulement trois grammes d’azote total par litre 
et établit ainsi une législation unique pour 1|’Indochine. 

Peu apres, l’arrété du 29 mars 1944 fixa une période de transition 
de deux ans pour la teneur en azote total, soit: 

1] g. pour le Cambodge, la Cochinchine et les provinces du Binh- 
Thuan, Khanh-Hoa, Haut-Donnai et Lang-Biang. 

3 g. pour les autres centres de production. 

Par décision du Gouvernement du Vietnam cette période de transi- 
tion dure encore. | 


RESUME 

Pour permettre l’absorption d’une alimentation a base de riz, tous 
les peuples de ]’Extréme-Orient l’additionne de sauces condiments salées 
a base de matiéres protidiques fermentées (soja ou poisson). 

Au Vietnam, c’est la sauce de poisson “nuoc-mam’’ trés voisine du 
“patis’” des Philippines et dont la production annuelle en 1944 fut de 
75 millions de litres qui remplit ce réle. 

Apres un bref exposé de la technique de fabrication les auteurs 
rappellent que ce sont les travaux des chercheurs de I’Institut Pasteur 
de Saigon exposés dans plus de 25 publications depuis 1918 qui ont 
permis de fournir la définition et de fixer les caractéres d’un bon nuoc- 
mam. Ils terminent en donnant la derniére reglementation qui peut 
intéresser les pays, comme les Philippines, ot l’on consomme des pro- 
duits analogues au nuoc-mam. 


BIBLIOGRAPHIE 
Avery, A. C. (1950)—Fish processing handbook for the Philippines. Fish 
and Wildlife Service, U.S. Dept. of the Interior, Research Report No. 26, 
pp. 24-27. 
Borez, L. et GuILLeRM, J. (1930)—Le facteur microbien dans la fabrication 
de la saumure indochinoise (nuoc-mam). C, R. Ac. Sci. 19¢, 534, 


214 EIGHTH PACIFIC SCIENCE CONGRESS 


CHABANAUD, P. (1924)—Inventaire de la faune ichtyologique de l’Indochine 
—lére liste. Bull. Econom. Indoch., fascicule VI, No. 169, 561. 

CHEvEY, P. (1931)—Inventaire de la faune ichtyologique de l’Indochine— 
2eme liste. Publication Inst. Océanogr.. Indochine—19é note. 

GUILLERM, J. (1930)—L’explication scientifique d’un phénoméne empirique: 
la production du nuoc-mam. Transactions of the 8th. Congress of the 
F.E.A.T.M. Bangkok, 1, 122. 

Ross, E. (1918a)—Recherche sur la fabrication et la composition chimique du 
nuoc-mam. Bull. Econom. Indochine 1918, 129, 155. 

Rosg, E. (1918b)—Le nuoc-mam du Nord, composition chimique et fabrication. 
Bull. Econom. Indochine 1918, 132, 955. 

VIALARD-GoubOoU, A. (1953)—Etude chimique, bactériologique et valeur ali- 
mentaire de la sauce de poisson vietnamienne nuoc-mam. Proceedings of 
the Eighth Pacific Science Congress (sous presse). 


STUDIES ON AGAR-AGAR IN JAPAN * 
By T. YANaGAWA? and K. Tani? 


INTRODUCTION 


Agar-agar, a kind of carbohydrate contained in red algae belonging 
to Gelidium species, is one of the celebrated local products of Japan, 
manufactured by a special process which was developed in this country 
nearly 300 years ago. Numerous investigations have been made from 
the point of view of both applied and pure science. 

We believe it advisable to commence with a brief description of 
the customary method of manufacturing agar-agar in Japan(l). The 
cleaned algae is first extracted with boiling water faintly acidified with 
sulphuric acid, and by natural cooling of the extracted filtrate, agar- 
agar hydrosol can be coagulated as a gel (1-2%). After it is cut pro- 
perly it is placed outdoors in winter, so that the night cold freezes it, 
while during the day the warmth gradually thaws the frozen ice into 
water, which flows away. The last step is to dry it in the open air until 
the product is obtained in a final dry form. Chemical changes in the 
course of preparation have been investigated by Araki (2). 

The above-mentioned process takes more than half a month and 
since it depends to a great extent on natural weather conditions, it 
must be considered unsatisfactory. In order to remove this drawback, 
several new methods have recently been devised, such as mechanical 
freezing or the application of heat from hot springs. ‘The main problems 
to be solved are how to produce economically and efficiently a good 
quality product by mechanical means and how to produce agar-agar 
from Gracilaria confervoides by chemical treatment. 


I. PROPAGATION OF SEAWEEDS USED FOR AGAR-AGAR 


Efforts have been made to promote the propagation of the seaweeds 
which are used as the raw material of agar-agar. For instance, the reefs 
were cleaned with simple implements so as to improve the production 
capacity of the growing areas and the growing areas were extended by 
submerging rocks and stones on the sea-bottom. Except in a few cases, 


* By courtesy of the Japanese Government, a Member Government of IPFC. 
1Doshisha University, Kyoto, Japan. : : : 
2 Northeast Sea Regional Fisheries Research Institute, Shiogama City, Japan. 


215 


216 EIGHTH PACIFIC SCIENCE CONGRESS 


however, these methods have not always been effective and further work 
must be carried out. 

The seasons for spore formation and liberation have been studied 
by many authors. In Gelidiwm Amansii the tetra-spores begin to be 
shed late in spring when the temperature of the sea water rises to 21°- 
22°C., and the carpospores at temperatures of 24°-25°C. (3) (5). In 
Gelidium fastigiatum both spores begin to be shed at about 20°C. (4). 

The liberation of the matured spores occurs almost every afternoon 
during the season. Sometimes about 100 spores per liter were founded 
in the sea water near a Gelidium field. ‘The spores fix themselves on 
the rock surface after having lain in contact with it for about ten 
minutes (5). 

The germination of spores and their later development into young 
plants have been reported on by Ueda and Katada (6) (11). According 
to their reports, some of them rise up erectly to form an upright bush, 
while others form creeping stolons which afterwards emit new upright 
buds. 

The temperature ranges for normal germination were experiment- 
ally estimated at 10°-30°C. (optimum 25°—26°C.) in Gelidium Aman- 
sit. (7) and at 10°-25°C. (optimum 16°C.) in Gelidium subfastigia- 
tum (4). Low salinity (<1.020) delays the growth of primary rhizoids. 
Colors of the prevailing light seem to have some effect on the growth 
of the germ lings of Gelidium. 

In the northern part of Japan negative correlation was found be- 
tween the yields of Gelidium and the sea water temperature in winter, 
and Gelidium was not found in the sea where the minimum temperature 
fell below 2°C. (4). 

Okamura (8),, Ueda (9), and Ueda-Katada(6) obtained some data 
for the growth of Gelidium Amansii in the southern part of Japan. 
The plants are perennial. They grow very slowly in autumn, but ra- 
pidly in winter and spring, reaching lengths of about 10 cm. in the first 
year, about 18 cm. in the following year and more than 20 cm. in the 
third year. ‘The annual yield amounts at a maximum to about 3 Kg. 
wet weight per square meter. 

Okamura (8) found that small pieces of Gelidium plants regenerate 
rhizoids and continue to grow on a new substratum. 

The researches on the relationship between Gelidiwm and other 
algae and animals living in association on the Gelidiwm field may be 
important, but the work on this subject is still incomplete. The young 
plants are damaged by being covered by algae such as various species 


STUDIES ON AGAR-AGAR IN JAPAN PANT ( 


of Corallinaceae (10) and Helposiphonia(11). Some Gastropoda were 
found to feed on them(11). Research is now being carried out in co- 
operation with phycologists on the ecological relationship between Geli- 
dium and Corallinaceae. 

Some trials to “cultivate” these algae have been made. Kinoshita 
and Hirobe (12) were successful in seeding the spores of Gracilaria 
confervoides on an experimental scale. Fujimori hung the Gelidium 
plants on hemp-palm rope from a bamboo buoy in a calm inlet. He 
found that the plant grew twice as much in weight every month of the 
late winter as it had in the preceding month (S. Suto). 


IJ. THE RELATION BETWEEN JELLY-STRENGYH AND CHEMICAL 
CONSTITUENTS OF AGAR-SUBSTANCES 


Generally speaking, mucilages of red algae (geloses) are ester-sul- 
phates of galactan, but there are in fact various kinds. After studying 
each gelose for each kind of red algae, the following results have been 
obtained: The more sulphuric acid is combined in it the weaker is 
the jelly-strength obtained, and vice versa. Sulphuric acid content va- 
ries widely from | to 259% (13). There are two kinds of sulphuric acid 
combined, one of which remains in the ash when the geloses are burnt 
while the other does not. Sulphuric acids are combined in geloses by 
two types, one of which is R-SO,-R’ and the other R-SO,-M (R being 
polysaccharide and M metal). Analysing geloses of many kinds of red- 
algae, and representing the results on a graph having a mel-ratio of 
hexose/total SO, as its ordinate and that of total SO,/SO, in ash as its 
abscissa, we get a line nearly parallel to the ordinate for geloses of all 
red-algae which have sufficiently strong jelly-strength to be utilized as 
material for agar-agar, and similarly we get a line parallel to the abs- 
cissa for geloses of red algae having little jelly-strength and which are 
utilized for stiffening textiles. At the same time, geloses of these kinds 
of red algae which have a weaker jelly-strength are found to be repre- 
sented by a line located intermediately between the two above-men- 
tioned lines (13). Moreover, when gelose (SO, ca. 9%) of a kind of 
Gracilaria confervoides, represented by the intermediate line, is treated 
with dilute alkali solution, a part of the sulphuric acid is easily sepa- 
rated, resulting in an increase of jelly-strength. “Those which have 9% 
sulphuric acid are very weak in jelly-strength, but when the sulphuric 
acid content is finally reduced to 2% (comparable with that of agar- 
agar), jelly-strength increases remarkably so as to be comparable with 
that of agar-agar (14). It is also reported (15) that the addition of 


218 EIGHTH PACIFIC SCIENCE CONGRESS 


CaCl, during alkali-treatment favors jelly-strength. Taking advantage 
of this, attempts have recently been made to manufacture agar- aga from 
cheaper material, e.g., Gracilaria confervoides. 


III. RHEOLOGICAL STUDIES OF AGAR-HYDROSOL AND GEL 


a) Visco-elasticity of agar-hydrogel(16):—The experimental pro- 
cedure adopted was that used by Schwedoff (1889), Hatschek and Jane 
(1926), and Poole (1926), the apparatus being composed of two concen- 
tric cylinders, the intervening gap being filled with gel and the inner 
cylinder being suspended by a tortion wire. When the top of the tor- 
tion wire is twisted, the rigidity G of the gel is determined; the elastic 
equilibrium is attained immediately, and the viscous flow commences, 
so that the inner cylinder is observed to move gradually. 

Experimental results obtained are as follows. Elastic deformation 
is Hookeian in the range of strain studied (shear rate 0.1—0.6), and ri- 
gidity G markedly increases with the increase of concentration: 

G(dyne/em.2) 2.1X10-1 4.8x10-1 1.27 1.46X10 3.7102 

Cone. (%) 0.039 0.053 0.062 0.12 0.28 

Viscous flow is anomalous; it increases along with the increase of 
shear strain, namely with the increase of deflection of the inner cylinder. 
The visco-elastic behaviour of agar-gel is described by the three-element 
mechanical model. 

b) Thermo-elastic property of agar-hydrosol (17):—Aqueous solu- 
tion of agar, gelatin, pectin, etc. or benzene solution of some metallic 
soaps make elastic jellies. The principal characteristic of these gel states 
is shape-durability and high elasticity in spite of a relatively high con- 
tent of solvent. 

The thermo-elastic property of agar-hydrogel was studied according 
to Meyer and Ferri’s scheme (1935) for determining the elasticity of 
rubber. ‘Thus, both the energy contribution and the entropy contri- 
bution to elasticity can be discussed from the stress-temperature curve 
under a constant strain. 

The experimental device was the same as has been mentioned in the 
previous section (a). Experimental results show that the elastic force 
gradually decreases with increase of temperature. This means that the 
elastic force of gel is concerned with the increase of internal energy and 
also with that of entropy by deformation; this situation is similar to 
the behaviour of metals and crystals. 

The nature of the high elasticity of gel seems to be somewhat dif- 
ferent from that of rubber elasticity, which is chiefly attributed to the 


STUDIES ON AGAR-AGAR IN JAPAN 219 


decrease of entropy by deformation. The agar molecule is considered 
to be a galactan chain accompanied by sulphate radicals here and there. 
A lattice-like configuration of these poly-electrolyte chains in water 
might be the internal structure of the gel state. 

c) Viscosity of much diluted agar-hydrosol (18) :—The gel-forming 
property of agar is so strong that even a 0.04% solution distinctly ex- 
hibits elasticity as has been described in (a), and anomalous viscosity 
is observed in these concentrations. Accordingly it is necessary to ex- 
periment with much diluted (under 0.04%) systems in order to test the 
purely viscous behaviour of the solution. 

Measurements were made by the ordinary methods using Ostwald’s 
visco-meter in the concentration range 0.01—0.04%, and ésp./c (specific 
viscosity divided by concentration) were plotted against concentration. 

ésp./c decreases with the decrease of concentration, passes through 
the minimum, and then increases again with further decreases of con- 
centration, and if a strong electrolyte such as KC] is added to the solu- 
tion, ésp./c decreases eventually with the decrease of concentration. 
This behaviour is the same as that of other poly-electrolyte solutions. 

Intrinsic viscosity defined as [é] = [ésp./c]c — 0 is concerned with 
the extension of the molecule in the solution. And from the evaluation 
of the intrinsic viscosity of agar-hydrosol, it is supposed that this poly- 
electrolyte has a much stretched non-spherical configuration in water; 
[€] of agar-hydrosol is much larger than that of the ordinary random- 
coil non-polar polymers. 


ITV. ORGANIC-CHEMICAL INVESTIGATIONS ON AGAR-AGAR 


Araki has investigated the chemical constitution of agar-agar. He 
isolated D, L-galactose and L-galactose (19) and reported on acetylated 
agar, heterogeneous composition, and percentage compositions (20) of 
agar-agar. lL-galactose from methylated agar has been confirmed (21). 
2,4,6-trymethyl-D-galactose, 2,4-dimethyl-3, 6-anhydromethy]-L-galacto- 
side, 2-methyl-3, 6-anhydro-L-galactose dimethylacetal and pentamethy]- 
D-galactosido-3, 6-anhydro-methyl-L-galactoside have been isolated from 
methylated agar (22). 3,6-anhydro-galactose has been synthesized (23) 
and 3,6-anhydro-L-galactose has also been isolated from agar-agar (24) 
as its dimethylacetal by methanolysis of agar-agar and as its diethylmer- 
captal by mercaptolysis, from which 3,6-anhydro-L-galactose has been 
separated in free state. Again isolation and chemical constitution of 
agarobiose and isoagarobiose have been studied (25). A new disaccha- 
ride C,.H,,O,, has been obtained by hydrolysing agar-agar with IN 


220 EIGHTH PACIFIC SCIENCE CONGRESS 


H,SO, for an hour and has been named Agarobiose by one of the au- 
thors. ‘The same substance was subsequently obtained from agar-agar 
as its dimethylacetal by partial methanolysis and as its diethylmercaptal 
by partial mercaptolysis, from which free agarobiose has been isolated 
respectively by the separation of methyl alcohol and ethylmercaptan. 

It reduces Fehling’s solution and gives q-methyl-D-galactoside and 
3,6-anhydro-L-galactose dimethylacetal by methanolysis with 2% HCI- 
CH,OH. By preliminary treatment with 0.5% HC1-CH,OH and fur- 
ther methylation with Purdie’s reagents, agarobiose gives hexamethyl- 
agarobiose dimethylacetal (b.p. 155-6° /0.052 mm., [a], — 11° [H,O]). 
When this methylated derivative is left in IN H,SO, at ordinary 
temperature for 182 hours, it is changed to hexamethyl agarobiose, 
C,,H,,0, (OCH;),, .[a], — 44° (H,O). 

As hexamethyl-agarobiose dimethylacetal gives 2,3,4,6-tetramethy]l- 
methyl-D-galactoside and 2,5-dimethyl-3,6-anhydro-L-galactose dimethyl- 
acetal by methanolysis with 2% HCI-CH,OH, it can be concluded that 
the hexamethyl-agarobiose dimethylacetal is 4-2,3,4,6-tetra-methyl-D-ga- 
lactoside< 1,5>-2,5-dimethy1-3,6-anhydro-L-galactose dimethylacetal. Fur- 
ther, from the fact that the specific rotatory power of the acetal is small, 
it can be assumed that the sugar is a #-galactoside. ‘Therefore, the 
chemical constitution of agarobiose is illustrated by Figure A: 


CHO + as i 
HO-C-H H-C-OH 
BO | 
H-C—— HO-C-H O 
Eoin HO-C-H 
ee a9 | 
HO_ 62H "| 
H | — CH.OH 


Fic. A.—Agarobiose 


The constitution of agar-agar together with the mechanism of the 
formation of 3,6-anhydro-L-galactose in marine algae was discussed (26). 
Taking into consideration the isolation of 2,4,6-trimethyl-D-galactose 
and 2-methyl-3,6-anhydro-L-galactose from the methylated agar by hydro- 
lysis as well as the isolation of agarobiose from agar-agar by partial hy- 


STUDIES ON AGAR-AGAR IN JAPAN 221 


drolysis, it may be possible to conclude the existence of the above linkage 
(Fig. B), in the molecule of agar-agar (26): 


/ 


O 
i 
CH CH 
HO-C-H H-C-OH 
) | Bo | 

Hee O ——C-H O 

| | 
H-Gsl] 00 / HO-C-H 

ee | 

io H-C 
H.C CH.OH 


Fic. B 


Further it must be mentioned that the partial methanolysis product 
of agar gives about 50° of agarobiose dimethylacetal. 

The above-mentioned experimental results cannot be explained by 
the formula proposed by Jones and Peat (1941), showing that nine re- 
sidues of D-galacto-pyranose are combined mutually by 1,3-glycosidic 
linkage and at reducing end of D-galactose residue joins L-galactose-6- 
sulphate or 3,6-anhydro-L-galactose through 1,4-linkage, but rather it 
may be explained better by the assumption that in the molecule of agar, 
agarobiose units are repeated. 

Comparative studies on the chemical constituents of agarous sub- 
stance of Gelidium Amansii, Campylaephora Hypnaeoides, Acanthopel- 
tis Japonica, and Gelidium subcostatum have been reported. 


REFERENCES 


1) YANAGAWA, T. Kanten (Agar-agar), Book (Japanese), 352 pages (1942). 
2) ARAKI, C. J. Chem. Soc. Japan; 58, 1085 (1937). 

3) TAKAYAMA, K. J. Fish. Scv.; 34, 211 (1989). 

4) KINOSHITA, T. (1950). 

5) Suto, S. Bull. Jap. Soc. Sci. Fish.; 15, 671 (1950). 

6) Uspa, S. and M. Katana. Ibid.; 11, 175 (1948). 

7) KatTapA, M. IJbid.; 15, 359 (1949). 

8) Okamura, K. J. Imp. Fish. Inst.; 18, (3), (1921). 

9) Uspa, S. Bull. Jap. Soc. Sci. Fish.; 5, 183 (1986). 
10) TAKAMATSU, M. Trans. Res. Inst. Nat. Resources; 6, 55 (1944). 
11) Uspa, S. and M. Katana. Bull. Jap. Soc. Sci. Fish.; 15, 354 (1949). 


222 EIGHTH PACIFIC SCIENCE CONGRESS 


12) Kinosuita, T. and T. Hirose. Monthly Rep. Hokkaido Fish. Inst.; 3, 
(%), 27 (1946). 

18) YanaGAwa, T. Bull. Jap. Soc. Sci. Fish.; 17, 305 (1952). Doshisha Eng. 
Review; 1, 53 (1951). 

14) YANAGAWA, T. Bull. Osaka Ind. Res. Inst.; 17, (6), (19386): Bull. Jap. 
Soc. Sci. Fish.; 6, 274 (1938): Ibid.; 10, 237 (1942). 

15) FuNaAKI, K. and Others. Ibid.; 16, 401, 419 (1951) : Ibzd.; 18, 245 (1952). 

16) NakaGcawa, T. J. Chem. Soc., Japan; 72, 390 (1951). 

17) NaxaGcawa, T. Ibid.; 72, 518 (1951). 

18) Nakacawa, T. Ibid.; 72, 625 (1951). 

19) ARAxr, C. Ibid.; 58, 958 (1987): 59, 424 (1988). 

20) Araxi, C. Ibid.; 58, 1838 (1937): 58, 1351 (1937). 

21) Araki, C., Y. HASHI and K. ARAI. Ibid.; 62, 845 (1941). 

22) Araki, C. Ibid.; 58, 1862 (1937): 59, 304 (1938): 61, 775 (1940): 62, 
733 (1941). 

23) ARAKI, C. and K. Arar. I[bid.; 61, 503 (1940). 

24) ARAKI, C. I[bid.; 65, 725 (1944). 

25) Araki, C. Ibid.; 65, 533, 627 (1944): Unpublished. 

26) ARAKI, C. Memo. Kyoto Tech. Univ.; 2, B, 17 (1958): Coll. Treatises 
Commemoration 45th. Anniv., Kyoto Tech. Coll.; 76 (1948). 

27) ARAKI, C. Ibid.; 89 (1948). 


iw) 
iw) 
(Se) 


STUDIES ON AGAR-AGAR IN JAPAN 


Mol ratio 


nO 
o) 


15 


10 


: (18) 
xK (19 


(ai,)(12)(15)" (12) (8) (26) 
: 2 4 6 8 Mol ratio 


ty 
yy, 
of s 


ss CURA 


ii 
Oa 
Ae 


1 
(uy 


Oat Dion 
B AC 


th 


4 


A REPORT ON THE STUDIES MADE IN JAPAN ON 
PEARL CULTURE 


By YosuiicH1 MaTsul 
Nippon Institute for Scientific Research on Pearis 


Kyoto, Japan 


The culture of pearls in Japan dates from 1893 when K. Mikimoto 
first produced by culture blister pearls from Pinctada martensii (Diin- 
ker). Then in 1904, T. Mise first succeeded in cultivating spherical 
pearls. He was followed by T. Nishikawa and K. Mikimoto, but it 
was not until 1915 that M. Fujita organized Nishikawa’s method on 
an industrial basis and brought the products to the market. In 1938, 
the total production at 289 culture grounds reached a peak of 560 ke. 
per annum. After this the production slumped and the number of 
culture grounds was also reduced to 106, which were even closed en- 
tirely at one time. However, the recovery starting from 1948 was 
spectacular, and in 1952, the number of culture grounds exceeded 1200 
with a total output of 400 kg. a year. The fresh-water culture of pearls 
has also been continued since it was successfully experimented on Hy- 
riopsis schlegelt (Martens) in 1924, and now has an output of about 
4 kg. a year. 

Until recently the method of pearl culture had been veiled under 
the protection of a patent. But the increasing demand after 1946 made 
it imperative to reorganize the industry on a scientific basis. Thus the 
Nippon Culture: Pearl Co., Ltd., which is the organization of Japanese 
pearl culturists, established a laboratory to carry on basic studies on 
pearl and its culture, in close cooperation with Kyoto University. 
The laboratory afterwards became independent and was reorganized 
into its present form. At present there is a project conceived by the 
Government for setting up the National Research Institute so as to 
meet the marked increase of the numbers of both the culturists and the 
scientific workers. 

The most important task in the study of pearl culture is to find 
out the process in which a pearl is formed. ‘The Japanese pear! cul- 
turists, having developed a high art, seem to have accomplished this 
task. But it is plain, if you observe how pearls are formed under 
natural circumstances, that while they found out a method of trans- 
planting pearl secretion tissue, they have not yet clarified the whole 


225 


226 EIGHTH PACIFIC SCIENCE CONGRESS 


process of pearl formation. K. Isowa tried an experiment on Pinctada 
martensit and obtained a number of seed pearls by giving chemical 
or physical stimuli to its aductor muscle and anterior retructor muscle, 
and patented his method. Y. Matsui, working with Isowa, supposed 
that a substance similar in function to a hormone was first formed by 
the stimulus of a wound, and this hormone-like substance in its turn 
caused abnormal propagation and functional reverses of the epithelial 
cells in the mantle. On this hypothesis, he made various experiments 
with fruitful results. As a result of his histological studies of the mantle 
tissues of Pinctada martensii and Hyriopsis schlegeli, Y. Ojima identi- 
fied four kinds of secretory cells, but after testing the calcium contents 
in the tissue, he concluded that these did not make the glands spe- 
cialized for secreting calcium. Ojima and T. Watanabe are now en- 
gaged in the study of the structure and the process of formation of the 
pearl sac. I. Kawakami transplanted the mantle tissue of Pinctada 
martensw: in the gonad tissue, and saw the outer epidermis propagate 
and complete the formation of pearl sacs in fifteen days, while other 
tissues degenerated. He also reported his studies on the regeneration 
of the mantle. 

With regard to the formation of pearls, the important question 
that the scientists must answer is: What is the mechanism of the cal- 
cium deposition as well as of the shell formation? Our recent efforts 
have been directed to discovering a new explanation to answer this 
question. 

Y. Matsui, S. Tanaka and Y. Uchida are now carrying on experi- 
ments on the calcium deposition in Pinctada martensi and Hyriopsis 
schlegeli, using the isotope Ca,;. When the animal was kept in water 
containing Ca,,, the Ca,, absorbed in the internal organs, with the 
exception of the liver, reached a maximum at the fifteenth hour and no 
change was observed at the thirtieth hour. In the mantle, the maxi- 
mum was reached at the sixteenth hour and a reduction was observed 
at the thirtieth hour. In the shell and the pearl, the presence of Ca,, 
was noted at the fourth hour. When Ca,; was injected in the body 
of the mollusc, it was diffused in the internal organs in 1—2 hours and 
began to be excreted out of the body at the fourth hour. While the 
shell is mainly composed of calcium carbonate, it also contains a cer- 
tain amount of conchiolin, which is an organic matter. Many points 
as to the attributes of the conchiolin are yet unknown. S. Tanaka 
and H. Hatano have undertaken a biochemical study of the conchiolin, 
which has led them to discover that the conchiolins in both the shell 
and the pearl are of the same composition and that proline, oxyproline 
and sulphur contained amino acid are found in either of the two, 


STUDIES MADE IN JAPAN ON PEARL CULTURE 227 


while halogen contained amino acid as gorgonin and spongin, are 
absent. Y. Matsui, M. Takanami and T. Hirota measured the amounts 
of amino acids in normal and baroque pearls in a microbiological assay 
and found that while there was no difference in the amounts of acidic 
amino acids between the two pearls, there were significant variances 
in the basic amino acids: namely, in the normal pearl layer, glycine 
registered 21.9%, against 9.8% and leucine 16.4% against 11.3%; and 
in the abnormal layer of baroque pearls, histidine registered 4.7% 
against 0.5%, arginine 8.3% against 4.9%, lysine 7.4% against 1.7%, 
threonine 1.9% against 0%, etc. D. K. Ikenaga, who modified and em- 
ployed Clark’s method, manometrically ascertained that there was a 
variation in the activities of carbonic anhydrase in Pinctada martensii, 
corresponding to the specific organs and age of the animal and the 
seasons of the year. T. Tsuji demonstrated by a histochemical study 
that while carbonic anhydrase was almost absent in the epithelium on 
the inside and at the top of the mantle, it was found in abundance in 
the epithelium contiguous to the shell. He is also carrying on a study 
on the distribution of nucleic acid. Y. Ojima and Ikenaga, who have 
undertaken a histochemical study of the alkaline phosphatase in the 
mantle and the pearl sac of Hyriopsis schlegeli, have discovered that 
it is distributed in a remarkable amount in the epithelium at the top 
of the mantle and that while it is found neither in the mucus glands 
at the side of the mantle adjacent to the shell nor in the epithelial 
cells of the pearl sac, a considerable amount of it is present in that 
part of the tissue which has been injured by the insertion of a pearl 
nucleus. 

Physiological and ecological studies of pearl oysters are also being 
carried on with great animation, as these can be directly applied to 
the culture of pearls. Examples are S. Mori’s study in the respiratory 
physiology and daily rhythmic activities of Pinctada martensi, 1. Hon- 
jo’s study concerning their reaction to light, N. Kawamoto’s study of 
the artificial spawning in ordinary and diluted sea water, H. Koba- 
yashi’s and J. Matsui’s experiments with various degrees of the salinity 
and temperature of sea water and other environmental conditions, and 
the studies taken up by S. Kobayashi and the staff of the Mie Prefec- 
tural Fisheries Experimental Station on the generation and larva of 
Pinctada martensii. C. Ashikaga, S. Tanaka, H. Hatano and others 
have made a number of reports on their studies of the chemical com- 
position and its variation according to the seasons of the year. 

Researches into the water, the bottom of the Pearl Culture ground 
and the plankton are proceeding under the collaboration of Y. ‘Toyo- 
hara, J. Yamaji, M. Motojima, M. Morishima, Y. Inoue and others. 


228 EIGHTH PACIFIC SCIENCE CONGRESS 


Earnest hopes are attached to these researches in view of the degrading 
tendency of the qualities of the products due to the recent increase 
in the number of pearl culture grounds. 

An important aspect of the art of pearl culture is concerned with 
the scientific evaluation of the quality of a pearl. For this, it is in- 
dispensable to clarify the essential properties of pearls through physical 
and chemical approaches. Y. Uchida and M. Ueda made clear the 
interrelation between the stratiform makeup of the pearl and its 
irridescence. ‘IT. Watanabe is engaged in a research into the interrela- 
tion between the color and the thickness of a pearl layer and also 
into the crystallization of the substance. Y. Matsui and T. Hirota have 
reported that there is a marked difference in the crystalline form be- 
tween the normal and the baroque pearls. 

Y. Uchida discovered by spectroanalysis that there were remarkable 
differences in the mineral contents among pearls with different colors. 
T. Kosaki’s report has disclosed that a pearl contains 16-66 ,/100g of 
porphyrin and 5-70 ,./100g of metalloporphyrin, varying with the color. 

Recently our laboratory has been made the center of the studies 
devoted to the discovery of the conditions on which to evaluate the 
qualities of pearls scientifically. With the help of Hardy’s self-record- 
ing spectrophotometer, T. Fukuda and his collaborators examined 
pearls with various colors and lusters, and have proved the possibilities 
of classifying them according to their substantial colors. ‘They have 
also demonstrated that they can calculate the thickness of the pearl 
layer by rating the surface color which is formed by the interference of a 
reflexion. Besides these studies, various other approaches are now be- 
ing tried to test the pearl as a jewel. 


FUNDAMENTAL STUDIES ON THE FISH LAMP 


By N. Y. KAwAMoTo 
Faculty of Fisheries, Prefectural University of Mie, Tsu 


Mie Prefecture, Japan 


It is a well-known fact that animals react to light, positively or 
negatively. Phototaxis of protozoa such as Paramecium and Euglena 
has been studied by many investigators, and reaction of the earthworm 
to light is also a well-known fact. Especially for insects, most efficient 
lamps were recently discovered by means of studying complex factors 
between visibility of retina of their eyes and their behavior. 

Fish lamps have been used in every country in the world since 
ancient times to increase efficiency of fishing. In Japan, the torch-light 
has been used since olden times for collecting the fishes. Nowadays, 
electric fish lamps are employed by almost all fishermen in our country. 
However, maximum efficiencies could not be expected because of un- 
reliable theories about fish lamps. Dr. M. Tauchi (1926) and Dr. T- 
Sasaki (1950) studied the effects of fish lamps upon fish shoals in the 
sea, but the studies of the two investigators were chiefly on the side of 
physics, and biological aspects were not fully considered. Therefore, 
the fundamental reason for the method of using fish lamps was not 
yet clear. 

Since 1947 the writer has studied, with co-investigators, the re- 
lation between fish behaviour and fish lamps, using methods of physiol- 
ogy and experimental zoology. 

For these experiments, many kinds of young marine fishes were 
used and their reaction against various kinds of light in the dark 
room was determined. Studies were made of the behaviour of adult 
horse-mackerel in a rectangular net which was set down off the coast 
of the sea in front of the Ichthyological Research Institute, Shimoda, 
Izu peninsula, Japan. 


EXPERIMENTS 
In the laboratory, the writer adopted a lusterless, black, round 
wooden tank, which was 100 cm. in diameter and 25 cm. in depth; and 
the tank was divided radially into eight compartments, which were 
open to each other at the center. The tank was filled with water to 
a depth of 20 cm. and a color filter, was placed over a light window of 
each compartment and 60-Watt Mazda electric bulbs were set 20 cm. 


229 \ 


230 EIGHTH PACIFIC SCIENCE CONGRESS 


above each of them. In order to make the illumination for the colored 
lights equal to 50 lux on every water surface of the eight compartments, 
some sheets of white paper were piled up over these filters for adjusting 
the light. The color filters were arranged in two ways, one in the order 
of wave length and the other at random in order that the fish might 
not become familiar with the color arrangements. 

We observed the rates of frequencies of the time of entrance of 
the fishes into each compartment of various lights, and compared the 
rates with the relative energies which were calculated by the transpar- 
encies of the filters, sensibilities of selen photometer and radiant ener- 
gies of the lamp, and judged their phototaxis tendencies. By this meth- 
od, we got considerable experimental results and will show the ab- 
stract of these as follows: 

One of my co-workers, Dr. Osaki, studied the relation between the 
phototaxis and the aggregation of young marine fishes, because, in a 
biological phenomenon, the aggregation frequently comes into ques- 
tion. Some investigators who have studied on the fish aggregation, have 
probably made the assumption that apparent gatherings are real ag- 
gregations. Nevertheless, it is possible that two fishes actually form an 
aggregation even when they are so apart from each other that they may 
be considered as a group. ‘Therefore, it is next to impossible to con- 
clude from the appearance whether a gathering is an aggregation or not. 
In our studies on the phototaxis of fish, it is necessary to conduct re- 
search on how aggregation affects the phenomenon and what difference 
exists between the phototaxis of the individual fish and that of the ag- 
gregated fish. The shape of the curves of fish gathering rate varied in 
accordance with the number of fishes employed and wave lengths in the 
experiments, but, at any rate, fishes are constantly forming various types 
of aggregation, the shapes of gathering rates of each individual were at 
random, while those of two or more numbers of fish in an aquarium 
coincided with each other and maximum values of these appeared at 
the range of green and blue colors in common fishes (Dr. H. Ozaki). 

The types of phototaxis of fish were found to be divided into two. 
One was the greatest fish-gathering rates in the range of wave lengths 
of green and blue as were seen in Oplegnathus, Monacanthus, Cybium, 
Spheroides and Sphyraena, while the other was quite contrary as in 
Anguilla (M. ‘Vakeda). 

The product of radiant energy of light of certain wave length and 
the visibility of eyes to that light was called ‘Spectral luminosity” for 
the same wave length; and when the spectral luminosity was calculated 
by using the human visibility curve with the maximum displaced suit- 
ably as a substitute for the true visibility curve of eyes of fish, it turned 


FUNDAMENTAL STUDIES ON THE FISH LAMP 231 


out that the ratio of the fish gathering rates for the two lights was pro- 
portional to the ratio of the spectral luminosities of the two lights. 
Moreover from the ratio of spectral luminosity to radiant energy, the 
“visual efficiency” was calculated, and in the case of Spheroides rubripes, 
green light showed the largest visual efficiency, that of blue light was 
next to green, and that of red light was smallest. 

Though radiant energy of red light was 22 times as much as that 
of green light, its visual efficiency was no more than 1/62 of that of 
green light (J. Konishi). 

Studies on the influence of repeated experiments on the aggrega- 
tion of fish to a fish lamp were carried out; the young Girella punctata, 
which was repeatedly made at intervals of ten minutes, made clear 
that the influence of a preceding experiment was held over to the suc- 
ceeding one, while in the experiment of young Scomberomorus nipho- 
nius made at intervals of 30 minutes, no such influence was seen, and 
the fish gathering rates of Scomberomorus, Oplegnathus and Monacan- 
thus under the stationary light attained maximum in a definite time, 
and then became stabilized at this maximum value (H. Kobayashi). 

The experiment of turning on and off at any intervals two lamps 
which were situated inside the water tank (3 m. in length, 64 cm. in 
width, 40 cm. in depth) was done. Aplocheilus latipes (fresh water 
fish) and Girella punctata showed the greatest gathering rates to the 
lamps, which had the most appropriate intensities for them when two 
lamps were turned on and off. However, the gathering rates, as a whole, 
decreased little by little in proportion to shortening of the interval 
(T. Niki). 

The gathering rates of Spheroides and Mugil show almost the same 
tendencies of sectional distribution as the type U in the limited length 
of water tank (3 m. in length, 25 cm. in width and depth) and the 
light source set at the end of it, used in this experiment, the type U of 
the curve of sectional distribution of fish in the tank is divided into two 
meanings; and those are positive gathering rate which decrease expo- 
nentially in proportion to the distance from the light, and negative 
gathering rate which, on the other hand, increase exponentially to the 
opposite side of the light. The value of the light intensity at which fish 
gathering rates are highest was 55 lux in Spheroides; both in the day 
and in the night, the values were 15 lux in the night and 87 lux in the 
day in Mugil (S. Nagata). 

The present writer further studied with K. Uno on the influence 
of the moonlight on the gathering rates to the fish lamp as follows: 

The relation between the moonlight and the fish lamp upon the 
gathering rates of fishes has been studied in the laboratory and in the 


232 EIGHTH PACIFIC SCIENCE CONGRESS 


open sea, as no experimental studies had been carried out, although such 
relations were commonly discussed. 


Laboratory experiment: 

In a black colored tank, 1 m. in diameter, 20 cm. in water depth, 
a 20W electric bulb was set so as to throw its light horizontally in the 
water, on one side of the tank called F-light, after fish lamp and the 
other one, called M-light, which compared to the moonlight was at- 
tached 2 meters above the water surface. The light showed 0.068 lux 
on that surface as the light intensity of the full moon on the surface of 
the sea was measured from 0.06 to 0.07 lux. 

Under these equipments, the gathering rate of fish to the F-light 
was calculated for fifteen minutes at water temperature of 13°—14°C in 
the dark room. 

From the experiments of the gathering rates of fishes to the F-light 
under varying intensity of the M-light in different species of fish, it 
was found that the gathering rates of Girella punctata had almost the 
same in either one light or two lights, while those of Pempheris japonica 
were more considerably decreased in the two lights than in one. 

And the result of the experiment on Spheroides niphoblse coincided 
with that of Pempheris in spite of change in the intensities of the M- 
light. It was observed that the gathering rates of fishes decreased in the 
field of F-light according to the increase of intensity of the M-light; 
and the rate increased in the field of green color of the F-light and 
decreased in the red of it. 

From the experiments above mentioned, the relation between the 
gathering rates of fish and spectral luminosities which were calculated 
from the product of the relative radiant energies in place of the light 
intensities and relative visibilities for light of the same wave lengths, 
(Kawamoto and Konishi, 1952) will be shown as the following equa- 
tion: 


where Ga and Gb are the values of rates of fish gathered under the F- 
light and the M-light except in the field of the former respectively, and 
Ha and Hb are the spectral luminosities under the fields of the two 
lamps. 


Open sea experiment: 

A rectangular net of 20 m. x 6 m. x 3 m. was let down off the coast’ 
about 200 meters from the shore near our Ichthyological Laboratory 
and ten horse-mackerels (Trachurus trachurus L.) about 16 cm. in body 
length and 30 gm. in body weight were set free in that net at the time 
of each experiment. 


FUNDAMENTAL STUDIES ON THE FISH LAMP 233 


At one side of the net, a fish lamp which directed horizontally to- 
ward the other side was fixed one meter under the water from the sur- 
face and a 20W, 60W or 100W electric bulb was used as a light source 
of the fish lamp, and attached to it was a green glass filter 18 cm. in 
diameter which had a limit of transparency from 500 my to 570 my 
and maximum wave length of transparency of 530 mu. 

The weather was frequently stormy during the experiment, as this 
study had to be carried out from November to February in 1950-1951, 
and diificulties had often been experienced for observing the phenomena 
in the roughing sea. The water temperature measured from 14.0° to 
15.5°C in these experiments. 

‘The numbers of fish which gathered in the area of light field with- 
in three meters from the lamp were calculated as the rate of gathering 
for twenty minutes in every thirty seconds. 

In the dark night experiments, the gathering rate attained about 
80% within the time of two minutes and 30 seconds after the light 
was switched on, and continued its rate at the light source of 20W of 
the fish lamp. 

The rate of gathering in the night of the moon age of 9.8 decreased 
to 77.8% as compared with the data of the rate of gathering in the 
dark night and, moreover, decreased to 21% at the moon age of 10.7. 

The rate became zero at the 11.8 moon age, and no reaction of 
fish to light was seen. 

As the light intensity of 11.8 moon age was almost equal to that 
of 18.0 moon age, it might be supposed that the fish would not show any 
reaction to the fish lamp in the period between those two ages. 

From these experiments, observation was made that the conditions 
of gathering rates of fish differed according to the kind of bulbs, 20W, 
60W, or 100W respectively, and it was considered that the 20W electric 
bulb was most adequate in the limit of the size of this experimental 
net, since the rates of gathering became irregular in the light sources of 
60W and 100W. 

It turned out clearly that the effect of the fish lamp was influenced 
by the moonlight from the results of experiments in the laboratory and 
in the open sea; however, the authors concluded that the efficiency of 
it might be kept in some limit by adjusting the strength of intensity 
of the fish lamp. But the relation of those intensities has not as yet been 
sufficiently studied, and it will be cleared in a later experiment. 

In the course of these studies, it was also understood that the ef- 
ficiency of the lamp was considerably influenced by facts such as the 
tidal current, direction of wind, and temperature of the sea water, etc.; 
and the relation of these factors to the lamp will be studied later as 
those must never be passed over. 


COACTION IN LAMP-COMMUNITIES 


By Hirosu1 MAEDA 
Shimonoseki College of Fisheries 
Yamaguchi Prefecture, Japan 


Besides many investigations relating to the fish-gathering lamp on 
such items as the light source, condition of light in water, phototaxis 
of fishes and the methods of fishing, there is an interesting ecological 
article worked by Hardenberg (1935) on shoals assembling around the 
lamp. The effect of the fish-gathering lamp is nothing but merely a 
simple artificial change of the light, one of the physical environmental 
factors, to gather fishes. Thus, the mechanism of gathering fishes is con- 
sidered to be based primarily on the phototaxis of some animals. It 
is, however, quite uncertain whether the behaviors of animals in the 
natural environment, which appear as the results of complex inter- 
action of many factors, may accord or not with those observed in the 
laboratory under special experimental conditions, namely, only one in- 
dividual or one sort of fish is treated. It is reasonably expected that 
the coaction of fishes may be modified by light and that the existence 
of different sorts of animals may cause the phototaxis for some fishes. 
For instance, fishermen use “‘shirasu’’ (larval fish, particularly sardine 
or anchovy) or mysids as food for fishes to keep the shoal stable under 
the lamp; zoo- and phyto-plankton feeders, such as Engraulis and Sto- 
lephorus, are changed into pure zoo-plankton feeders under the lamp 
and take smaller planktonic crustaceans assembling around the lamp, 
and some fishes showing the negative phototaxis in experimental con- 
dition, many benthonic fishes and higher predators, may act photoposi- 
tively under the lamp where many prey animals are assembling. Thus, 
the coaction between fishes around the light under the natural condi- 
tion must be investigated at first, when we research the cause of the 
fluctuation found in caches by lamp method. ‘The effect of light upon 
fishes from the synecological point of view will be understood correctly 
solely when the interrelation of animals under the light is fully com- 
pared with that under the non-light condition. However, I can here 
refer only to the phenomenon observed under the lamp. 

In the following, I wish to give first the outline of coaction of 
lamp-communities taking the most complex case observed in Shira- 
hama (Wakayama-ken) as an example, and then show briefly some 


234 


COACTION IN LAMP-COMMUNITIES ASN) 


examples of more simple cases which are considered to lack some so- 
cial components. 


A. PREY AND PREDATORS COEXISTING WITH THE OBJECI FISHES. 

The observations were made in the area near Shirahama situated 
on the west coast of Kii peninsula and strongly influenced by a branch 
of the warm current “Kuroshio.” Animals assembling around the lamp 
are synecologically classified into the object, fishes, preys, and predators. 
Reviewing the data obtained during a series of investigations on food 
habits and behaviors of fishes around the lamp to find the niches of 
main fishes in lamp-communities, the lamp-animals are classified into 
the following five groups: 

1) Prey animals: This group consists of Gammalid amphipods, 
megalopae, mysids and Engraulis of Shirasu stage, and represents the 
lowest class in the temporal communities formed artificially under the 
lamp. It contains no producer or smaller preys nourishing the animals 
mentioned above. Members of this group are eaten chiefly by the se- 
condary predators, although a part of them serves as the food of the 
primary predators. 

2) Primary predators: This group consists of Stolephorus, En- 
graulis and Pempheris, of which the former two are said to be zoo- and 
phyto-plankton feeders in the natural environment, but are changed 
into pure zoo-plankton feeders under the light. Stomachs of the most 
examined individuals were, however, almost empty. 

3) Secondary predators: ‘This group consists of medium- or large- 
sized zoo-plankton feeders, e.g. carangids and mackerels. “These mem- 
bers feed chiefly on the prey animals and occasionally on the primary 
predators. 

4) Tertiary, quaternary and end predators: The primary and se- 
condary predators which form the chief object of the lamp fisheries are 
dispersed from the light by the emergence of tertiary and higher pre- 
dators. Consequently, fishermen hate their visits very much.  Espe- 
cially the end predators, which occupy the highest position in the food- 
pyramid of the lamp-community, may be called the destroyers of the 
lamp-community, since the fishes disappear completely at the appear- 
ance of members of this group. The lower predators form compact 
shoals and move along the circular rout around the lamp, perhaps along 
the equi-luminous line, while predators of the higher degree usually 
visit the lamp in a single individual, move across the equi-luminous 
line and take food actively under the light. The tertiary predators are 
composed of squids and Sphyraena, the quaternary predators of Tri- 
chiurids. The end predators in shallower water are composed of Squa- 
lus, Coryphaena and Dolphinus, of which the latter two are much 


236 EIGHTH PACIFIC SCIENCE CONGRESS 


rarer than the first, while those near the bottom are represented by 
Epinepherus and its allies. 

(5) Indifferent group: ‘This group consists of the fishes which 
have no significant relation to other animals on account of their 
meagre population, short staying time under the light, and the fact 
that they seldom eat or are eaten near the lamp. Some members of 
this group occupy the situation between the lamp fishes and those 
not assembling around the light; some others show enormously strong 
phototaxis, Crabs, Atherina, Cypserulus, Mugil, Euthynnus, Tylosu- 
rus, Teuthis and Ostracion are the main members of this group. The 
following four inclinations are deducible from the above-mentioned 
classification. 

1. The size of a lower rank is, in general, smaller than that of 
the higher rank. The fishes of the younger stage belong to a rank 
lower than that of its full-grown stage. 

2. The fishes of the lower rank take the food lower than that of 
the higher fishes. 

3. The fishes of the lower food rank are controlled more strongly 
by the light. 

4. The fish with a stronger dispersing influence on the community 
is placed in the higher rank. 

Generalizing these inclinations, we may be able to determine the 
niches of main lamp-animals as follows: (small planktons can not be 
assembled by the light in the streaming tide) — smaller planktonic crus- 
taceans (Oncaea venusta and Calanus) — larger planktonic crustaceans 
(megalopae, Gammalid amphipods and Siriella) — Engraulis of Shirasu 
stage — Stolephorus — Engraulis — (Clupeidae) — Pempheris — Carangi- 
dae — Sphyraena — squids — Trichiurus — Squalus Coryphaena — Dol- 
phinus. 

The lamp animals and those not assembling around the light can 
not be separated distinctly from each other, but they are connected 
completely by the existence of many fishes showing various degrees of 
tendencies to assembling around the light. The distance between these 
intermediate fishes and the lamp-animals may be determined by the ~ 
stability of the shoal, coaction to other animals and other behaviors 
of the former. ‘Thus, the primary predators assembling around the 
light and the fishes of the same rank not assembling near the lamp are 
continued which each other by a series of the following intermediate 
fishes — Atherina — Cypserulus — Mugil —; in the secondary predators 
the series is represented as — mackerel — Sarda — Euthynnus — (Kat- 
suwonus) —; and in the tertiary predators it is — Tylosurus —. Similar 


COACTION IN LAMP-COMMUNITIES 237 


relations can be expected also in the benthonic fishes, although they can 
not be ascertained easily. 

If the above-mentioned relations are correct and of important eco- 
logical significance, there must be a lot of phenomena reflecting these 
relations distinctly. The social structure of the lamp community and 
the arrival order of various animals near the lamp may be accepted as 
good examples of these phenomena. 

When the lamp is lighted, many animals assemble one after an- 
other and after a certain time they attain a condition of equilibrium. 
At this time the animals occupy their situations horizontally, perhaps 
also vertically, from the nearest part of the lamp to the periphery ac- 
cording to the following orders (several actual examples are given be- 
low): — planktonic crustaceans — Engraulis of Shirasu stage — Engraulis 
of grown stages — Carangidae — Sphyraena (22h. 25 min. June 23, 1950), 
planktonic crustaceans — Engraulis of Shirasu stage — Pempheris — Ca- 
rangidae — squids — (lh. 00 min. Aug. 6, 1950), planktonic crustaceans — 
Stolephorus — Engraulis of grown stages — Pempheris — Carangidae — 
Sphyraena (2h. 40 min. Aug. 6, 1950), planktonic crustaceans — Engrau- 
lis of Shirasu stage — Stolephorus — Engraulis of grown stages — Sphy- 
raena (19h. 45 min. Aug. 11, 1950). The arrangement of the situation of 
the animals from the nearest part of the lamp to the periphery is quite 
parallel to the order mentioned previously. This arrangement is called 
the standard form, from which many modifications are derived by the 
dispersive activity of the higher predators. When higher predators 
are not so numerous or their predating activities are not so violent, 
the spatial relations of lamp-animals are not changed, except for the 
animals of the lowest rank of the community, which are unable to keep 
their positions and are driven away from the central part [Stolephorus 
— Carangidae — Sphyraena — benthonic fishes (vertically) or squids (ho- 
rizontally) (4h. 05 min. June 24, 1950), Engraulis of grown stage — Stole- 
phorus — benthonic fishes (vertically) or squids (horizontally) (4h. 10 
min. Aug. 17, 1950), Stolephorus — Pempheris — Carangidae —- benthonic 
fishes (vertically) or squids (horizontally) (Oh. 00 min. Aug. 6, 1950), 
Carangidae — Sphyraena (vertically) or squids (horizontally) (23h. 05 
min. Aug. 22, 1950)]. When the higher predators are numerous their 
predating activities become more violent, the spatial relations of ani- 
mals in the community are reversed; the central part is occupied by 
animals of higher ranks[ Tylosurus — Carangidae — Pempheris — Engra- 
ulis — squids (2h. 40 min. Aug. 23, 1950) and Tylosurus — Carangidae — 
Stolephorus (2h. 00 min. Aug. 24, 1950)]. Lastly comes the case when the 
predating is very violent. This time most animals are unable to ap- 
proach the light, the community consists merely of the predators and 


238 EIGHTH PACIFIC SCIENCE CONGRESS 


some much weaker animals quite indifferent to the food habits of the 
predators [planktonic crustaceans — Tetraodontidae — Trichiurus (19h. 
20 min. Sept. 17, 1950), planktonic crustaceans — Engraulis of Shirasu 
stage — Trichiurus (3h. 25 min. Sept. 18, 1950)]. During the observations 
I have also recorded the order of arrival of main lamp-animals near the 
lamp. ‘The order of animals, determined by the mode of frequency, 
is as follows: planktonic crustaceans — Engraulis of Shirasu stage — 
Atherina — Cypselurus — Engraulis — Pempheris — Stolephorus — Sphy- 
raena — squids — Carangidae — Trichiurus. Squids contain some small 
individuals which come to the light early and are considered to be- 
long to the prey group. The order of arrival of squids as solely the ter- 
tiary predators is much later. Although Sphyraena seems to come to 
the light earlier than carangids in the order determined by the mode 
of frequency: Sphyraena — squids -— Carangidae — Trichiurus, in actual 
cases it and Trichiurus assemble to the light last. Whenever they visited 
the light relatively earlier, no other animals could be expected under 
the lamp after their arrival. Actually there was no case, in that the 
carangid came to the light later than squids, Sphyraena and Trichiurus. 
From these facts the order of arrival near the light may be determined 
as follows: Carangidae — Sphyraena — squids — Trichiurus. Thus, the 
order of arrival near the light is quite parallel to the order of food 
rank and the spatial arrangement mentioned previously. 

Successional changes are strongly affected by the dispersing acti- 
vity and the order of arrival; those two facts are also related closely 
with the rank of animals in the lamp-community described previously. 


B. PREDATORS ABSENT. 

At Murotsu, about 35 miles west of Kobe, the gray rock cods 
(Sebastodes inermis) are gathered by scattered bait and angled up in the 
daytime. At night, the acetylene lamp is placed near the rock not far 
from the coast and the fishes gather around the lamp to eat the zoo- 
plankton and Shirasu assembling around the lamp. ‘Then fishermen 
angle for these fishes. 

In the latter case, it has been said that the more preys are assem- 
bled around the lamp the more fishes are caught. ‘The amount of 
conger leptocepharus in preys is considered one of the key factors. Ac- 
tually the stomach of the angled gray rock cod is filled with the zoo- 
plankton and fry which are considered to be assembled to the lamp. 
I have been told that the fishes hardly assemble in the daytime near 
the rock where the lamp is put at night, even if scattered baits are 
placed in the water. It is clear that the prey plays a significant role 
and there are no predators of the fishes in the present case. 


COACTION IN LAMP-COMMUNITIES 239 


C. PREYS ABSENT. 

As I have asserted the significance of the prey of the object fishes 
so strongly that readers may feel a contradiction in the title of this 
paragraph, there is a case lacking the prey of the object fishes in the 
community. It must be understood, however, that the light is used in 
previous cases to gather fishes in places where no fish is found in 
swarms. In this case, however, the light is used to attract the fishes 
in places where fishes are found in swarms. 

In Harima nada, a part of the Inland sea west of Awazi Is., the 
shoals of Engraulis are easily recognized on winter nights by the glim- 
mering light brought about on the sea-surface by swimming Engraulis. 
Fishing boats pursue the shoals and go across them, when the lamps 
are lighted. ‘The fishes are scattered at first, but the shoals are soon 
reformed and keep the circular movement around the light. In this 
case, there is no influence of the lower ranks on the behavior of Engra- 
ulis, although there are some cases when the larger fishes such as yellow 
tails (Seriola quinqueradiata) appear and disperse the shoal formed 
around the lamp. It is not certain whether these higher predators are 
the fishes always swimming after the shoal before the lamp is lighted 
or fishes assembled after the lamp is lighted; although the former sup- 
position seems more reasonable than the latter from the observations of 
Fngraulis shoals in the day time. 


D. PREYS AND PREDATORS ABSENT. 

At Ejima, about 10 miles SSW from Murotsu, Engraulis shoals rest 
at night among the rocks near the coast. ‘These fishes assemble to the 
light when a light of relatively weak intensity moves slowly along the 
coast. In this case, the fishes assemble to the light so rapidly that no 
effect of preys can be considered. Also the influences of other fishes are 
not admitted, because the carangid and mackerel swim away to the outer 
sea and yellow tails can not approach near the coast. There are found 
some half-beaks (Hyporhamphus sajori) and flat-fishes (Paralichihys 
olivaccus) mixing in the Engraulis shoal caught among the fishes in this 
region by the light, but they are all of the indifferent group and scarcely 
have any influence upon the shoal of Engraulis. 

After many types of social structures of lamp-communities have 
been discussed, it may be concluded that the mechanism keeping the 
fishes near the light is based on the two factors, light and food-relations, 
though these two factors are unable to be treated separately. “There 
are some intermediate forms between the animals comprising prey ani- 
mals and primary predators, whose behaviors near the lamp are pri- 
marily regulated by light, and the animals comprising quaternary and 
end predators, whose behaviors near the lamp are regulated by the 


240 EIGHTH PACIFIC SCIENCE CONGRESS 


preys. ‘These intermediate forms may be arranged as follows:—higher 
primary predators being regulated more strongly by light than by their 
preys—secondary predators being regulated by both factors almost equal- 
ly—tertiary predators being regulated mainly by their preys, though 
being affected also by light in some degree. ‘Thus the effect of the 
light differs considerably according to the situations of the object fishes 
in the ecosystem. The purse seining at Harima nada and the anchovy 
fisheries at Ejima are the extreme instances using the light to allure 
the fishes directly to the lamp by phototaxis; and the gray rock cod 
fisheries at Murotsu is an extreme example using the light to gather the 
preys of the object fishes. 

The coactions in lamp-communities are strongly affected by the 
fish fauna, habits of animals and the environmental relations in the 
area; consequently they may be accepted as the reproduction of the 
coactions of these ecological factors, which are regulating the cosmos 
of the area spatially and at all times, and in a short time in a limiting 
area. ‘Thus, the investigation of the lamp-communities seems appro- 
priate to recommend as one of the most convenient methods of observ- 
ing the coaction of animals in the natural condition in a certain area. 


THE HAKE FISHERIES OFF THE WEST COAST OF CHILE 


By Erik M. POULSEN 


International Commission for the Northwest Atlantic Fisheries 
St. Andrews, N.B., Canada 


Since 1945 there has occurred a tremendous development of the 
hake fishery in the Pacific along the coast of Chile. The catch of 1945 
totalled only 11,000 tons, whereas in 1951 it was 44,000 tons or four 
times as big. i 

This big increase was mainly achieved through a change in the 
methods of fishing. Whereas formerly hake fishery was only carried 
out by Chilean fishermen working from small boats with nets or hooks, 
in later years German fishing vessels have been called in carrying out a 
modern fishery with trawls in order that the increased demand for hake 
by the fish meal plants could be met. 

This intense trawl fishing, until then unknown in Chile, caused 
great concern not only among the Chilean fishermen, but also with the 
Chilean fishery authorities. 

Therefore, when I for half a year in 1951-52 worked as a fishery 
expert in Chile, for FAO and the Chilean Government, I was asked 
to pay special attention to the fishery for hake, Merluccius (Spanish 
Merluza or pescada) and especially to provide for an assessment of the 
stock of hake, to investigate if there were reasons for fear of overfishing. 

It was by then known that two species of hake occurred in Chilean 
waters, Merluccius gay: and M. australis. ‘Their areas of distribution 
were however not known, nor was it known if one only or both species 
were affected by the newly established trawl fishery. In the following 
the term “hake’’ is used for M. gay: whereas the M. australis is named 
“southern hake.” 

The two species are very much alike. However, it was found that 
the number of gill rakers on the lower arm of the first gill arch was 
different, varying in the hake between 14-17 and in the southern hake 
between 9-10. No overlapping in numbers was found. 

The experimental trawlings carried out showed that the hake was 
found only north of Corral and the southern hake only in the area 
south of Puerto Montt and in the southern archipelago. It is possible 
that a small overlapping of their areas occurs between Puerto Montt 


241 


GZ4Z, EIGHTH PACIFIC SCIENCE CONGRESS 


and Corral. Only the hake is affected by the present trawl fishery, which 
is carried out between Coquimbo in the north and Talcahuano in the 
south. 

Owing to the rocky nature of the Chilean continental shelf it is only 
in very small, minute areas of the large coastal region between Coquimbo 
and ‘Talcahuano that trawling could be carried out. This fact alone 
makes it rather improbable that overfishing could occur through the 
present trawl fishery. 

The hake was found from ca. 20 to ca. 150 m. depth and in greatest 
quantities between 50 and 150 m. In deeper waters deeper than 150 m., 
the trawl could not be operated. ‘The fact that the catch was far 
smaller between 125-150 m. than between 50 and 125 m. shows, however, 
that greater concentrations of hake at the bottom in deeper water can 
hardly be expected. 

The biological study of the hake carried out in connection with 
the experimental trawling showed the following main results: 


REPRODUCTION 

‘The spawning season is very extended, lasting from the beginning 
of October to the end of April. The material further indicated that 
the long spawning season has two maxima, one bigger in October- 
January and a smaller in April-May. 

The length upon attaining maturity for the first time varies some- 
what from south to north. Fifty per cent were found mature in the 
southern area at a length of 37 cm, in the northern area already at 30 
cm. ‘The males grow mature at a somewhat smaller size than the fe- 
males. 

GRowTH 

Owing to a great number of individuals with accessory rings in 
scales and otoliths, these gave only little help for the determination of 
growth. However, measurements of large numbers showed distinct 
peaks of the length curves and thus the length at the close of the first 
to fourth year could be determined as follows: 


1 year old—l6cm 
2 years old—27cm 
3 years old—38cm 
4 years old—47cm 


The growth of the females is only a little faster than that of the 
males, the 3-year old females being 3-4 cm bigger than the males.  Fur- 
ther, the females grow to a far bigger size than the males, and probably 
live longer. No males bigger than 52 cm were found; females, however, 


HAKE FISHERIES OFF THE WEST COAST OF CHILE 243 


were found rather frequently right up to sizes of 80 cm. It must in this 
connection be borne in mind that the investigation only covered part of 
the area of distribution, and that the difference in size between the sexes 
in the material caught may be due to a different pattern of migrations 
for the older year classes of each sex. 


Foop AND FEEDING HapsiTs 

According to the stomach contents, the hake is mainly feeding on 
plankton animals; sardines, anchovies and various crustaceans. True 
bottom animals, as worms and molluscs, were hardly ever found in the 
stomachs. 

In accordance with this feeding habit the hake undertakes diurnal 
vertical migrations following the same migrations of the food animals, 
shunning the upper layers of the sea during the day. 

This habit of feeding on macro-plankton makes it possible for the 
hake to live independent of the bottom. In this connection it is of in- 
terest that bigger concentrations of hake can only be found on the 
trawling grounds along the coast from September to May (in the spawn- 
ing season). ‘Taking the feeding habits into consideration it is well pos- 
sible that, apart from this period, the hake is living in the free water- 
layers either over the fishing grounds along the coast or farther sea- 
wards. 


REGIONAL DIsTRIBUTION ACCORDING TO SIZE 

It was the general opinion that in order to protect the young hake, 
trawling should be prohibited in shallow coastal waters, and in fact 
large areas of shallow water along the coast were closed to trawlfishing. 
However, the investigations showed beyond doubt that the younger and 
smaller individuals lived in deeper water; in the shallow coastal water 
only large and medium-sized individuals were found. Thus for the pro- 
tection of the growing hake, the prohibition of trawlfishing in shallow 
water was of no avail. 


MIGRATIONS 

For the assessment of stock and for an accurate determination of 
the probability of overfishing, a knowledge of the migrations is essential. 
The investigations showed the following pattern of migrations: 

As the smallest (youngest) bottom stages are found far away from 
the shore, it is probable that the larvae live over this deeper water. 
The scarcity of spawning and spent females in the catches on the coastal 
fishing grounds indicates that part of the spawning is likely to occur 
over deeper water. The first migration of the merluza is a drift of eggs 


244 EIGHTH PACIFIC SCIENCE CONGRESS 


or larvae out to deeper water. The second migration is the return of 
the young individuals in the course of 2 or 3 years to the coastal waters. 

The third migration is a movement back again to deeper water for 
spawning. A fourth migration is the dispersal of the fish after spawning 
(observed through the trawlfishing). As the spawning shoals are made 
up of at least two or three groups, it is clear that these migrations occur 
annually. 

However, the fact that the biggest individuals (larger than 60 cm.) 
are more numerous in deeper than in shallow water, shows that the 
older merluzas do not return to shallower water. It is also quite possible 
that the fact that males are not found in the samples to a length of 
more than 52 cm is not due to the fact that the males do not attain a 
larger size, but is caused by an earlier cessation of the shoreward migra- 
tion than it is the case with the females. 

These two points leave open the possibility or probability, that 
there are concentrations of bigger merluza both male and female in 
deeper waters still not touched by fishery, forming a reserve from whose 
spawning activity recruitment of the merluza stock will continue without 
danger from the fishery. 

Finally we have the diurnal migrations of the merluza in search 
for food towards the bottom at dawn and away from the bottom at 
nightfall. 

As far as assessment of stock is concerned, the investigations under 
review have shown that the hake occur in great quantities off the Chi- 
lean coast from Coquimbo in the north to south of Talcahuano, and 
that only small patches of this vast region are touched by the trawl- 
fishing in its present state. Further, the study of the migration has 
shown (1) that for part of the year the hake is dispersed either in in- 
termediate water layers far from the bottom or farther seawards where 
it is not fished upon and (2) that part of the spawning occurs in off- 
coastal regions where no trawlfishing is carried out. 

These facts show that for the time being no danger of overfishing 
of the stock is present. The areas not fished upon and the concentrations 
of hake not touched by the fishery are so large that they constitute a big 
reserve of hake to be drawn upon for the recruitment of the stocks 
fished. 

However, as a considerable expanding of trawlfishing for hake can 
be expected in Chilean waters, and out of the consideration that “pre- 
vention is better than cure’”—and in question of conservation of fish 
stocks—far more easy than cure, it was recommended that certain mesh 
regulations should already now be introduced in order to protect the 
smaller and—from a commercial point of view—less valuable individuals. 


HAKE FISHERIES OFF THE WEST COAST OF CHILE 245 


In order to protect the Chilean fishery conducted by smaller craft 
with nets and lines, it was further recommended that trawlfishing should 
be prohibited in certain coastal areas especially fished in by these smaller 
craft. 

The present ground trawlfishing for hake in Chilean waters is 
carried out only on the tiny patches of smooth bottom occurring in a 
few places over the whole area and at day time only when the sunlight 
causes the hake to concentrate at the bottom. The danger of overfish- 
ing of the hake through this fishery therefore hardly exists. 

A real danger to the hake stock can, however, be expected the mo- 
ment the modern midwater trawling is introduced in Chilean waters, 
making it possible for the fishing vessels to pursue the hake not only in 
the short periods when it is concentrated on the bottom but also dur- 
ing the diurnal migrations away from the bottom as well as during its 
seasonal migrations away from the coastal grounds, i.e. during the whole 
of its life. 

In order to meet such a danger in the right way, a thorough knowl- 
edge of the biology of the hake is an absolute necessity. The report 
on the investigations therefore also contained a plan for further re- 
searches aiming at such a complete knowledge to form the basis for 
the judgement of what regulations of the fishery should and must be 
introduced in order to conserve the stock and maintain the fishery at its 
highest possible level. 


REPORT ON THE ALGAE OF THE CHILEAN SEAS 


By Hecror ETCHEVERRY-DAZA 


Marine Biological Station 
University of Chile, Montemar, Chile 


The purpose of this brief report is to present a picture of the 
Chilean algae flora, quoting its characteristic species, particularly those 
which can be used as raw material or food. 

An ecological rather than a systematic approach has been followed. 
With regards to the commercially important algae the author has not 
gone into details about the techniques applied for their utilization. 

The Chilean algae flora extends along the western coast of South 
America, from Lat. 18°22’S. down to Cape Horn. Within the Chilean 
realm numerous islands are included. Important among them, because 
of their size, abundance of algae and available phycological literature 
are Juan Fernandez, Desventuradas (San Félix and San Ambrosio) and 
Easter Island. In addition the Chilean Antarctic Region, limited by 
the meridians 53° W. and 90° W. and the South Pole, should be con- 
sidered. The Chilean algae domain extends therefore from tropical la- 
titudes down to the South polar region. 

From Arica to Chiloé the biological and physico-chemical condi- 
tions (salinity, tides, temperature, light, physical nature of the sub- 
stratum) are approximately uniform. From Chiloé to Cape Horn exist 
numerous archipelagos, rocky coasts, waters with low salt content and 
the greatest tide difference in Chile (up to 10 m.). 

The Antarctic Region with high cliff characteristics, bottom de- 
posits, temperature, salinity, marine currents, tides, ice, penetrations of 
light, etc. have a particular and specific influence on the phycological 
flora, characterized by endemisms and the abundance of calcareous 
algae. 

This paper should deal only with the first two referred regions, 
in so much that the algae flora of the Antarctic has become well known 
since Foster, in 1829, collected in Graham’s Land the first algae of the 
region. 

The Marine Biological Station of the University of Chile, located 
at Montemar, have started a systematic and phytogeographic study of 
the algae of the Chilean territorial waters. In the last few years, some 
contributions on this subject, from the systematic and technical point 


246 


ALGAE OF THE CHILEAN SEAS 247 


of view, have been published. Also the station has already assembled 
a well stocked collection including specimens from the Chilean main- 
land, its islands, and the Antarctic, as well as from various regions of 
other continents. 

The region from Arica to Cape Horn is a very rich one, both 
in genera and species. There is a littoral rocky zone, beaten by the 
constant and strong wave impact, with deep and shallow pools, and a 
sublittoral zone where the rocks are cliff-like and covered by a veritable 
belt of large-sized algae. 

The author does not attempt to make a systematic list of all the 
species, but will only refer to the most characteristic of the benthic Chlo- 
rophyceae, Phaeophyceae, and Rhodophyceae of the continental shelf. 

Among the species so far identified, some are cosmopolitan, and, in 
the northern zone, there are elements common to the Peruvian flora. 
The islands are characterized by their endemicity. Some of the large 
Phaeophyceae species are also found in the waters off South Africa and 
New Zealand. 


A. In the littoral zone we distinguish: 
1. An upper littoral belt, characterized by algae resistant both to 
desiccation and to changes in salinity, particularly in the pools. 


MYXOPHYCEAE 
NOSTOCOCALES 


Lyngbya confervoides C. A. Ag., on the rocks of the upper littoral 
belt. 


CHLOROPHYCEAE 
ULOTRICALES 
Enteromorpha bulbosa (Suhr.) Kitz. 
E. compressa (L.) Grev. 
E. intestinalis (L.) Link. 
Eeyiinza. (e.) J. Ag: 
Ulva lactuca (L.) v. rigida (Ag.) Le Jolis. 
U. v. latissima D. C. 
CLADOPHORALES 
Chaetomorpha linum (Miller) Kutz. 
Ch. aerea (Dilwyn) 
Cladophora pacifica (Mont.) Kutz. 
C. incompta Hook. f. et Harv. 
C. subsimplex Kitz. 
Spongomorpha arcta (Dilw.) Kutz. 


248 EIGHTH PACIFIC SCIENCE CONGRESS 


PHAEOPHYCEAE 
; PUNCTARIALES 

Scytosiphon lomentarius (Lyngby.) J. Ag. 

RHODOPHYCEAE 
BANGIALES 

Bangia fuscopurpurea (Dilw.) Lyngby. 

Porphyra columbina Mont. 

P. {. Kunthiana Hamel. 


2. A middle littoral belt, peculiar to sheltered beaches in which 
there is an abundance of Phaeophyceae, Rhodophyceae and some Chlo- 


rophyceae. 


CHLOROPAYCEAE 
SIPHONALES 


Codium dimorphum Svedelius; forming a deep green velvet on ver- 


tical cliffs. 


PHAEOPHYCEAE 

DICTYOTALES 

Padina Commersoni Bory. 

Glossophara Kunthi (C. A. Ag.) J. Ag. 
PUNCTARIALES 

Ilea fascia (Miill.) Fr. 

Colpomenia sinuosa (Roth.) Derb. et Sol. 

Endarachne Binghamiae J. Ag. 

Scytothamnus australis Hook. f. et Harv. 

Adenocystis utricularis (Bory) Skottsb. 
SPHACELARIALES 

Halopteris hordacea (Harv.) Sauv. 

A. funicularis (Mont.) Sauv. 
ECTOCARPALES 

Ectocarpus stliculosus (Dilw.) Lyngb. 

Pylaiella littoralis (L.) Kjellm. 

RHODOPHYCEAE 

GELIDIALES 

Gelidium crinale (Turn.) J. Ag. 

G. filicinum Bory. 

G. lingulatum J. Ag. 
NEMALIONALES 

Chaetangium variolosum (Mont.) J. Ag. 
CRYPTONEMIALES 

Grateloupia Cutleriae Binder 

Callophyllis variegata (Bory) Kitz. 


ALGAE OF THE CHILEAN SEAS 249 


Corallina chilensis Decaisne. 

Hildebrantia Le Cannelliert Hariot. 
GIGARTINALES 

Schyzymenia Binderi. J. Ag. 

Plocamium pacificum Kylin. 

Tridaea laminarioides Bory. 

I. obovata Kitz. 

Gigartina Chamissoi (C. A. Ag.) J. Ag. 

G. Chauvini J. Ag. 

G. Lessonit (Bory) J. Ag. 

G. Teedit (Roth.) Lamour. 

Chondrus canaliculatus Grev. 

Gracilaria lemanaeformis (Bory) Wome se 4 Bosse. 

G. lichenoides (L.) Gmell. 

Ahnfeltia Durvillaet (Bory) J. Ag. 

Gymnogongrus furcellatus (C. Ag.) J. Ag. 
CERAMIALES 

Ceramium rubrum (Huds.) C. A. Ag. 

C. Doze: Hariot. 

Centroceras clavolatum (C. A. Ag.) Mont. 

Polystphonia alscissa Hook. f. et Harv. 

Laurencia chilensis D. T. Forti et Howe 

Heterosiphonia Berkeleyi Mont. 
RHODYMENIALES 

Dendrymenia flabellifolia (Bory Skottsb.) 

Rhodymenia corallina (Bory) 


3. A. breakers belt, with large Phaeophyceae and some Rhodophy- 


ceae belonging to the genera Gelidium, Iridaea and Rhodymenia. 
Among the Phaeophyceae: 


Lessonia nigrescens Bory. 
Macrocystis integrifolia Bory, and 
Durvillaea antarctica (Cham.) Hariot. 
B. In the sublittoral zone there are areas covered by large sub- 


merged Phaeophyceae belonging to the genera Lessonia, Macrocystis and 
Durvillaea and of the deep water Rhodophyceae with species of Rho- 
dymenia, Iridaea, etc. 


PHAEOPHYCEAE 


FUCALES 
Durvillaea antarctica (Cham.) Hariot. 
D. Harveyi Hook. f. et Harv. 


250 EIGHTH PACIFIC SCIENCE CONGRESS 


LAMINARIALES 
Lessonia flavicans Bory. 
L. nigrescens Bory. 
Macrocystis integrifolia Bory. 

M. pyrifera (L.) C. A. Ag. 
DESMARESTIALES 
Desmarestia herbacea (L.) Lamx. 
D. Rossii Hook. f. et Harv. 

D. Willit Reinsch. 


EDIBLE ALGAE 

Some algae of the Chilean coast have been utilized from olden 
times in the feeding of man and animals. In the first place, it must be 
mentioned, the Durvillaea antarctica fucaceae, whose area extends from 
Valparaiso to the Antarctic region, is a very large alga with a strong 
discoidal holdfast, short and strong, cylindrical stipe, prolonged in a 
palmated frond, wedge-shaped at the base and branched at the top. 
The people utilize the laminar part of the thallus and stipe, known by 
the name of Ulte, Huilte or Coyofe. This alga is rich in iodine, con- 
tains about 5.88 mg. per 100 grs. of dried algae. 

Under the name of Luche or Luchi the chlorophyceae, Ulva lac. 
tuca, and the rhodophyceae, Porphyra columbina, are consumed. ‘They 
have the common characteristics of the laminar shape of the thallus 
and the curly edges. Both are rich in glucids, iodine and vitamins. 

The rhodophyceae Iridaea laminarioides, commonly called Yapin, 
is used in Chiloé as pig fodder. 

Cattle fodder is prepared in the central zone of Chile from species 
of Macrocystis. 

In addition there are other species of marine algae susceptible of 
being utilized as human food or for fodder, belonging for example to 
the genera Rhodymenia and Gigartina, also utilized in other parts of 
the world. 

The Algazos, name given to the algae cast up by the sea, are used 
in Chiloé as fertilizer for potato crops. They include species of the gen- 
era Enteromorpha, Ulva, and Macrocystis. 

In the distant Easter Island, a Chilean possession, the natives eat 
the chlorophyceae, Ulva lactuca which they call Kiroke and also a species 


of Dictyopteris, a Phaeophyceae which they call Auke and consider de- 
licious. 


ALGAE OF THE CHILEAN SEAS 251 


INDUSTRIAL ALGAE 

The Algae utilized for industrial purposes are members of the Rho- 
dophyceae and Phaeophyceae. 

Three years ago the industrial utilization of these species began for 
the production of phycocolloids, especially agar-agar. The species which 
have given best results belong to the genus Gelidium (G. lingulatum 
J. Ag. and G. filicinum Bory) ; they are found in southern Chile, from 
Antofagasta to Talcahuano under the tide line, in rocky places, where 
they are generally difficult to collect. Total yields vary between 11 and 
ZOE. 

Other Chilean agarophyte are: Gracilaria Greville, Gigartina 
Stockhouse, Ahnfeltia Fries, and Gymnogongrus Martius. 

Good production has been obtained with Gracilaria lemanaeformis 
found from the Peruvian coast to the Island of Chiloé. 

The Marine Biological Station of Montemar, with the purpose of 
cooperating in the industrial utilization of marine products, has inves- 
tigated the problems relative to the extraction of agar, from different 
species of agarophyta algae inhabiting the coast and their chemical 
composition. 

The agar extracted from the Chilean species as regards quality is 
equivalent to the best that can be imported; it is specially used in bac- 
teriology and in the production of food commodities. It is also ex- 
ported, principally to Argentina. 

The large Phaeophyceae of the Chilean coast, which correspond to 
the Laminaria of Europe, belong to the genera Lessonia, Durvillaea, 
and Macrocystis. ‘here is an incipient industry producing alginic acid, 
alkali-soluble ficocolloids, derived from poliuronic acid, at present in 
great demand for industrial, chemical and food purposes. The species 
tested in Montemar correspond to Macrocystis pyrifera, M. integrifolza, 
Lessonia nigrescens, and L. flavicans and Durvillaea antarctica. 

All these algae grow in the breakers belt and in the sublittoral zone. 
They are partly uncovered during the low tide, which makes their har- 
vesting easier, in spite of the rocky characteristics of the coast which 
prevents the use of mechanized techniques. 

The abundance in Chile of those species can only be compared to 
that of Canada, Scotland and South Africa. Along the coast there are 
numerous and large beds of Macrocystis, which ensure the possibility of 
intensive exploitation. 

The experiments carried out at the Montemar laboratory and at the 
Inveresk Institute (Scotland), by a number of the Station, give a 20 to 
25% content of alginic acid for the mentioned species and very com- 


252 EIGHTH PACIFIC SCIENCE CONGRESS 


mendable values for laminarin, manitol and fucoidin, all of which prod- 
ucts are beginning to be in demand in the market. 

The alginates industry disposes of abundant raw materials in Chile 
to serve as the basis for the preparation of a number of medical, chem- 
ical and food products. 

On a small scale Chondrus canaliculatus (Ag.) Grev. instead C. cris- 
pus is used for extraction of carragenin, and Macrocystis pyrifera, M. 
integrifolia and Lessonia flavicans are used to produce kelp meal. 


SELECTED LITERATURE 


CUBILLOS-Moya, R. El] Agar-agar chileno. Fev. Biol. Mar., Univ. Chile, V. 
e, Nos. 1-2, pp. 70-88. 

ETCHEVERRY-DAZA, H. 1951. Generos Algologicos chilenos. I. Genero Les- 
sonia Bory. 1825. Ibidem., V. e, Nos. 1-2, pp. 53-69. 

LLANA, A. 1948. Primera Expedicion Antartica chilena. Algas Marinas. 
Ibidem., V. 1, No. 1, pp. 19-31. 

1948. Algas Industriales de Chile. IJbidem., V. 1, No. 2, pp. 
124-131. 

SKOTTSBERG, C. 1941. Communities of algae in Subantarctic and Antarctic 
waters. Kgl. Svensk. Vetensk. Ak. Handl., V. 19, pp. 1-92. 

1941. Marine algae Commuities of the Juan Fernandez Is- 
lands, with remarks on the comparison of the flora. In The Natural 
History of Juan Ferndndez and Easter Islands, V. 2, pp. 671-696. 

TAYLOR, WM. R. 1939. Algae collected by the “Hassler”, “Albatross” and 
Schmitt Expeditions. II. Marine Algae from Uruguay, Argentina, the 
Falkland Islands, and the Strait of Magallanes. Pap. Mich. Acad. Sci., 
Arts, and Letters, V. 24 (1988), pp. 127-164. 

1947. Algae collected by the “Hassler”, “Albatross” and 
Schmitt Expeditions. III. Marine Algae from Peru and Chile. Ibidem., 
V. 31, pp. 57-90. 


THE FISHERIES OF CHILE 


By B. F. Osorto-TAaFraLi 


Oficina Regional para Sudamerica Occidental 
Santiago de Chile, Chile 


INTRODUCTION 


The coast of Chile extends from the tropics to near the Antarctic 
region for a length (not including islands and channels in the far south) 
of about 2900 miles, along the Southeast Pacific. 

Chile is becoming aware of the wealth of her coastal waters. In- 
creased action is being taken to utilize these natural resources to com- 
plement the food intake of the population and also to develop national 
brands for the domestic markets to replace formerly imported com- 
modities and, in certain cases, for sale on the international market. 

As in other Latin American countries where rapid progress is be- 
ing made in the better utilization of their fishery resources, Chile is 
consistently showing an important increase in the output of its marine 
fisheries. From a total catch of about 30,600 metric tons in the pre- 
war years, the production rose to 118,300 tons, or by about 386 per cent, 
in 1952. This is due particularly to the meat shortage and also to the 
encouragement of the fishing industry by both Government agencies and 
private interests. 

Should the demand of the domestic market increase or new foreign 
markets be opened to Chilean fish and shellfish products, it is likely that 
a great deal of expansion could take place. Not only could fresh fish 
production be enlarged but processing would also become profitable for 
some valuable species. 


1. NATURAL CONDITIONS 


Chile appears to possess all the natural advantages for the establish- 
ment of a very important fishing industry, perhaps the leading one in 
Latin America; a long and productive coast line, many valuable species 
ot fish, molluscs and crustaceans, and a sea-going population which has 
been engaged in fishing for many years. 

Favorable oceanographic conditions, particularly along the Hum- 
boldt current, are conducive to provision of varied marine species for 
commercial purposes, some of which are virtually unknown in most 
parts of the world. 


254 EIGHTH PACIFIC SCIENCE CONGRESS 


The marine fauna of the Chilean coastal waters fall into two major 
biogeographical provinces. ‘The northern section belongs to the tem- 
perate West South American or Peruvian-Chilean province, with its 
northern boundary at Agujas Point (Peru) and with its southern ex- 
treme in Chiloé Island, where the sub-Antarctic or Patagonian province 
begins. 

The narrowness of the continental shelf confines the productive 
trawl fishery to limited areas between Quintero and Chiloé I., but the 
pelagic or high sea fisheries, virtually untapped, constitute invaluable 
potential resources. 

Fish and shellfish are found in great abundance in Chilean waters 
and are so regularly available generally as to form a secure and sustained 
base for a greatly expanded one. Among the species represented are 
tuna (albacore and yellowfin), bonito, swordfish, sardines, herring and 
anchovies, cusk eel (the delicious “‘congrio’”’), mackerel, king crab, lob- 
ster, shrimp, oyster, etc. From these, products that are in constant de- 
mand in world markets may be derived. Some of the species mentioned 
—sardines and anchovies, e.g.—may be taken in mass production fishing 
at low cost for drying and salting to be marketed as a valuable food 
product which keeps well, is highly concentrated and can be easily dis- 
tributed. 


2. LABOUR AND EQUIPMENT 


a) Fishermen. 

There are about 7500 men regularly engaged in fishing. The cen- 
sus of fishermen as of January 1950 gives 7229 fishermen operating all 
along the Chilean coast and 426 crewmen on fishing boats over 10 tons 
working for canneries; in the 1943 census the number of fishermen was 
given as 5517. In addition, the number of workmen in canneries and 
processing plants is 3816. In total, there are 11,471 men engaged in 
fishing and fish processing. In the Talcahuano region alone the number 
of the fishermen amounts to 2000. 

The fishermen of Chile appear to form a homogeneous group. The 
great majority of them are hard working, enterprising, and intelligent. 
Because of these qualities they are capable of mastering new techniques. 
With expert instruction there is no doubt at all that they may be relied 
upon to develop increasing productivity. Surveys indicate that the chief 
problem among fishermen is lack of means to purchase adequate craft 
and gear. The average income of fishermen ranges from 1000 to 2000 
pesos monthly, but individually might vary from about 500 to 8000 
pesos (official rate: 1 American dollar = 110 Chilean pesos). 


FISHERIES OF CHILE 255 


It is evident that with so low an income many fishermen do not 
earn their livings and are forced to devote part of their time to other 
jobs. 


b) Craft. 

In December 1951, out of a total of 4338 fishing craft used, approx- 
imately 64 were engine driven vessels of medium size (10 to 200 gross 
tons, including 12 whale catchers), 917 motorized small craft (most of 
them with portable gasoline engines), and 3357 open boats with oar and 
sail, representing 77 per cent of the total fishing fleet were in operation. 
The census taken in 1943 recorded 385 motorized and 2554 non-motor- 
ized vessels. 

Almost all the present fishing fleet was built in Chilean yards from 
domestic materials and by local labor. Since the inception of the trawl 
fisheries in the early forties and the building of new processing plants, 
several large steel trawlers and some wooden purse seimers were im- 
ported, most of them from Belgium and Germany. ‘The local ship- 
yards have also been active in building new power-driven craft. Un- 
fortunately some of these large boats have been wrecked or lost at sea. 

Present types of boats appear to be adequate enough to supply the 
existent demand for fresh fish. However, due to the very low product- 
ivity per man and year of the small non-powered craft and the increased 
demand for raw material from the processing plants, both for canning 
and fish meal, if production costs are to be maintained at an adequate 
level, motorization of the fishing fleet is imperative and acquisition of 
larger and modern craft is necessary for fishing in distant grounds to 
supply fish varieties at lower price. Such boats could be built in Chilean 
shipyards if technical assistance is provided. 


©). Gear: 

The amount of fishing gear in Chile has been estimated in 1945 as 
including approximately 600 units of longlines (“palangre” or “espinel’’) 
used almost exclusively for cusk eel (“congrio’”); about 400 gill nets 
(“amalladeras” or “trasmallo’”) of different types; about 1000 harpoons 
which account for practically the entire catch of swordfish; ring nets 
(‘“boliche”) for bonito, sardine and anchovy, numbering 120; beach 
seines (“chinchorros de playa”) of various types numbering about 250; 
otter trawl nets, exclusively used in the hake fishing; trolling lines for 
tuna fishing; lobster traps in Juan Fernandez Island; traps (‘“nasas’’) 
for crabs and shrimp, and about 200 diving outfits used in the shellfish 
fisheries. 


256 EIGHTH PACIFIC SCIENCE CONGRESS 


While the longline is still of great importance for cusk eel, {lounder 
and croaker fishing, the otter trawl has become of increasing importance 
in the recent years, in the fishing of hake or whiting, taking about 65% 
of the total fish catch. 

Almost all the nets used in Chile are made from domestic materials 
and, although there is a lack of adequate fittings and cable, operations 
are fairly efficient. 


d) Investments. 
Chile’s fishing industry was evaluated in June 1947 as representing 
an investment of approximately 400 million pesos, distributed as follows: 


Million pesos 


Craft and gear 200 
Processing plants 175 

Fresh fish distributing and 
marketing facilities 10 
Others 15 
Total 400 


It is probable that, on account of recent developments, particularly 
the severe inflation suffered by the country, the total investments in the 
industry are now 100% higher, that is around 800 million pesos. 


3. PRODUCTION 


a) The Fishing Zones. 

Chile can be roughly divided in respect of her marine fisheries, into 
five zones, which from north to south are: 

North: Provinces of Tarapaca and Antofagasta 

North Central: Province of Coquimbo 


Central: Province of Valparaiso and San Antonio 
South Central: Province of ‘Talcahuano 


South: Provinces of Valdivia and Puerto Montt. 

The northern zone with Iquique, Antofagasta and ‘Taltal, is im- 
portant because of its pelagic fisheries which include such species as 
tuna, bonito, swordfish and pilchard, processed in the local canneries, 
the largest in the couniry. 

The north central zone supplies the immediate mainland as well 
as the Santiago Market with the highest priced varieties of fresh fish, 
viz: cusk eel (‘“congrios negro” and “colorado’”’), flounder, croaker, 
mackerel, etc. 

The central zone is the site of the large trawl fisheries centering in 


Valparaiso and San Antonio. Hake is the species exploited, with about 
64 per cent of the catch going to fish meal plants. 


FISHERIES OF CHILE 257 


The Talcahuano zone produces fresh fish, principally hake and 
cusk eel, with part of the catch sold locally and the balance being 
shipped by rail to Santiago; it also produces mackerel and sardine for 
local canneries. 

In the southern zone fishing is mostly of the subsistence type, but 
being the richest in shellfish, these provinces contain most of the plants. 
processing molluscs and crustaceans. 


b) The Catch. (As indicated by Table I) 

Fish landings have consistently increased since 1944. Figures for 
previous years, while showing an upward trend evidence some fluctua- 
tions. ‘Tie rather spectacular increase in the fish catch is due to the 
development of the trawl fisheries for hake, offshore along the central 
section of the country (areas Valparaiso—San Antonio, and Talcahuano). 

Shellfish landings manifest wider fluctuations than fish landings but 
there is also an apparent trend to rise during the past few years. 


TABLE I 
CHILE 


FISH AND SHELLFISH LANDINGS, 1931 To 1951 
(In Metric Tons) 


YEAR FISH SHELLFISH TOTAL 

1931 11,836 5,180 17,016 
1932 14,204 8,982 23,186 
1933 18,572 8,623 PAT USI) 
1934 17,680 8,207 25,887 
19385 21,104 7,676 28,780 
1936 27,579 7,282 84,861 
1937 28,778 7,909 36,687 
1938 24,114 6,458 30,572 
1939 28,912 7,642 36,0504 
194 27,094 11,216 88,310 
1941 29,017 8,363 37,380 
1942 24,086 8,128 32,214 
1943 80,999 9,549 40,548 
1944 29,023 10,778 39,801 
1945 32,623 14,401 47,024 
1946 39,815 21,128 60,943 
1947 45,6938 14,378 60,071 
1948 47,396 17,328 64,724 
1949 60,375 15,871 76,246 
1950 69,337 17,529 86,866 
1951 73,106 19,931 93,037 
1952 94,370 23,916 118,286 


Source: Direccién de Pesca y Caza, Ministerio de Economia y Comercio, Chile. 


258 EIGHTH PACIFIC SCIENCE CONGRESS 


In 1952, ten species (Table II) formed about 92 per cent of the 
total fish catch, with a single species, hake, accounting for more than 
68 per cent of the total fish production. 


c) Disposal of the Catch. 

On the basis of the 1951 figures Table III has been prepared giving 
the utilization of the catch and for each item the weight of raw ma- 
terial and of the edible portion. The latter data are needed to estimate 
the per caput consumption. 

There is a great spread in production per capita, from the lowest, 
3 kilos in the southern zone of Puerto Montt, to 20-22 kilos in the 
northern districts. It shows that the production in the middle zones 
is not large enough to satisfy the demand of its large urban areas. In 
spite of the commerce between the zones which should help to distribute 
fish caught more equally according to the population, there seems to 
be big differences in fish available for domestic consumption between 
the various zones. The largest export of fresh fish takes place from the 
Talcahuano zone, from which a large proportion of its production of 
fresh fish is shipped, mainly to Santiago. ‘This reduces quantities avail- 
able for local consumption in this big fishery zone considerably. An 
influencing factor when considering fresh fish available for the domestic 
market is the season of the year. aking the most important fish, Mer- 
luza is caught in only four months, from August to November, and 
50% of Sierra in the four months from January to April. Since 50% 
of fish consumption is in fresh fish, it is obvious that, if consumption is 
to increase, consuming centres must have better storage and distribution 
facilities. 

The Commercial Fisheries in all Latin America, but particularly 
in Chile, are generally slow to improve products or to develop new 
techniques, to exploit untapped resources, correct wasteful fishing me- 
thods or to utilize their raw materials with economical possibility. “This 
backwardness is probably the consequence of the very diffused char- 
acter of the fishing industry, ordinarily comprising small individual 
enterprises widely scattered along extensive coast lines and involving 
great diversity of local fisheries based on notoriously unstable supply. 


4. VALUE OF THE CATCH 
The value of the catch in 1952 as paid to the fishermen has been 
estimated at 589 million pesos; 432 million for fish and 157 million for 
shellfish. Consumers paid around 1250 million pesos for fresh fish and 
shellfish and about 750 million for processed fish, making a total value 
paid by the consumers of about 1.52 billion pesos. 


259 


FISHERIES OF CHILE 


‘arty ‘orossu0g A YIUOUOdY dp oOrTeystuIY ‘ezEQ A BoSdg OP UOTIIAIIG 9Y} WOIl Bjep dIseg :d01n0g 


0°00T OLE'F6 eS TVLOL 

TL VEL'9 ‘dds 10430 

6°36 9€9°L8 IVLOLGNS ay 

eT vO? T 1qUow snp) BUIATOD Tayeory “OL 

PL Tre'L nhydanwu SNsINyoIvA T, jeine yoer 6 

Dal T6S'T snunojpu sdouba)q oyeqoy yooug °g 

Ly LEV? xnbos sdourpsng SeCUIPIes preyoig *2 

67 r09'P Unyw sazisIhy L BILLS Jetayovy, exVug “9 

oS 988°0 SUSUOLLYD DAV OFLUO, oyuog = 

e : ‘dd lh A opeazojood ‘o1gs9u sOlisuo dds 8 a 

vs vOT'S S Snlazahuay) opezop PEtor : : o) slog ysno 2 

&°89 67019 hob snioon).1a jl epeoseg O eZN{ 12] een CT 
HOLVOD TVLOL SNOL a 
40 aavaKaonee SraLayy 


ZG6L NI SONIGNVT HSI. 
aMIHD 


Il ATa&ViL 


‘260 EIGHTH PACIFIC SCIENCE CONGRESS 


TABLE III 
CHILE 


UTILIZATION OF THE CATCH IN 1951 
(In Metric Tons) 


LANDINGS PERCENTAGE EDIBLE PoRTION 
Fish 

Fresh, whole 36,680 50.2 19,774 
Fresh, filets 316 0.4 136 
Dried Soll 0.5 88 
Salted 35 0.1 5 
Smokea 224 0.3 150 

For meal 27,376 37.4 BRST 
Canned 8,188 Blea] 3,029 
| Total 73,106 100.0 29,265 

Shellfish 

Fresh 12,684 63.6 1,569 
Canned 7,247 36.35 1,224 
TOTAL 19,931 100.0 2,793 
GRAND TOTAL 93,037 32,058 


Source : Estimated from data coiected by the Direccién de Pesea y Caza, Ministerio de 
Economia y Comercio, Chile. 


* Utilized in poultry and milk cow feeding. 


Exports were valued in 1951 at about 45 million; imports of fish 
commodities were 3 million, and imported supplies and materials for the 
industry (not including the value of the large trawl vessels brought to 
Chile) 2n additional 25 million. It is estimated that the foreign ex- 
change balance for the fishing industry is about 50 million pesos an- 
nually. 


5. WHALING INDUSTRY 


Two Chilean companies engage in whaling. ‘The larger is the 
“Compania Industrial” with its principal offices in Valparaiso; the other, 
which is quite small, the “Compafiia Pesquera y Commercial de Macaya 
Hermanos”, is established in San Vicente, Talcahuano. 

The large firm has six whaling vessels and a shore station at Quin- 
tay, not far from Valparaiso. ‘The whaling operations of this company 
were begun during the last war to provide substitute materials for tal- 
low and other scarce fats in its manufacturing processes. In 1951, this 
company caught and processed 1096 whales (735 sperm whales, the 
balance being baleen whales, chiefly finback—Table 1V). 


FISHERIES OF CHILE 261 


TABLE IV 


WHALES CAUGHT IN CHILE 
1943 To 1951 


1 2 3 4 5 6 7 
YEAR soISHES EBLUEL FInNBACK HUMPBACK SER eae TOTAL 
1948 1 iL 13 — 128 -— 143 
1944 — 3 49 38 363 —- 418 
1945 -— 41 65 el 366 —- 483 
1946 ~- 11 238 5 340 1 595 
1947 — 22 90 15 720 2 849 
1948 — 85 289 5) 731 6 1,116 
1949 — 18 209 3 680 — 991 
1950 -—— 43 273 4 773 — 1,093 
1951 — ta 279 3 735 2 1,096 


1—Balaena australis 
2.—Balaenoptera musculus 
3.—Balaenoptera physalis 
4.—_Megaptera nodosa 
5.—Physeter macrocephalus 
6.—Balaenoptera borealis 


Source: Direccidn de Pesca y Caza, Ministerio de Economia y Comercio, Chile. 


The baleen whales yielded 721 metric tons of oil and the sperm 
whales 2600 metric tons, a total oil production of 3321 metric tons for 
this company, whose whaling activities are an adjunct to its extensive 
and diversified soap and manufacturing activities. Over 90% of this 
concern’s Output is used in the manufacture of soaps, the remainder 
(baleen oil) goes into its production of margarine. The carcasses are 
used in the fish meal and bone meal manufacture. 

The smaller company owns a catcher which operates along the 
central and southern Chilean coast. ‘The 1949 production was 900 bar- 
rels (152.4 metric tons) of baleen whale oil and 2301 (84.8 metric tons) 
of sperm whale oil. When this firm at Talcahuano cannot sell its pro- 
duction to the Compania Industrial for hydrogenation and use in the 
latter firm’s soap factory, the Talcahuano firm sells its production to 
small soap factories located in the south of Chile. 


6. PROCESSING INDUSTRIES 


Fish have been processed in Chile for many years, but on a limited 
scale. During the past fifteen years, however, considerable activity has 
taken place. In 1950, 56 fish processing industries with a capital of 
350 million pesos were in operation. 


262 EIGHTH PACIFIC SCIENCE CONGRESS 


Refrigeration: 

Although a number of refrigeration plants exist, these generally 
lack modern machinery and employ sub-standard methods. The role of 
refrigeration in the fishing industry is not yet thoroughly understood. 
Ice, chiefly because of the present high prices, is little used by the fish- 
ing industry. ‘The proximity of the fish producing areas to the main 
markets does not seem to require the more expensive methods of pre- 
servation of fish, such as freezing. 

Salteries: 

Salting and drying of fish received considerable impetus during the 
last war, chiefly for export. Production costs have been high, and for 
this reason comparatively little salt fish is consumed in Chile. The so- 
called “bacalao de Juan Fernandez’ (actually a grouper) is one of 
several species which is salted and dried. In addition, small amounts 
of hake, shark, elephant fish and cusk eel are dried; tuna, herring, sar- 
dine and anchovy salted; and swordfish, snake mackerel, herring, sardine, 
anchovy hake and smelt smoked. In 1951 about 375 tons of fish were 
dried and salted, and 224 tons smoked. The resultant products were 
90 and 5 tons respectively. 


Cannertes: 

Canning started in Chile around 1865. In 1946 there were some 
20 canning plants having an approximate declared capital of 40 million 
Chilean pesos. By 1950 the number of fish canning concerns increased 
to 56 with an active capital of 350 million pesos. These canneries are 
scattered from Arica in the far north to the extreme south in Punta 
Arenas on the Strait of Magellan. The canneries are concentrated in 
the following areas: ‘Tarapaca—Antofagasta, Valparaiso, Talcahuano, 
Puerto Montt, Calbuco, and Punta Arenas. From the standpoint of 
production the Tarapaca—Antofagasta areas and the Talcahuano area are 
the major centres of canned fish production, processing respectively 
6,700 and 17,900 tons of raw material. 

Exact statistics of Chile’s canned fish are not available, but the total 
figures give an idea of the steady rise in production. In 1936, around 
1000 tons net of canned fish and shellfish were produced; 1951 fish 
pack, chiefly sardines, tuna and herring, amounted to a net weight of 
about 3425 metric tons. 


Pesquera Iquique, S.A., with fish-freezing plant, plenty of refrigerated storage and tuna 
and sardine canning, owns the most modern and best equipped fish plant in all Chile, located 
in Iquique. In addition, there are Sociedad Industrial Pesquera de Tarapaca (elaborating the 
renowned brand “Cavancha’’), with plants in Iquique and Taltal; Jorge Cerda’s plant “El 
Buen Gusto” in Arica; Sociedad Pesquera Industrial Pacifico, in Iquique; Compaiiia Industrial 
Pesquera and Mateo Zlatar’s plants, in Antofagasta; Industrias Pesqueras Guayacan in Co- 
quimbo; Sociedad Italo-Portuguesa “Sipol’? in Valparaiso; Jorge Sarquis’ Sociedad Pesquera 
“Qurbosa”’ Conservas y Productos Pesqueros S.A.; and Meekes and Saelzer in Taleahuano—San 
Vicente dre the largest fish canneries in the country, whose combined output exceeds 75% of 
the entire canned fish production. 


FISHERIES OF CHILE 263 


Shellfish canning is centered in the southern zone. In 1951 twenty 
canneries were in operation, of which eleven are located at Calbuco 
Island; another five farther south and the balance in Punta Arenas. Six- 
teen canneries produced in that year 106,650 cases with an average of 
6,660 cases per cannery, the largest output of a single cannery being 
18,000 cases of finished product. A standard case of canned shellfish 
contains 48 cans of 240 grams net each. The net output amounted to 
1225 metric tons. 

The present fish canning industry, with few exceptions, does not 
employ modern machinery for efficient production methods. Costs, 
therefore, are relatively high. Although buildings are usually good, 
equipment, layout, working space arrangements and labour saving de- 
vices are deficient. Machinery and other equipment, in general, are ob- 
solete. Among the problems confronted by the Chilean fish processing 
industry, in common with other Latin American countries, are the dif- 
ficulty of acquiring new equipment to replace obsolete machinery, the 
difficulty of obtaining foreign hard currency for cans, and the low 
standard of cans manufactured locally. In fact, containers are often 
made by the cannery and this practice has led to cans of sub-standard 
quality, a great divergence of sizes and added overhead expenses. 

It is obvious that the Chilean canning industry with modernization 
and expansion will be capable of producing a much greater pack at 
lower costs than those prevailing at present. Increased production is 
dependent on the amount of tin plate available and of export markets 
to absorb the output. The most logical and readily available markets 
are those of other Latin American countries, but this outlet has not yet 
been utilized. United States importers maintain that high cost of trans- 
portation and difficulties of shipping make the venture of importing 
Chilean canned fish to the United States almost unprofitable. Moreover, 
production costs are at present abnormally high and Chilean canners 
are not in a position to capture any significant part of the world’s market 
for commodities such as tuna and bonito. However, exports of canned 
fish and shellfish have risen from 112.4 metric tons in 1948 to 935.3 
tons in 1951. It seems that the crustaceans and molluscs pack could 
find a good place in foreign markets. 


Fish meal: 

Annual production in two modern plants, one with a capacity of 
10 tons per hour, located in San Antonio and several small or crude 
installations at the canneries, is estimated in 1951 at about 5,800 tons. 
The majority of the raw material used is hake obtained by trawling 
in the near fishing grounds. With a low oil content the hake is not 


264 EIGHTH PACIFIC SCIENCE CONGRESS 


suitable for oil production. It appears that good possibilities exist for 
expansion of fish meal production both from wastes and from direct 
fishing. Nevertheless, the profitability of fish meal production in Chile 
by direct fishing remains to be seen. Cattle and poultry raising use 
almost all the domestic production of fish meal. 

Fish oil: 

Production of industrial fish oils in Chile is still very limited. Not 
more than 100 metric tons are estimated to be produced annually. How- 
ever, this output is subject to increase as oil extraction proceeds in the 
fish meal plants already in operation and the new ones under construc- 
tion. 


Vitamined oils: 

Assays of samples of fish liver from Chilean waters indicate that 
rich sources of vitamin “A” are available. Reported 1951 production, 
chiefly of low potency oils, was about 29,700 liters. Present output is in 
the neighborhood of 120 billion International Units, derived from about 
275 tons of liver. Different species of shark and also tuna supplied the 
raw material. 


7. FREsH WATER FisH 

The indigenous fish fauna of Chilean lakes and rivers is exception- 
ally poor, particularly regarding edible species. The once abundant 
smelt (pejerry — Basilichthys microlepidotus), native trout (trucha 
criolla — Percichthys trucha), and catfish (bagre de agus dulce — Nema- 
togenys inermis), as well as the small farionelas or peladillas (Haplochi- 
ton spp.), were overfished in the measure that human settlements ex- 
panded, with the result that, at present, these species are on the verge 
of extinction. 

Since 1905, the fisheries administration implemented an ambitious 
programme of restocking Chilean fresh waters with species such as the 
European salmon and trouts, the North American rainbow and steel 
head trouts and the Alaskan salmon. ‘These activities were continued 
for a number of years and, with the exception of the European and 
the North American salmons which acclimatization apparently failed, 
the other species were successfully established. In more recent years 
this planting with foreign species was expanded to new areas and other 
species, such as the valuable Argentinean smelt (Odonthestes bonar- 
iensis), were introduced. It is interesting to report that all these ac- 
climatized species grow in Chilean waters to a larger size than in the 
original countries. However, the utilization of these stocks is mainly 
for sportive purposes, 


FISHERIES OF CHILE 265 


SELECTED BIBLIOGRAPHY 


ALARCAO, J. 1953. Present Status and Prospectives of the Fishery Industry in 
Latin America. F.A.O. Fisheries Division. 31 pp. mimeographed. Food 
and Agriculture Organization of the United Nations, Rome, Italy. 

HERNANDEZ-PoNCE, M. 1953. Informaciones Estadisticas sobre Pesca. Direc- 
cién de Pesca y Caza. pp. 57. Valparaiso, Chile. 

Howarp, G. V. and GopFREY, E. 1951. A Summary of the Information on the 
Fisheries and Fisheries Resources of Latin America. F.A.O. Fisheries 
Division. 262 pp. mimeographed. Food and Agriculture Organization of 
the United Nations, Washington, D.C. 

LcoBELL, M. J. 1951. The Development of the Fishery Resources in Chile. 
Proc. U.N. Sci. Conf. on Conservation and Utilization of Resources. Vol. 
VII, Wildlife and Fish Resources. pp. 41-44. United Nations. Dept. of 
Econ. Aff., New York. . 

LOBBLL, M. J., et al. 1947. The Fisheries of Chile: Present Status and Future 
Possibilities. Report of the U.S. Fisheries Mission to Chile. 1207 pp. 
(typed), illustr. and appendixes. U.S. Dept. of Interam. Fish and Wild- 
life Service, Washington, D.C. 

MontTtT, M. 1949. La Pesca Industrial en Chile. 134 pp. Valparaiso, Chile. 

Myers, G. S. 1950. The Fish Fauna of the Pacific Ocean. Proc. 6th Pacific 
Set. Congr. Vol. 3. pp. 201-210. Univ. of California Press, Berkeley 
and Los Angeles, Calif. 

OSsORIO-TAFALL, B. F. 1951. Better Utilization of Fishery Resources in Latin 
America. F'..A.O. Fisheries Bulletin. Vol. 4, No. 4, pp. 3-25. Food and 
Agriculture Organization of the United Nations, Rome, Italy. 

. 1952. Report on the Fisheries of Chile. 51 pp. mimeographed. 
F.A.O. Regional Office for Western South America, Santiago, Chile. 

POULSEN, E. M. 1952. Report to the Government of Chile on Food Fishes of 
Chile. F.A.O. Report No. 45. pp. 72, illustr. Food and Agriculture 
Organization of the United Nations, Rome, Italy. 


PRELIMINARY LIST OF CHILEAN FISHES AND THEIR 
VERNACULAR NAMES 


By FERNANDO DE BUEN 
FAO Fisheries Expert 
Technical Assistance Program, Chile 


The author has devoted six months, as an FAO Fisheries expert, 
surveying fishery potentialities along the Chilean coast. While this 
survey has been concentrated on commercially important species, during 
the trips made aboard fishing boats, a number of interesting species 
were caught and identified. 

In this preliminary note some changes have been introduced re- 
garding the nomenclature and taxonomic status of the species recorded 
in Chilean waters. ‘This matter will be discussed in the author’s final 
report to FAO. 

On the basis of the existent recording literature and of my personal 
observations, a list has been compiled including all the species of fish, 
sensu latu, known to be resident in Chilean fresh water and coastal 
waters, and also those migrants that seasonally approach the littoral of 
the mainland, the off shore waters and the distant islands. The names 
marked with an asterisk refer to species identified by the writer. 


For the sake of simplification the following notations are used: 

N., C., and S. indicate respectively Northern, Central and Southern 
Sections of Chile. 

JF refers to Juan Fernandez Island. 

SFA to San Felix and San Ambrosio Islands. 

P to the Easter Island (Isla de Pascua). 


I MORDACIIDAE 


1. Geotria australis Gray Lamprea, lamprea de bolsa. 
(C.S.) 
II EPTARETIDAE 
2. Polistotrema polytrema (Girard) (C.S.) 
3. Polistotrema decatrema (Regan) (C.S.) 
III MYXINIDAE 
4. Myxine tridentiger Garman (C.S.) 
5. Myxine affinis Giinther (S.) 
IV HEXANCHIDAE 
6. Hexanchus griseus (Bonnaterre) Tiburon. (C.S.) 
7. Heptranchias perlo (Bonnaterre) Tiburon. (C.) 


266 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 267 


V ISURIDAE 
8. Isurus oxyrinchus Rafinesque (N.C.S.) 
9. Lamna nasus (Bonnaterre) (C.S.) 
10. Carcharodon carcharias (Linnaeus) Tiburon. (S.) 
VI CETORHINIDAE 
*11. Cetorhinus maximus (Gunner) . .» Tiburén gigante. (C.) 
VII ALOPIDAE 
12. Alcpias vulpinus (Bonnaterre) Pez zorro. (N.C.S.) 
VIII SCYLIORHINIDAE 
13. Cephaloscyllium ventricosum 
(Garman) (Chile). 
14. Halaelurus bivius (Smith) Pintarroja. (C.S.) 
*15. Halaelurus chilensis (Guichenot) Pintarroja. (N.C.S.) 
IX TRIAENODONIDAE 
*16. Mustelus mento Cope Tollo. (N.C.S.JF) 
*17. Mustelus maculatus (Kner y Stein- 
dachner) Tollo. (N.) 
18. Triaenodon nigricans Philippi (SFA) 
X EULAMIIDAE 
19. Galeorhinus chilensis (Perez Canto) Cazon. (C.S.) 
* 20. Prionace glauca (Linnaeus) Azulejo. (N.C.S.) 
21. Eulamia philippi Fowler (N.) 
22. Eulamia robusta (Philippi) (N.S.) 
XI SPHYRNIDAE 
23. Sphyrna zygaena (Linnaeus) Pez Martillo. (N.) 
XII SQUALIDAE 
24. Scymnodon macracanthus (Regan) (S.) 
25. Etmopterus paessleri Ldnnberg (S.) 
26. Etmopterus granulosus (Ginther) (S.) 
27. Squalus fernandezianus Guichenot Tollo. (C.S.JF) 
XIII SQUATINIDAE 
28. Squatina armata (Philippi) (N.C.S.) 
XIV RHINOBATIDAE 
29. Tarsistes philippi Jordan (N.C.S.) 
XV RAJIDAE 
30. Raja flavirostris Philippi Raya. (N.C.S.) 
31. Raja magellanica Steindachner Raya. (S.) 
32. Raja brachyurops Fowler Raya. (S.) 
33. Psammobatis scobina (Philippi) Pequén. (N.C.S.) 
34. Psammobatis lima _ (Poeppig) Trucha de mar. (N.C.S.) 
XVI DASYATIDAE 
35. Urotrygon chilensis (Giinther) (Chile) 
36. Urobatis marmoratus (Philippi) (C.) 


268 


37. 
38. 


39. 


* 40. 


* Al, 


A2. 
* 43. 


* 44, 
* AD, 
* 46. 


* 47, 


48, 
49, 
50. 


51. 


52. 


53. 


54. 


55. 
56. 
57. 
58. 
59. 
60. 
61. 


62. 


EIGHTH PACIFIC SCIENCE CONGRESS 


XVII MYLIOBATIDAE 


Aetobatus peruvianus (Garman) Aguila de mar. (N.) 
Rhinoptera chilensis (Philippi) Aguila de mar. (N.) 
XVIII MOBULIDAE 
Mobula tarapacana (Philippi) (N.) 
XIX TORPEDINIDAE 
Discopyge tschudu Heckel Templadera. (N.C.S.) 
: XX CALLORYNCHIDAE 
Callorhinchus callorhinchus (Linneaus) Peje Gallo. (N.C.S.) 


XXI CLUPEIDAE 


Clupea fueguensis Jenyns Sardina. (S.) 

Clupea bentincki Norman Sardina, sardina anchoa. 
(C.S.) 

Spratella nov. sp.? Sardina, sardina anchoa. 
(C.S.) 

Sardinops sagax sagax (Jenyns) Sardina espafiola. (N.C.) 

Ethmidium maculatum (Valenciennes) Machuelo, machete. (N.C.) 


XXII ENGRAULIDAE 


Engraulis ringens Jenyns Sardina, sardina bocona, 
anchoveta, chicora. (N.C.S.) 


XXIII APLOCHITONIDAE 


Aplochiton taeniatus Jenyns Peladilla. (S.) 
Aplochiton zebra Jenyns Peladilla. (S.) 
\Aplochiton marinus Eigenmann Peladilla. (S.) 
XXIV STOMIATIDAE 
Stomias atriventer Garman (Deep-sea). 
XXV IDIACANTHIDAE 
Indiacanthus niger Regan (Deep-sea). 
XXVI GONOSTOMIDAE 
Cyclothone signata Garman (Deep-sea). 
XXVIII MAUROLICIDAE 
Maurolicus mulleri (Gmelin) (Deep-sea). 
XXVIII GALAXIIDAE 
Brachygalaxias bullocki (Regan) Puye. (S.) 
Galaxias attenuatus (Jenyns) Puye. (S.) 
Galaxias gracillimus (Canestrini) Puye. (S.) 
Galaxias maculatus (Jenyns) Puye. (S.) 
Galaxias alpinus (Jenyns) Puye. (S.) 
Galaxias globiceps HEigenmann Puye. (S.) 
Galaxias platet Steindachner Puye. (S.) 


XXIX CHLOROPHTHALMIDAE 
Chlorophthalmus glacilis Giinther (JF) 


63. 
64. 
65. 
66. 
67. 


68. 


69. 


70. 


71. 
72. 
73. 
74. 
75. 
76. 
Ute 


78. 


Usb 


80. 


81. 


82. 


83. 


84, 
85. 
86. 
87. 
88. 


89, 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 269 


XXX MYCTOPHIDAE 


Myctophum affine (Liitken) 


Myctophum tenisoni Norman 


Rhinoscopelus cocco (Cocco) 


XXXI CHARACIDAE 


Cheirodon pisciculus Girard 


Cheirodon galusdae Eigenmann 


Cheirodon australe Eigenmann 


(Deep-sea). 
(Deep-sea). 
(Deep-sea). 


Pocha, pochita. (Fresh- 
water). 
Pocha, pochita. (Fresh- 
water). 
Pocha, pochita. (Fresh- 
water). 


XXXII DIPLOMYSTIDAE 


Diplomyste chilensis (Molina) 


XXXIII ARIIDAE 


Netuma barbus (Lacepede) 


XXXIV PYGIDIDAE 
Hatcheria maldonadoi Eigenmann 


Hatcheria bullocki Fowler 
Hatcheria macraei (Girard) 


Pygidium chiltoni Eigenmann 
Pygidium areolatum (Valenciennes) 
Pygidium maculatum (Valenciennes) 
Nematogenys inermis (Guichenot) 


XXXV LORICARIIDAE 
Ancistrus erinaceus (Valenciennes) 


XXXVI MURAENIDAE 


Muraena appendiculata (Guichenot) 
Gymnothorax porphyreus (Guichenot) 


Gymnothorax weineri Sauvage 
Gymnothorax chilensis (Giinther) 


Gymnothorax modestus (Kaup) 


Tollo, bagre de agua dulce. 
(Freshwater). 


Bagre marino. (S.) 


Bagre. (Freshwater). 
Bagre. (Freshwater). 
Bagre. (Freshwater). 
Bagre. (Freshwater). 
Bagrecito. (Freshwater). 
Bagre. (Freshwater). 
Bagre. (Freshwater). 


(Freshwater). 


Murena, culebra de mar. (C.) 

Murena, culebra de mar. 

(JF) 

Murena, colebra de mar. 
(Chile). 

Murena, colebra de mar. 
(Chile). 

Murena, colebra de mar. (C.) 


XXXVII OPHICHTHYIDAE 


Ophichthus ater Peters 


Ophichthus dicellurus (Richardson) 
Ophichthus remiger (Valenciennes) 
Ophichthus pacifict (Gunther) 
Ophichthus callaensis (Gtinther) 


XXXVIII CYEMIDAE 


Cyema atrum Giinther 


Anguila. (Chile). 
Anguila. (N.C.) 
Anguila. (C.) 
Anguila. (N.C.) 
Anguila. (N.C.) 


(JF) 


270 EIGHTH PACIFIC SCIENCE CONGRESS 


XXXIX NOTACANTHIDAE 


9). Gigliolia moseleyi Goode y Bean (Deep-sea). 
XL SCOMBERESOCIDAE 
* 91. Scomberesox equirostrum Le Sueur Agujilla, punto fijo. (C.JF) 
XLI HEMIRAMPHIDAE 
92. Hemiramphus phurcatus Philippi Pez aguja. (P.) 
XLII EXOCOETIDAE 
93. Hxocoetus volitans Linnaeus Pez volador. (N.) 
94. Cypsilurus lineatus (Valenciennes) Pez volador. (JF) 
XLIII MURAENOLEPIDAE 
95. Muraenolepsis orangiensis Vaillant Ss) 
96. Muraenolepsis microps Lonnberg . (S.) 
XLIV GADIDAE 
97. Saliota australis (Ginther) (S.) 
98. Physiculus marginatus (Ginther) (S.) 
99. Lotella fernandeziana Rendahl (JF) 
100. Laemonema multiradiatum (Thompson) (Deep-sea). 
* 101. Merlucctus gayi (Guichenot) Pescada, merluza (C.S.) 
102. Merluccius australis (Hutton) Pescada, merluza. (S.) 
103. Macruronus magellanicus Loénnberg Merluza de cola. (S.) 


104. Macruronus novae-zelandiae (Hector) Merluza de cola. (S.) 


XLV CORYPHAENOIDIDAE Granaderos 


105. Coryphaenoides holotrachys (Giinther) (Deep-sea). 
106. Coryphaenoides ariommus Gilbert y 


Thompson (Deep-sea). 
107. Coryphaenoides ariommus  (Giinther) (Deep-sea). 
108. Celorhynchus fasciatus (Giinther) (Deep-sea). 
109. Celorhynchus chilensis Gilbert y 

Thompson (Deep-sea). 
110. Celorhynchus patagoniae Gilbert y 

Thompson (Deep-sea). 
111. Macruroplus pudens (Gilbert y Thomp- 

son) (Deep-sea). 


XLVI MACRORHAMPHOSIDAE 
112. Macrorhamphosus fernandezianus 


(Delfin) (JF) 
XLVII SYNGNATHIDAE 
118. Syngnathus scicularis Jenyns Aguja de mar. (N.C.S.) 
114. Syngnathus pelagicus Linnaeus Aguja aguja de mar. (S.) 
115. Leptonotus blainvillianus (Eydoux 
Gervais) Aguja de mar. (C.S.) 


XLVIII CYPRINODONTIDAE 
116. Orestias agassizi Valenciennes (N.Freshwater). 


Ie 


118. 


iil 
120. 


121. 


122. 
123. 
124, 
125. 
126. 
127. 
128. 
129. 
130. 
131. 
132. 


133. 


134. 


135. 
136. 
137. 
138. 
139. 
140. 
141. 
142. 
143. 
144, 
145. 
146. 
147. 


148. 
149. 


150. 


151. 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 


XLIX TRACHIPTERIDAE 


Trachipterus altivelis Kner 


(C.S.) 


L TRACHICHTHYIDAE 


Trachichthys fernandezianus Gimnther 


LI MUGILIDAE 


Mugil cephalus Linnaeus 
Mugil curima Cuvier y Valenciennes 


LII ATHERINIDAE 


Notocheirus hubbsi Clark 
Basilichyhys australis FEigenmann 
Basilichyhys microlepidotus (Jenyns) 
Basilichyhys gracilis (Steindachner) 
Odontesthes mauleanum (Steindachner) 
Odontesthes wiebricht Eigenmann 
Odontesthes itatanum (Steindachner) 
Odontesthes brevianalis (Giinther) 
Odontesthes laticlavia (Valenciennes) 
Odontesthes smittt (Lahille) 
Odontesthes nigricans (Richardson) 
Odontesthes regia (Humboldt) 


LII SERRANIDAE 
Percichthys trucha (Valenciennes) 


Percichthys melanops Girard 


Percilla gillissi Girard 

Percila irwinit Eigenmann 
Acanthistius pictus (Tschudi) 
Gilbertia semicincta (Valenciennes) 
Hemelutjanus macropthalmos Tschudi 
Polyprion oxygeneios (Schneider) 
Paralabrax humeralis (Valenciennes) 
Paralabrax semifasciatus 

Prionodes huascartt (Steindachner) 
Diplectrum conceptione (Valenciennes) 
Caprodon longimanus (Gtnther) 
Hemanthias peruanus (Steindachner) 
Callanthias platei Steindachner 


(JF) 


Liza. (N.C.S.JF) 


271 


Liza. (N.) 
(C.) 
Pejerrey. (Freshwater). 


Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 
Pejerrey. 


(Freshwater). 


(JF) 


(Freshwater). 
(Freshwater). 
(Freshwater). 
(Freshwater). 
(Freshwater). 


(S.) 
(S.) 
(N.C.S.) 


Trucha, perea trucha. 
(Freshwater). 
Trucha, perea trucha. 


(Freshwater). 
Carmelita. (Freshwater). 
Carmelita. (Freshwater). 
(N.C.) 


Cabrilla listada. (JF) 
Ojo de uva, papaniagua. (N.) 


Baealao. 
Cabrilla. 


(Chile) 
(S.JF) 
(JF) 
(Chile) 
(JF) 


LIV BRANCHIOSTEGIDAE 


Prolatilus jugularis (Valenciennes) 
Caulolatilus princeps (Jenyns) 


Blanquillo. 


(Chile) 


LV POMATOMIDAE 


Pomatomus saltatrix (Linnaeus) 


(C.) 


LVI RACHYCENTRIDAE 


Rachycentrodon canadum (Linnaeus) 


(JF) 


(JF, SFA) 
(N.C.S.JF) 


(N.C.S.) 


272 


152. 
153. 
* 154, 
salop. 
156. 
157. 
158. 
159. 


* 160: 


161. 


162. 


163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
as 


172. 
Beviios 
174. 
175. 


176. 


177. 
178. 
UE 


180. 


181. 


EIGHTH PACIFIC SCIENCE CONGRESS 


LVII CARANGIDAE 


Seriola mazatlana (Steindachner) (JF) 
Seriola dorsalis (Gill) (N.) 
Neptomenus crassus Starks Conjinoba. (N.) 
Trachurus murphyi Nichols Jurel, furel. (N.C.S.JF) 
Caranx georgianus Valenciennes Palometa, pampanito. (JE) 
Parona signata (Jenyns) (S.) 
Lichia albacora Guichenot Albacora. (C.S.) 
Trachinotus paitensis Cuvier y Valen- 

ciennes (C.) 

LVIII LEPIDOTIDAE 

Lepidotus chilensis (Guichenot) (C.) 
LIX CORYPHAENIDAE 
Coryphaena hippurus Linnaeus Dorado. (N.) 


LX EMMELICHTHYIDAE 


Emmelichthys cyanescens (Guichenot)(C.) 


LXI SCIAENIDAE 


Cynoscion analis (Jenyns) Allanque. (N.C.) 
Sciaena gilberti Abbott Corvinilla. (N.C.S.) 
Sciaena deliciosa (Tschudi) Corvinilla. (N.) 
Sciaena fasciata (Tschudi) Corvinilla. (N.C.) 
Sciaena reedi (Gtinther) (JF) 

Sciaena imberbis (Giinther) (N.C.JF) 
Micropogon furniert (Desmarest) Corvina. (N.C.JF) 
Stellifer minor (Tschudi) Corvinilla. (N.C.) 
Menticirrhus ophiocephalus (Jenyns) Pichiguen. (N.JF) 


LXII POMADASYIDAE 


Pomadasys bipunctstus Kner (N) 

Isacia conceptionis (Cuvier) Cabinza. (C.N.) 

Cilus monti Delfin Corvina. (N.C.S.) 

Anisotremus scapularis (Tschudi) Sargo. (N.) 
LXIII SCORPIDAE 

Scorpis chilensis (Guichenot) Pampanito. (JF) 
LXIV GIRELLIDAE 

Girella albostriata Steindachner Jeringuilla. (JF) 

Girella foliciana Clark (SF) 

Doydimodon laevifrons (Tschudi) Baunco. (N.) 
LXV HISTIOPTERIDAE 

Pentaceros kneri Steindachner (S.) 
LXVI OPLEGNATHIDAE 

Oplegnathus insignis (Kner) Loro. (N.) 


* 182. 
183. 


184. 


185. 


186. 
187. 


188. 


~ alee 
190. 
il 
192. 
193. 


194. 
195. 


196. 
197. 


198. 
199. 
200. 
201. 


S202: 
208. 


204. 


205. 
206. 


207. 
208. 
209. 
210. 
211. 
212. 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 


273 


LXVII APLODACTYLIDAE 


Aplodactylus punctatus Valenciennes 

Aplodactylus vermiculatus Valencien- 
nes 

Aplodactylus guttatus Valenciennes 


Jerguilla. (C.N.) 
Jerguilla. (C.) 
Jerguilla. (JF) 


LXVIII POMACENTRIDAE 


Chromis crusma (Valenciennes) Castafieta, burrito, pampa- 
nito, frailecillo. (N.C.S.) 
Abudefduf saxatilis (Linnaeus) (N.) 
Nexilosus latifrons (Tschudi) Castaneta, pampanito. (N.) 
LXIX LABRIDAE 
Pimelometopon maculatus (Perez) Peje perro, vieja colorada. 
(N.C.S.) 
Pimelometopon darwini (Jenyns) Peje perro, pejeperro. (N.) 
Bodianus diplotaenia (Gill) (N.) 
Pseudolabrus gayi (Valenciennes) (JF) 
Graus nigra Philippi Vieja, vieja negra. (C.N.) 
Malapterus reticulatus Valenciennes Biya. (JF) 
LXX CHEILODACTYLIDAE 
Cheilodactylus gayi (Kner) Breca. (S.JF) 
Cheilodactylus variegatus (Valencien- 
nes) Pintadita, pintadilla. (N.C.) 
Cheilodactylus antoni (Valenciennes) Bilagai. (C.) 
Cheilodactylus bicornis (Steindachner) (JF) 
LXXI LATRIDAE 
Mendosoma lineata Guichenot Trompetero, trompero. (C.) 
Mendosoma caerulescens Guichenot Cabinza. (C.) 
Mendosoma fernandezianum Guichenot Cabinza. (C.) 
Latris hecateia Richardson (S.) 
LXXII MUGILOIDIDAE 
Mugziloides chilensis (Molina) Robalo, rollizo. (N.C.S.) 
Parapercis chilensis Norman (S.) 
LXXIII TRACHINIDAE 
Trachinus cornutus Valenciennes (N.) 
LXXIV BOVICTIDAE 
Bovictus chilensis Regan Torito. (C.S.JF) 
Cottoperca govio (Giinther) (S.) 
LXXV NOTOTHENIDAE 
Notothenia brevicauda Loénnberg (S.) 
Notothenia canina Smitt (S.) 
Notothenia cornucola Richardson (S.) 
Notothenia elegans Giinther (S.) 
Notothenia jordani Thompson (S.) 
Notothenia longipes Steindachner (S.) 


274 


213. 
214. 
215. 
216. 
217. 
218. 
219. 
220. 


221. 


222. 
223. 
224. 
225. 
226. 
227. 


228. 


229. 
230. 


231. 
232. 


233. 
234. 
235. 
236. 
237. 
238. 
239. 
240. 


241. 


242. 


243. 


244, 


245. 


EIGHTH PACIFIC SCIENCE CONGRESS 


Notothenia macrocephala Giinther 
Notothenia microlepidota Hutton 
Notothenia sima Richardson 
Notothenia squamiceps Peters 
Notothenia tessellata Richardson 
Notothenia wiltoni Regan 
Dissostichus eleginoides Smitt 
Eleginops maclovinus (Valenciennes) 


Harpagifer bispinis (Schneider) 


LXXVI BLENNIDAE 


Salarias chilensis Clark 

Salarias viridis Valenciennes 
Salarias rubro-punctatus Valenciennes 
Salarias petersoni (Fowler) 

Salarias variolatus Valenciennes 
Scartichthys gigas (Steindachner) 


Scartichthys concolor (Philippi) 
Scartichthys modestus (Philippi) 
Scartichthys eques (Steindachner) 


LXXVII CLINIDAE 


(Jenyns) 
(Valencien- 


Auchenionchus crinitus 

Auchenionchus variolonis 
nes) ~ 

Calliclinus geni-guttatus 
nes) 


(Valencien- 


(Philippi) 

(Valenciennes) 
Valenciennes 
(Steindachner) 


Myxodes foncki 
Myxodes viridis 
Myxodes cristatus 
Lepisoma philippii 
Labrisomus microcirrhis (Valencien- 
nes) 


(Philippi) 
(Fowler) 


Labrisomus niger 

Labrisomus conventryi 

Labrisomus fernandezianus  (Guiche- 
not) 

Labrisomus guttulatus (Valenciennes) 
(Valenciennes) 

(Jenyns) 


Petroscirtes biocellatus 
Petroscirtes fasciatus 


(C.S.) 

(S.) 

(S.) 

(S.) 

(S.) 

(S.) 

(S.) 

Robalo, robalito, robalo de 

piedra. (C.S.) 

(S.) 


(C.) 
Borracho, torito. 
Torito. (C.JF) 
Torito. (N.) 
(JF) 
Torito, borracho, suefo. 
(N.C.) 
Torito. 
Torito. 
Torito. 


(N.C.) 


(C.) 
(C.) 
(N.C.S.) 


Tramboyo. (N.) 


Tramboyo. (N.C.S.) 


Vieja, tomoyo, tramboyo. 


(C.S.) 
Doncella. (S.) 
Doncella. (N.C.S.) 
Doncella. (C.) 


Trombollo, tomoyo, vieja. 
(N.) 


Trombollo, tomoyo, vieja. 
(C.) 

(Chile) 

Trombollo, tomoyo, vieja. 
(C.) 


Tromobollo, tomoyo, vieja. 
(JF) 

Trombollo, tomoyo, vieja. 
(C.S.) 

Torito. 

Torito. 


(C.) 
(C.S.) 


LXXVIII CHAENNICHTHYIDAE 


Champsocephalus esox (Giinther) 


(S.) 


246. 
247. 
248. 
249. 
250. 
251. 
252. 
253. 
254. 
250. 
256. 
257. 


258. 
259. 


260. 


261. 
* 262. 


* 263. 


* 264. 
265. 


* 266. 


* 267. 


* 268. 


* 269. 


* 270. 


PMN 


272. 


1 Palle 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 


LXXIX ZOARCIDAE 


Ophthalmolycus macrops (Gunther) 
Tlwocoetes finbriatus Jenyns 
Iluocoetes elongatus (Smitt) 
Austrolycus depressiceps (Regan) 
Austrolycus laticinctus (Berg) 
Phucocoetes latitans Jenyns 
Crossostomus chilensis (Regan) 
Crossostomus fasciatus (L6énnberg) 
Platea insignis Steindachner 
Maynea puncta (Jenyns) 

Maynea patagonica Cunningham 
Melanostigma gelatinosum Gtinther 


275 


(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 
(S.) 


LXXX LYCODAPODIDAE 


Lycodapus australis Norman 
Gymnelis pictus (Giimnther) 

LXXXI BROTULIDAE 
Cataetryx messiert (Giinther) 


LXXXII OPHIDITIDAE 


(Schneider) 
(Guichenot) 


Genypterus blacodes 
Genypterus chilensis 


Genypterus maculatus (Tschudi) 


LXXXIII GEMPYLIDAE 
Thyrsites atun (Euphrasen) 
Thyrsitops lepidopodes (Cuvier) 


LXXXIV SCOMBRIDAE 
Pneumatophorus peruanus Jordan y 
Hubbe 


LXXXV THUNNIDAE 


Thunnus thynnus saliens Jordan y 
Evermann 
Germo alalunga (Bonnaterre) 


Neothunnus macropterus (Schlegel) 


Katsuwonus pelamis (Linnaeus) 


LXXXVI CYBIIDAE 
Sarda chilensis (Cuvier) 


(S.) 
(S.) 


(S.) 


Abadejo. (S.) 

Congrio colorado, colorao. 
(N.C.S8.) 

Congrio negro, mono. 
(N.C.S.) 


(C.S.) 
(S.) 


Sierra. 
Sierra. 


Caballa. (N.C.) 


Cimarron. (C.) 

Attn, atin de aleta larga. 
(N.C.S.) 

Attn, atin de aleta amarilla. 
(N.) 


Cachurreta. (N.) 


Bonito o mono. (N.C.S.) 


LXXXVII ISTIOPHORIDAE 


Makaira audax (Philippi) 


LXXXVIII XIPHIIDAE 
Xiphias gladius Linnaeus 


Pez aguja. (N.C.S.) 


Albacore. (N.C.S.) 


276 


* 274. 


275. 


276. 


277. 


278. 


279. 
280. 
281. 
282. 
283. 
284. 
285. 
286. 


287. 
288. 


289. 
290. 


291. 


292. 


* 293. 


294. 


Sebastodes oculatus 


EIGHTH PACIFIC SCIENCE CONGRESS 


LXXXIX STROMATEIDAE 


Stromateus maculatus Cuvier y Va- 


lenciennes 


XC CENTROLOPHIDAE 


Palinurichthys caeruleus (Guichenot) 
Leirus peruanus (Steindachner) 


XCI NOMEIDAE 
Seriolella porosa Guichenot 


Seriolella violacea Guichenot 
eet 


XCII GOBIIDAE 


Gobius chiloensis Guichenot 
Gobiosoma ophiocephalum (Jenyns) 


Pampanito. (JF) 
Pampanito. (JF) 
(N.) 


Cojinoba, casinova, hachita. 
(N.C.S.) 

Cojinoba, casinova, hachita. 
(C.) 


(S.) 
(S.JF) 


XCIII SCORPAENIDAE 


(Cuvier) 


Sebastodes prognathus Tortonese 
Sebastodes darwinit (Cramer) 
Sebastodes chilensis Steindachner 


Helicolenus lengericht Norman 
Scorpaena thomsoni Ginther 
Scorpaena fernandeziana Steindachner 
Scorpaena histrio Jenyns 


XCIV TRIGLIDAE 


Cabrilla, cabrilla espamola. 
(N.C.S.) 


(C.) 

Cabrilla. (N.C.S.) 

Vieja colorada, cabrilla. 
(C.S.) 

(JF.) 

Peje diablo. (JF) 

Peje diablo. (JF) 

jPeje diablo. (JF) 


Trigla guttata Philippi (JF) 

Cheilidonichthys pictus (Ginther) (JF) 
XCV CONGRIOPODIDAE 

Congriopus peruvianus (Cuvier y Va- 


lenciennes) 
Agriopus hispidus (Jenyns) 


XCVI COTTIDAE 


Peje chancho, chanchito. 
(N.C.S.) 
Chanchito, peje chancho. (S.) 


(Including NORMANICHTHYIDAE) 
Normanichthys crokert Clark 


(C.S.) 


Mote, cochinilla. 


XCVII PSYCHROLUTIDAE 
(=NEOPHRYNICHTHYIDAE) 


Neophrynichthys marmoratus Gill (S.) 
XCVIII AGONIDAE 
. Agonopsis chiloensis (Jenyns) (C.S.) 


308. 


309. 


310. 


311. 


312. 
313. 


* 314. 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 277 


XCIX CICLOPTERIDAE 
(Including LIPARIDAE and LIPAROPIDAE) 


. Cyclopterichthys amissus Vaillant (S.) 
. Careproctus falklandica (Loénnberg) (S.) 
. Careproctus pallidus (Vaillart) (S.) 

C SCOPHTHAIMIDAE 
. Thysanopsetta nareri Giinther 


Lenguado. (S.) 
. Hippoglossina macrops Steindachner 
Lenguado. (C.S.) 
. Hippoglossina mystacium Ginsburg 
Lenguado. (S.) 
. Paralichthys adspersus (Steindachner) 
Lenguado. (N.C.JF) 
. Paralichthys fernandezianus Stein- 
dachner Lenguado. (JF) 
. Paralichthys patagonicus Jordan 
Lenguado. (S.) 
. Paralichthys hilgendorfi Steindachner 
Lenguado. (JF) 
. Paralichthys microps Giinther) 
Lenguado. (N.C.S.) 
. Paralichthys schmitti Ginsburg 
Lenguado. (JF) 
Paralichthys coeruleostica Steindach- 
ner Lenguado. (JF) 
CI ECHENEIDAE 
Remora remora (Linnaeus) Piloto, remora. (N.C.S.) 
CII DIODONTIDAE 
Diodon hystrix (Linnaeus) Erizo. (P.) 


CIII MOLIDAE 
Mola mola (Linnaeus) Peje luna, peje sol. (C.S.) 


CIV GOBIESOCIDAE 


Sicyases sanguineus Miller y Troschel Peje sapo. (C.N.JF.) 
Sicyogaster marmoratus (Jenyns) Peje sapo. (S.) 

CV BATRACHOIDIDAE 
Aphos porosus (Valenciennes) Peje bagre. (N.C.S.) 


For the preparation of this list of Chilean fishes, different papers 
were consulted, Guichenot’s in Gay, Philippi, Perez Canto, Delfin and 
others; but particularly we have been guided by Fowler’s catalogue, 
published in the years 1941 to 1943 in the “Revista Chilena de Historia 
Natural.” The families have been arranged according to Berg’s classi- 
fication (1940). The fresh water species have been checked with Eigen- 


278 EIGHTH PACIFIC SCIENCE CONGRESS 


mann’s study published by the U.S. National Academy of Sciences (Vol. 
XXII, Report I), modifying the generic denominaticns of the Atheri- 
nidae according to our own judgment. We have kept in mind for 
the north of Chile the similar fish fauna of Peru, as described in Hil- 
debrand’s paper (U.S. Nat. Mus. Bull. 189, 1946), and for the Southern 
part of the country, Norman’s paper in the Discovery Reports (vol. 
XVI, 1937). 

During our assignment in Chile (15 February to 15 August 1953), 
we continued the work started by Dr. Erick M. Poulsen, FAO expert, 
who concentrated on the biology cf bottom fishes, especially the hake 
(two species of Merluccius). We have paid special attention to pelagic 
species, of seasonal abundance in the fishing grounds, including repre- 
sentatives of the Thunnidae, Cybiidae, Xiphiidae, Engraulidae and Clu- 
peidae. 

At the time of our survey, all the Thunnidae approached the Chi- 
lean coast in search of food, with their gonads inactive. Neothunnus 
macropterus, which appears off the coasts of the provinces of Tarapaca 
and Antofagasta comes in through oceanic waters, feeding then prin- 
cipally on pelagic crustaceans, and soon invades the green coastal waters 
in search of Engraulis; this fishery is the basis of a coming industry, 
and in years of abundance a catch of about 1,000 tons is obtained, al- 
though in poor years the catch diminishes to only 50 tons a year. Ger- 
mo alalunga, called Germo germo by some authors, is the tuna of cen- 
tral Chile, which in small groups can reach Talcahuano and is also 
frequent along the northern zone. It may be missing some years, but 
even with the present primitive fishing gear, up to 500 tons a year can 
be caught. Albacore is used for fresh fish consumption, either directly 
or frozen, or for canning. 

We had the opportunity to examine some specimens of what we 
have called Thunnus thynnus saliens in view of the small differences 
observed compared with Atlantic tuna. Its scarcity is due principally to 
the gear employed, which is the same used to catch albacore, and which 
do not stand the strain of very big specimens. 

The only Cybiidae of Chile, Sarda chilensis, with a catch of nearly 
5,000 tons, approaches the north coast to spawn, generally in cold green 
water; in July specimens with very developed gonads are found. 

The swordfish, inhabitant of warm, blue, oceanic waters, is of great 
economic importance, as up to 2,000 tons per year can be caught off 
the northern coast. It appears also at times in the Valparaiso area 
reaching as far south as Talcahuano. 

We have only been able to find one Engraulidae in Chilean waters 
(Engraulis rengens), of which we studied more than 1,000 specimens. 


CHILEAN FISHES AND THEIR VERNACULAR NAMES 279 


This anchovy is of great interest, not only from the industrial point of 
view, but also because it is the primary food supply of many species 
of fish. Thunnidae and Cybiidae in the northern coast feed on an- 
chovy. Its schools are prayed upon by other species of larger size and 
also by the guano birds (Pelecanus occidentalis thagus, sula variegata, 
Phalacrocorax bougainvilli) and marine mammals (Otaria byronia). It 
is also used for bait by the fishermen. 

Among the Clupeids the most important is the sardine, which we 
have called Sardinops sagax sagax, to separate it as a mere subspecies 
of the Sardinops sagax caerulea of California. The Chilean sardine 
is abundant in the northern coast, principally in the Antofagasta zone. 


EDIBLE SHELLFISH OF THE CHILEAN COAST 


By FRANCISCO RIVEROS-ZUNIGA 
Estacion de Biologica Marina de la Universidad de Chile 
Montemar, Chile 


In 20 years shellfish production of Chile has risen from 5,180 tons 
in 1931 to 19,931 tons in 1951, the largest increases being recorded in 
1940 and 1946. The zones of Puerto Montt, Talcahuano, Valparaiso, 
and Antofagasta are the most important producing areas for edible 
crustaceans and molluscs. Puerto Montt produces almost 80% of all 
shellfish consumed in the country; 46°% of its local production is used 
for canning and in this form distributed all over the country. 

However, as exemplified by the CHORO (Choromytilus chorus 
Molina, 1782), the production of some species has steadily declined. In 
fact, its catch decreased during the period 1930-1943 from 3,237 to 1,651 
tons. ‘This calls for the immediate adoption of conservation measures. 
On the other hand, from 1945 to 1951, the total production of OYSTERS 
(Ostrea chilensis Philippi, 1845) has mounted from 260 to 598 tons or 
more than double. This increase is due to enforced conservation prac- 
tices and to annual restocking of depleted beds. 

The most sought after species of shellfish, from the industrial point 
of view are: LANGOSTINOS (Plated lobsters), ALMEJAS (Clams), 
CALAMARES (Squids), CENTOLLAS (King crabs), CHOLGAS (Mus- 
sels), CHORITOS (Horse-mussels), ERIZOS (Sea urchins), TACAS 
(Hard clams), PICOS (Giant acorn-shells), PIURES (Edible sea-squirts), 
APANCORAS and CANGREJOS (Crabs), on which information will be 
given later on. 

In 1951 the amount of shellfish used for canning was 7,244,061 Kg. 
with a net yield, on an edible basis, of 1,223,921 Kg. The consumption 
of fresh shellfish during the same year reached a total of 12,684,405 Kg. 
with a net yield of 1,569,100 Kg. 


ECHINODERMATA 


Loxechinus albus (Molina, 1782). ERIZO COLORADO o ERIZO 
COMESTIBLE (Red or Edible Sea Urchin). Among the echinoderms of 
Chile the only one of commercial value and preferably consumed fresh. 
The gonads, commonly called lenguas de erizo (sea urchin tongues), 
are canned in oil, mostly in small plants located at the Island of Cal- 
buco. In addition, along the coast from Callao, Peru, to the Magel- 


280 


EDIBLE SHELLFISH OF THE CHILEAN COAST 281 


lanic province, it is consumed fresh in great quantities wherever abun- 
dant. 


CRUSTACEA 


Lithodes antarcticus (Hombron et Jacquinot, 1853). CENTOLLA 
(King crab). A crustacean much sought after for processing due to the 
quality and good taste of its flesh. The catch during 1950 and 1951 
has decreased considerably, being of 61 and 55 tons respectively, while 
in years of abundance (1946) it amounted to 126 tons. Its area of dis- 
tribution on the Chilean coast extends from Puerto Montt to the Strait 
of Magellan. It has also been found in the deep waters of the coast of 
Buenos Aires, Argentina. The fishing grounds in Chile are in the region 
of Calbuco, Quellén, Aysen, southern canals, and the Strait of Magellan; 
in the Republic of Argentina it is caught in Ushuaia, in the Beagle 
canal, but production in that country is lower than in Chile (43 tons 
in 1938), (Carcelles, 1946). It is fished in shallow waters during the 
season when it approaches the beaches. It is sold canned in oil, but its 
{fresh consumption is also considerable, though not recorded statistically 
(Schwabe, 1939 and 1941). 

Jasus lalendei frontalis (Milne Edwards, 1837). LANGOSTA DE 
JUAN FERNANDEZ (Spiny lobster) found in the Archipelago of Juan 
Fernandez and the Desventuradas Island (San Ambrosio and San Félix), 
(Holthuis, 1951). Because of its economic importance and the great 
domestic and foreign demand from Argentina, where it is also sent by 
air, unsuccessful attempts have been made to acclimatize this species in 
the Chilean mainland coast (Albert, 1898). Production registered be- 
tween 1945 and 1951 shows the lowest catch in 1946 (56 tons) and the 
highest in 1948 (106 tons). 

Balanus (Megabalanus) psittacus (Molina, 1782). PICO DE MAR 
or PICOROCO (Giant acorn-shell) in the region of Chiloé. Its wide 
area of distribution extends from Pascamayo (Peru!) to the Strait of 
Magellan. Principal processing centres are Calbuco and Puerto Montt. 
The most important crustacean for industrial purposes, canned “au 
naturel” and in oil, and also in great demand for fresh consumption. 
Its catch amounted in 1945 to 307 tons and increased in 1951 to 407 
tons. 

LANGOSTINOS (Plated lobsters). This name is given in Chile to 
three species: Munida gregaria Leach, Plewroncodes monodon Milne 
Edwards, and Cervimunida johni Porter, 1903. They are canned in 
jelly, mostly in the Valparaiso zone. In 1951, 19 tons were processed. 

APANCORAS (Crabs). Statistics on shellfish production compiled 
by the Chilean Department of Fish and Game (Hernandez, 1953) in- 
clude under this item all species of JAIBAS (Crabs) consumed in Chile, 


282 EIGHTH PACIFIC SCIENCE CONGRESS 


of which the most utilized are: Cancer polyodon Poeppig, 1836 and 
C. plebejus Poeppig, 1836 (JAIBA PELUDA); Homalaspis plana Milne 
Edwards, 1834 (JAIBA MORA or MORADA); Ovalipes punctatus De 
Haan, 1833 and Taliepus dentatus Milne Edwards, 1834 (PANCHOTE). 
The aggregate catch was over 300 tons between 1945 and 1949, but 
declined in 1949, to increase in 1951 to 623 tons. 

CAMARON DE MAR (Prawn), Rhynchocinetes typus Milne Ed- 
wards, 1837. Of wide distribution; found in Chile, Peru, New Zealand, 
and Indian Ocean. In Chile its production has decreased from 83 in 
1947 to 16 tons in 1951, Valparaiso being one of the most important 
producing centres. 


‘TUNICATA 

PIURE or PIVRE (Sea-squirt), Pyura chilensis Molina, 1782 (Van 
Name, 1945) of wide distribution, from the Peruvian port of Mollendo 
(17°S) in the North to Chiloé Is. (about 42°S). It lives in shallow 
waters and is caught mostly for fresh consumption. Some factories in 
Calbuco can it “au naturel.’ It is an irregular oval shaped tunicate 
growing in very close groups, each individual independent with its own 
cuticular test. Its test and internal organs are consumed fresh or 
smoked; industrial utilization is negligible. In 1948, 235 tons were 
caught, but production has considerably diminished and in 1951 was 
only 91 tons. 


MOoOLLUSCA 


CEPHALOPODA 

CALAMAR (Squid), Loligo gahi D’Orbigny, 1835. Small cepha- 
lopoda about 10 cm. long consumed canned in oil. Although its area 
of distribution is extensive, including the biogeographical Peruvian 
and Patagonian provinces of South America, it is only processed in Cal- 
buco with a net production of 1,111 Kg. in 1951. It is also used as 
fishing bait. ; 

PULPO (Octopus), Polypus fontaineanus D’Orbigny, 1835. In- 
habitant of the Chilean and Peruvian coasts; of a vivid red colour with 
granulated body surface. The maximum length observed is about 25 
cms. Its arms are eaten, but it is not processed and is captured in small 
quantities. 

JIBIA (Cuttlefish), Dosidicus gigas D'Orbigny, 1835. Big nocturnal 
cephalopoda usually beached in great quantities at Ritoque, Refiaca, 
Constitucién and Talcahuano; utilized as fishing bait for cusk eel 


(Genypterus sp.). 


EDIBLE SHELLFISH OF THE CHILEAN COAST 283 


GASTROPODA 

LOCO, Concholepas concholepas Brug. 1789. Gastropoda of eco- 
nomic importance attaining great size; 33 tons were utilized in 1951 
and canned in three ways: in oil, special brand, and “au naturel.” It 
is hand picked in the intertidal zone or by divers with or without div- 
ing equipment. The principal fishing centres are Los Vilos, Quintero, 
Valparaiso and Puerto Montt. The mollusc’s powerful foot is consumed 
tenderized by beating together with salt or with sawdust before cook- 
ing. It is processed in the region of Calbuco and Puerto Montt. 

- Other gastropods of popular demand are: 

CARACOL GRANDE DE ESPUELA (Chorus), Chorus giganteus 
Less., 1829. Found originally in Concepcion; its area of distribution 
extends up to the bay of Valparaiso (Riveros-Zuniga, 1950) ; caught in 
traps baited with fish or crustacean wastes; eaten cooked; taste resem- 
bling that of Concholepas concholepas. 

CARACOLES (Top-shells). Under this name are consumed some 
edible species of the genera Tegula, such as 7. atre Less., 1830, the 
MELONHUE of the Chiloé zone; T. tridentata Potiez et Michaud, 1838; 
T. quadricostata Gray, 1838; Acanthina calcar Martyn (Unicorn-shell), 
1784 and Turbo (Prisogaster) niger (Turbine-shell) Wood, 1828, 
known as LILIHUEN. Not processed, but sought after by the fishermen 
to be eaten cooked. 

Fissurella (Keyhole limpets). Abundant gastropods whose tasteful 
foot is frequently consumed fresh. Also called CHAPAS or CHAPES. 
‘The most used species are F. maxima Sow., 1834; F. picta Lamk, 1822; 
F. crassa Lamk, 1822; F. limbata Sow., 1834; F. latemarginata Sow., 
1834; (Riveros-Zuniga, 1951). Area of distribution generally very ex- 
tensive. Abundant in the intertidal zone on the bare rocks or on those 
covered by algae. 

Patella, Nacella, Scurria, Siphonaria (Limpets) are genera whose 
species are sought as food and called LAPAS, a name which is applied 
in general to mollusks with conical shell which adhere strongly to the 
rocks or other supports. Some species utilized are Patella magellanica 
Gmelin, 1791; Nacella clypeater Less., 1830; Scurria scurra Less., 1830; 
and Siphonaria (Liriola) lessoni Blainville, 1824. 

Thais chocolata Duclos, 1832, (Thais) is found from Paita in Peru, 
where it is called CARACOL, to Valparaiso. In Coquimbo and vicinity 
it is known as LOCATE or LOCA because of its resemblance in taste to 
the Concholepas concholepas. Fished by divers and very well liked. 

PIQUILHUE (Volutes) Adelomelon magellanicus Lamk, 1811 and 
A. ancilla Sow., 1786, are the species consumed in the region of Chiloé. 


284 EIGHTH PACIFIC SCIENCE CONGRESS 


AMPHINEURA 


Chiton and Tonicia (Chitons) are genera of Polyplacophora with 
some species found in the market. In a number of Chilean ports they 
are sold under the name of COGOTES, but they find little acceptance. 


PELECYPODA 


From the industrial point of view, the following families are of 
importance, (by order of value): Mytilidae, Ostreidae, Mesodesmatidae, 
Veneridae and Pectenidae. 

Among the Mytzlidae the total volume of production in 1945 was 
9,950 tons and 12,289 in 1951, the highest production being in 1946 
with 15,082 tons. The catch of the most valuable species has diminished 
a great deal due to uncontrolled and extensive exploitation, leading to 
the extraction of very young specimens, to the evident danger of the 
conservation of the species. The fishing methods, which literally collect 
every specimen from the beds, have had a depleting effect shown in the 
disappearance of the beds nearest to the factories; therefore it has been 
necessary to search for them in more distant places. 

To the new genus Choromytilus (Soot-Ryen, 1952) belongs C. 
chorus (Molina, 1782) CHORO (Giant mussel) with area of distribu- 
tion from Pascamayo (Peru) to Orange Bay (Chile). Its uncontrolled 
exploitation continued for decades has caused depletion and there is 
urgent need of protecting the species. It is the biggest of the marine 
choros and is greatly esteemed from the nutritive point of view. It 
adheres to its supports through a strong byssus and has a big oval ob- 
long shell, bluish in colour, covered by a blackish periostracum. 

Mytilus ater Molina, 1782, Aulacomya magellanica Chemnitz, 1819 
(Carcelles, 1942), and M. chilensis Hupé, 1854, are commonly called - 
CHOLGAS (Mussels). ‘The first has a smooth surface and is found from 
Manta (Ecuador) to Talcahuano; the second abundant in Magallanes 
but is found north up to Valparaiso, and the last along an extended 
area from Callao (Pert) to Tierra del Fuego, Falkland Is., and the 
coast off Buenos Aires. The total production of CHOLGAS is around 
4,000 to 7,000 tons. They are usually consumed fresh or smoked. In 
1951 canned production amounted to 2,900 tons, “au naturel,” special 
brand, and in oil. The Puerto Montt zone (Calbuco, Puerto Aguirre, 
Quellon, Aulén, San Rafael) industrializes the greatest quota of cholgas. 
M. chilensis, called CHILEAN or SOUTHERN MEJILLON, is caught in 
Tierra del Fuego, Patagonia and Strait of Magellan. Aulacomya ma- 
gellanica Chemnitz, is the GRAN MEJILLON OF MAGALLANES (Ma- 
gellanic large mussel) or CHORO or MEJILLON RAYADO. 


EDIBLE SHELLFISH OF THE CHILEAN COAST 285 


Modiolus dayctiliformis Hupé, is characterized by its oblong shape, 
smoothed at the umbo and by the brownish green periostracum; the 
inside of the shell is nacreous tinged with violet. The CHORITO or 
QUILMAHUE (Horse-mussel) is found from Antofagasta to the Chiloé 
zone, but only consumed by fishermen. 

Brachydontes purpuratus Lamk, 1797 is the CHORITO MAICO 
(Purple horse-mussel) found along all the Chilean coast, Tierra del 
Fuego, Falkland Is., and Argentine coast up to Golfo Nuevo, also called 
MEJILLON DEL SUR or MEJILLON PURPURA. It is fished in all its 
area, but not for industrial purposes. 

Ostrea chilensis Philippi, 1845, the OSTRA CHILENA (Oyster) 
found in an extended area from the coast of California to the zone 
of Chiloé. It is the most demanded mollusk. Its exploitation has in- 
creased since 1945 from 260 tons to 598 tons in 1951, Ancud being the 
zone of greatest production. This production comes principally from 
artificially stocked beds and has been helped by timely restrictions. 

Pecten (Plagioctenum) purpuratus Lamk, 1819, OSTION is the 
Chilean scallop most in demand, with orbicular, convex shell, with 26 
ribs and pinkish white colour. The adductor muscle has a delicious 
flavour and is preferably consumed fresh. In 1945, 65 tons, in 1950, 
387 tons, and in 1951 only 262 tons were extracted. 

Chlamys patagonicus King, 1831, OSTION MAGALLANICO (Ma- 
gellanic scallop). Very common in the coasts of the Strait of Magellan 
and in the fjords up to Puerto Montt, but not of great economic value. 

Protothaca thaca Molina, 1782, TACA (Hard clam) is found from 
Ancon (Pert) to the Chonos Archipelago and is in demand because 
of its excellent taste to be consumed baked on embers or in soups or 
“curantos’” (primitive preparation of shellfish and algae, cooked in 
ground holes with hot stones). Production in 1950 and 1951 has 
amounted to 901 and 913 tons respectively. 

Mesodesma donacium Lamk, 1818, MACHA (Soft shell clam), is 
found from Chiloé to the Sechura Bay, in Peru. Maximum production 
amounted to 668 tons in 1951. Its white shell is covered by a straw 
yellow periostracum and of its ends the shortest is subtruncate and the 
widest, compressed and channelled. Obtained in great quantities in 
Las Ventanas of Quintero, Iloca, etc. 

Tagelus (Mesopleura) dombeyi Lamk, 1818, is one of the NAVA- 
JAS DE MAR (Razor-clams), found from Tumbes, Peru, to the Chiloé 
Is. Hinged with two inconspicuous cardinal teeth; consumed by the 
coastal people and frequently found in southern markets where its local 
name is QUIVI. 


286 EIGHTH PACIFIC SCIENCE CONGRESS 


Solen gaudichaudi Chemn, 1843, and Ensis macha Molina, 1782, 
are called NAVAJUELAS DE MAR (Razor-shells).. The first is found 
in a small area, from Valparaiso to Coquimbo, and the second, from 
Valparaiso to Magallanes up to the Atlantic coast, reaching the Gulf 
of San Matias (Carcelles, 1950). Both are sand species found at great 
depths and collected at low tide. 

Pholas (Thovana) chilensis Molina, 1782, commonly called COMES 
(Piddock) is found from the Gulf of Panama to the Chiloé Is. Con- 
sidered one of the best shellfish and known by its two anterior plates 
with anterior-central nuclei, a small and transversial middle plate and 
a long and narrow posterior plate. No lines in the third posterior of 
the shell. 

Mulinia bicolor Gray, 1837; M. edulis King, 1831, and M. byronen- 
sis Gray, 1838, species which because of their resemblance to the TACAS 
(Hard clams) are called TAQUILLAS (Small hard clams). ‘Their areas 
of distribution are extensive: M. edulis is found from Callao to the 
Strait of Magellan, M. byronensis from Salaverry (Peru) to the Strait 
of Magellan, M. bicolor from Copiapo to Valparaiso. (Some authors 
consider M. bicolor Gray synonymous with M. edulis). They are 
frequently found in the markets of a number of sea ports in Chile. 


REFERENCES 


ALBERT, F. 1898. La Langosta de Juan Fernandez y la Posibilidad de su 
Propagacién en la Costa Chilena. Rev. Chilena Hist. Nat., Ano II, 
No. 1, Pp. 5-11. Valparaiso, Chile. 

CARCELLES, A. 1942. Nota sobre el Mejillon Aulacomya magellanica Chem- 
nitz. Physis, Vol. XIX, Pp. 180-190, Buenos, Aires, Argentina. 

1946. Mariscos de las Costas Argentinas. Argentina Austral., 
Afio XVIII, Nos. 186-187, Pp. 1-20. Buenos Aires, Argentina. 

HERNANDEZ, M. 1953. Informacioénes Estadisticas sobre Pesca. 57 Pp. Di- 
reccién de Pesca y Caza. Valparaiso, Chile. | 

HoLtTuHius, L. B. 1952. The Crustacean Decapoda Macrura of Chile. With 
Spanish Abstract. Report Lund Univ. Chiie Hap. 1948-1949. Vol. 5, 
110 Pp. Lunds Univ. Handl., N. F. Bd. 62, No. 10. Lund. 

RiveRos-ZUNIGA, F. 1950. El Area de Distribucién de Chorus giganteus Less., 
1829. fev. Biol. Mar. Univ. Chile. Vol. III, Nos. 1-2, Pp. 157-161. Val- 
paraiso, Chile. 

SCHWABE, G. H. 1939. Uber die Mariscofischerei von Siidchile. Monatsh. fo 
Fischerei, 7 Jg. N. F. Pp. 129-184. Hamburg, Germany. 

1941. Aus dem siidchilenischen Kiistengebiet, XIII Uber Mariscos 
und Mariscofischerei. Zeitschr. f. Fischerei. Vol. XXXIX, No. 8, Pp. 
313-347. Frankfurt a.d. Oder. 

Soot-RYEN, T. 1952. Choromytilus, a new genus in the Mytilidae. Rev. Soe. 
Malacol. Carlos de la Torre, Vol. VIII, No. 3, Pp. 121-122. Havana, Cuba. 

VAN NAME, W. G. 1945. The North and South American Ascidians. Bull. 
Amer, Mus. Nat. Hist. Vol. 84, Pp. VIII + 476. New York, U.S.A. 


NOTES ON THE COMMERCIALLY IMPORTANT 
IM(Sla0as) Ove Clsvouss 


By PARMENIO A. YANEZ 
University of Chile Marine Biological Station 
Montemar, Chile 


The fish fauna of the coast of Chile, which extends from the border 
of Peru (18°22’S) to Cape Horn (56°S), is constituted of coastal 
species typical of the Chilean district, generally understood to be the 
region between the latitudes of Valdivia (39°45’S) and Tocopilla 
(22°41’S). Among these species are also found northern and southern 
fishes from the Peruvian and Magellanic districts. Besides these species, 
other pelagic ones are also found which migrate to the south through 
the outer waters of the Coastal Current of Peru following, during their 
transgresses and regresses, the tropical and subtropical oceanic waters. 

The transgression of these waters, at a temperature and salinity of 
about 15° and 35%, respectively, starts approximately in October, 
reaches its maximum in February and its minimum in August, when 
they move away from the coast, between Yocopilla and the province 
of Cautin, a short distance north of Valdivia. 

At the time of the regression of the warm waters, the cold waters, 
with temperatures around 12°C, which during the summer do not sur- 
pass the latitude of the peninsula of Taitao (46°30’S), extend towards 
the north on a narrow coastal strip reaching as far as 32°S, a little 
north of the site of the Marine Biological Station of Montemar (Esta- 
cidn de Biologia Marina de Montemar), (32°51’24”S), located in the 
Bay of Valparaiso. 

The analysis of the observations made in the Marine Biological 
Station since 1947, shows that the surface temperature of the sea water 
fluctuated in February between 14° and 16°C; in August between 
11° and 12°C, and in October, between 12° and 13°C. Occasionally 
there has been a maximum of 18°C in February and a minimum of 
around 9°C in August. 

Thanks to the indicated facts, the Marine Biological Station is 
located in the most favourable point of the Chilean coast regarding 
ichthyological observations. The majority of the species character- 
istic of the Magellanic and Peruvian districts reach the latitude of 
the Station in question. Of the 50 species of commercial importance 
considered below, only 7 were not caught in the neighbourhood of 


287 


288 EIGHTH PACIFIC SCIENCE CONGRESS 


the Station, which is a small number compared with the 16 species 
missing in the waters of Talcahuano (36°44’S), and 12 in the waters 
of Antofagasta (23°38’S). 

The annual changes of temperature of the surface waters on the 
coast of Chile, besides determining the characteristics of the fish fauna 
and the migrations of many of the species of fish, also establish a typical 
annual cycle of plankton. Two distinct periods are found in the abund- 
ance of plankton; the rich Spring period, which extends until the be- 
ginning of Summer, and the poor Autumn period until the commence- 
ment of Winter. In July and August there are also two short periods 
of abundance and scarcity respectively (P. Yanez—Informacion preli- 
minar sobre el ciclo anual de plancton superficial en la Bahia de Val- 
paraiso (“Preliminary notes on the annual cycle of the surface plankton 
of the Bay of Valparaiso’), Rev. Biol. Mar. I, 1, pp. 57-59). 

Around one fifth of the 260 coastal and pelagic species (Selachit 
and Teleostomz), listed for the Chilean coast up to date (Henry W. 
Fowler—Fishes of Chile. Rev. Chilena de Hist. Nat. Santiago, Chile. 
1943), are used as food by the inhabitants of the country. However, 
not more than twenty, in view of the volume of the catch and industrial 
value, are of real commercial importance. 

A list of the species of fish of commercial value follows. 

It is arranged systematically. Between brackets, following the sci- 
entific name, is given the common denomination of the species mostly 
utilized in the country, followed by the annual catch in tons, taken from 
Moises. Hernandez Ponce—Informacidones estadisticas sobre la Pesca 
(Statistical Information on the Fisheries) Valparaiso, Chile. 1953. 


CLASS PISCES 
SUB-CLASS ELASMOBRANCHII 
ORDER SQUALIFORMS 
Family Squalidae 
1.—Squalus fernandinus Mol., 1782. Small size species found in 
the water off the island of Juan Fernandez and in the continental coast 
of Chile, from Valparaiso southwards. It has been extensively fished 
until recently because of its liver, which is very rich in vitamin oil. 


ORDER LAMNIFORMS 
Family Carcharidae 
2.—Mustelus mento (Cope, 1877) (TOLLO; 800 tons) Species of 
medium size. Found from the Gulf of Arauco to Peru; mainly caught 
between Caldera and Coquimbo. It has excellent flesh, which is con- 
sumed fresh, dry, salted or smoked. 


COMMERCIALLY IMPORTANT FISHES OF CHILE 289 


ORDER CHIMAERIFORMS 
Family Callorhynchidae 


3.—Callorhynchus callorhynchus (L.) (PEJEGALLO; 300 tons). 
Found along the whole coast. Its flesh is very much appreciated salted 
or smoked. 


SUB-CLASS TELEOSTOMI 
ORDER CLUPEIFORMS 
Sub-order CLUPEOIDEI 

Family Clupeidae 


4.—Ethmidium maculatum (Val., 1847) (MACHUELO; 800 tons). 
It is the largest Chilean clupeid (length 35 cms.); it is caught from 
the Gulf of Arauco northwards and it is consumed smoked or canned. 

5.—Clupea fuegensis (Jen., 1842), (sardina comun) 

6.—Sardinops sagax (Jen., 1842), (cardina espanola) 

7.—Engraulis ringens (Jen., 1842), (anchoa) 

The first species is found from Valparaiso southwards, and the 
others, from the Gulf of Arauco northwards. ‘Their catch amounts to 
8000 tons annually, and they are mostly canned; however, they are also 
used for the manufacture of fish meal. 


ORDER GADIFORMS 
Family Gadidae 


8.—Merluccius gayi (Guich., 1848), (PESCADA; 40,000 tons). Is 
the most important species for human consumption. Inhabits the waters 
from Caldera southwards; however, it is mainly caught between Valpa- 
raiso and Talcahuano for fresh fish consumption and manufacture of 
fish meal. 


ORDER PLEURONECTIFORMS 
Family Bathidae 


9.—Paralichthys microps (Gthr., 1881). 

10.—P. adspersus (Steind., 1867). 

11.—Hippoglossina macrops (Steind., 1876). 

These species are commonly known by the name of LENGUADO; 
their meat is of good quality and is consumed fresh; however, their catch 
is only about 400 tons yearly. 


ORDER PERCIFORMS 
Sub-order PERCOIDEI 
Family Malacanthidae (=Latilidae) 
12.—Prolatilus jugularis (Val., 1833), (BLANQUILLO; 400 tons). 
Inhabitant of the waters between Chiloé and Antofagasta. Consumed 
fresh, but it is not a very well liked fish. 


290 EIGHTH PACIFIC SCIENCE CONGRESS 


Family Carangidae 
13.—Trachurus trachurus (L.), (JUREL; 600 tons). Pelagic, cos- 
mopolitan, tropical or sub-tropical; approaches the coast during the 
Summer, from Chiloé northwards, pursuing in large shoals, the sar- 
dines and anchovies. 


Family Pomadasyidae 

14.-Cilus montti (Delfin, 1900), (CORVINA; 1000 tons). Found 
from Chiloé to Tarapaca; abundant mostly during Spring and Summer. 

15.—Isacia conceptionis (Cuv., 1830), (CABINZA; 400 tons). From 
the Gulf of Arauco northwards; like the previous species, is more 
abundant in the Spring and Summer. 

16.—Pomadasys schyvi (Steind., 1902), RONCADOR. 

17.—Anisotremus scapularis (Tschudi, 1843), (SARGO). 


Family Sciaenidae 

18.—Sciaena deliciosa (Vschudi, 1845), (AYANQUE),. 

These three later species come from Peru; they are caught from 
Antofagasta northwards, and are very popular. 

19.—Menticirrhus ophicephalus (Jen., 1842), (PICHIGUEN). 

20.—Micropogon furniert (Desm., 1823). 

These two species are caught in small quantities; are consumed 
fresh and are very much liked in their restricted area of distribution, 
which extends from Valparaiso to Chanaral. 


Family Labridae 

21.—Pimelometopon maculatus (Perez-Canto, 1886), (PEJE-PER- 
RO). Gulf of Arauco to Iquique; consumed fresh. 

22.—Pimelometopon darwinit (Jen., 1842), (MULATO). From An- 
tofagasta northwards. It is mostly caught in Tarapaca and is consumed 
fresh. 

23.—Graus nigra (Philippi, 1887), (VIEJA). Very much esteemed 
for fresh consumption in its limited area of distribution, which extends 
from Coquimbo (30°S) to Colchagua (34°S). 


Family A plodactylidae 
24.-Aplodactylus punctatus (Cuv. et Val. 1831), (JERGUILLA). 
Found in the area between the Gulf of Arauco and Peru. It is a fish 
about 35 cms. long, very little appreciated and consumed almost only by 
the fishermen. 
Family Cheilodactylidae 
25.—Cheilodactylus variegatus (Cuv. et Val., 1835), (PINTADILLA). 
26.—C. antonii (Val. 1833), (BILAGAY). Fish of medium size 
and bright colors, characteristic of the coastal water from Valparaiso 


COMMERCIALLY IMPORTANT FISHES OF CHILE 291 


northwards. ‘The fishermen like it in view of the good quality of its 
flesh; however, it is caught only in small quantities. 


Family Notothenidae 
27.—Eleginops maclovinus (Val., 1830), (ROBALO; 2000 tons). 
Found from Tierra del Fuego to Valparaiso. Inhabits the waters along 
the beaches and enters in the river estuaries; it is the fish of Magellanic 
origin of greatest commercial value; abundant all year round in its 
original area, offering possibilities for canning. It is presently consumed 
fresh, salted and smoked. 


Sub-Order BLENNIOIDEI 
Family Clinidae 
28.—Callichinus geniguttatus (Val., 1836), (TOMOLLO; 25 tons). 
Magellan to Antofagasta. It is of average size; inhabits shallow waters 
in rocky beaches; its flesh is of good quality and is consumed fresh. 


Family Mugiloididae 
29.—Mugiloides chilensis (Mol., 1782), (ROLLIZO). Found from 
Magellan to Peru; grows up to 80 cms., and has a thick body and good 
quality flesh. 
30.—Auchenionchus variolosus  (Val., 1836), (TRAMBOLLO). 
Found from Tierra del Fuego to Iquique; very much alike the previous 
species in its aspect and quality. 


Sub-Order OPHIDIOIDEI 
Family Ophididae 

31.—Genypterus chilensis (Guich., 1848), (CONGRIO COLORADO; 
1500 tons). Found from Tierra del Fuego to Peru; it is the most liked 
fish in the central region of Chile; fished all year round and consumed 
fresh like the other following species. Inhabitant of rocky bottoms. 

32.—G. blacodes (Schn., 1801), (CONGRIO NEGRO; 2000 tons). 
Found from Antofagasta to Tierra del Fuego; very much like the above 
species, but less appreciated as food. Its fishery has diminished in latter 
years. 

33.-G. maculatus (Tschudi, 1846), (CONGRIO DORADO; 400 tons). 
It has been caught for six years only in a canyon of the continental 
shelf near Talcahuano. 


Sub-Order SCOMBROIDEI 
Family Gempylidae 
34.—Thyrsites atun (Euphr., 1791). 
35.—Thyrsitops leprdopodes (Cuv., 1830). 


292 EIGHTH PACIFIC SCIENCE CONGRESS 


These two species are very much alike, and are known by the 
common name of SIERRA; they are pelagic fish which reach the coast 
in great quantities, from Coquimbo southwards during the Summer 
months. ‘They are of very good quality and are consumed fresh and 
smoked. Maintain a considerable fishery (5000 tons). 


Family Scombridae 


36.—Thunnus macropterus (Schleg., 1850), (ATUN DE ALETA 
AMARILLA; 2000 tons). It is caught all year round from Tocopilla 
northwards, outside of the coastal current. It is tinned in the canneries 
of Iquique. 

37.-Germo alalunga (Bonnat., 1788), (ATUN DE ALETA LARGA; 
500 tons). From the tropical and sub-tropical Pacific it reaches, during 
the Summer months, the coasts of Valparaiso, where it is mostly 
consumed fresh. 

38.—Katsuwonus pelamys (L.), (CACHURETA). It is found in 
the waters outside of the coastal current, from Huasco (28°27’S) north- 
wards, and it is caught in comparatively small quantities. 

39.—Sarda chilensis (Cuv. et Val., 1851), (BONITO; 4000 tons). It 
is found in great quantities along the coasts of Antofagasta and Tara- 
paca, and is the fish which constitutes the basis of the canning industry 
of northern Chile. 

40.—Pneumatophorus peruanus (Jordan and Hubbs, 1925), (CA- 
BALLA). It is of small size and it is abundant in the coast of Tarapaca 
where it is caught in large quantities. 


Family Xiphidae 

41.—Xiphias gladius (L.), (PEZ ESPADA; 1000 tons). This is a 
cosmopolitan species of warm seas which is abundant in northern 
Chilean waters. It is mostly exported frozen to the United States of 
America. 

Sub-Order STROMATEOIDEI 
Family Stromateidae 

42.—Stromateus maculatus (Cuv. et Val., 1833), (PAMPANITO). 
From Tierra del Fuego to Coquimbo. Small; it is caught in limited 
quantities and is liked by the fishermen. 


Family Nomeidae 
43.—Seriolella porosa (Guich., 1848), (COJINOVA; 400 tons). 
From Magellan to Tarapaca; found gathered in small schools during the 
Summer pursuing the sardines. 


COMMERCIALLY IMPORTANT FISHES OF CHILE 293 


Sub-Order MUGILOIDEI 
Family Mugilidae 
44.-Mugil cephalus (L.), (LISA; 100 tons). Lives in schools near 
the beaches, and enters the estuaries of the rivers of the central region, 
where it is sometimes found in extraordinary quantities. 


Family Atherinidae 

45.—Austromenidia laticlavia (Val., 1835). 

46.—A. regia (Humboldt, 1833). 

The numerous Chilean species of this family, known by the com- 
mon name of PEJERREYKES, constitute a systematic problem not yet 
solved. ‘They are found all over the Chilean coast as well as in fresh 
water. ‘They are very much appreciated and the annual catch is about 
500 tons. 


ORDER GOBIESOCIFORMS 
Family Gobiesocidae 


47.—Syciases sanguineus (Muller et Troschel, 1843). 

48.—S. chilensis (Brisout de Barneville, 1846). 

49.—Sycyogaster marmoratus (Jen., 1842). 

These three species live attached to the rocks in the breakers area, 
from Chiloé as far as Peru. ‘They are known by the common name of 
PEJE-SAPOS, and the fine flesh is very much appreciated. 


ORDER BATRACHOIDIFORMS 
Family Batrachoididae 

50.—_Aphos porosus (Cuv. et Val., 1837), (BAGRE DE MAR). 
Reaches the coast to spawn in the fissures of the rocks near the inter- 
tidal zone, around the middle of Spring, and leave the coast by the 
end of the Summer. During this period it is caught in large quantities 
in its lurking places to the end of poles. Its flesh is of excellent quality, 
but it is very little known in the market. 


OCEANOGRAPHICAL AND FISHERIES RESEARCH IN INDIA 


By N. K. PANIKKAR 
Central Marine Fisheries Research Station 
Mandapam, South India 


EARLIER WorK 


Although earlier investigations in Indian Seas were conducted by 
the British Naval Vessels from 1832 to 1862, serious attempts to study 
Indian waters were commenced only in 1872 with the inauguration of 
the Indian Marine Survey. The surgeon-naturalists attached to the 
survey ships were really the pioneers in marine studies of Indian waters. 
The Marine Survey was placed on a more permanent footing when the 
survey ship “INVESTIGATOR” was built during 1879 to 1880 and it is 
of interest to record that some of the apparatus used in this ship for 
work in Indian waters originally came from the gear used by H.M.S. 
“Challenger.” ‘The interest evinced in deep sea life by the Challenger 
Expedition was reflected in the special attention given to deep sea 
organisms of the Indian Ocean. Except for soundings and temperatures, 
the observations made were largely biological. 


SEWELL’S WorRK ON “INVESTIGATOR” 


In place of the “INVESTIGATOR I’, a new ship of the same name 
was built and commissioned in 1908 commencing a new phase in 
oceanographic work in Indian waters with special reference to the tem- 
perature and salinity distributions up to a depth of 500 fathoms 
initiated by Sewell, who joined the ship in 1910. ‘The work of Sewell 
on “INVESTIGATOR” continued till 1925 with the exception of a break 
of some years between 1914 and 1921 owing to World War I. Sewell’s 
work brought out the general picture of hydrological features of the 
ocean. In a series of contributions published by the Asiatic Society of 
Bengal in 1925-35, the geography of the Andaman Basin, the nature 
of the sea bed and of the deep sea deposits of the Andaman Sea and the 
Bay of Bengal, the maritime meteorology of the Indian Seas, the tempera- 
ture and salinity of the coastal and deeper waters of the Bay of Bengal 
and Andaman Sea, the topography of the Laccadive Sea and the coral 
formations in Indian waters were dealt with by Sewell. Additional 
oceanographic data were also obtained during this period from the re- 
sults of the German Deep Sea Expedition “VALDIVIA” (1898-99) and 


294 


OCEANOGRAPHICAL AND FISHERIES RESEARCH IN INDIA 295 


the Danish Dana Expeditions (1920-22) and the Dutch Snellius Expedi- 
tion (1929), and to a smaller extent by traverses made by other survey 
ships. 


Joun Murray EXPEDITION 


The third phase in the progress of Indian Oceanography relates to 
the period covered by the John Murray Expedition to the Indian 
Ocean on the research vessel “MABAHISS” led by Sewell. The region 
especially chosen was the Arabian Sea, to the west of Maldive and Lac- 
cadive Archipelago, in continuation of the “INVESTIGATOR” work. 
The expedition was able to confirm some of the findings of the Dana 
on the submarine contours and it brought evidence of the presence of 
submarine ridges running parallel to the Rift Valley system. ‘The 
changes in the distribution of fauna in regions of the Arabian Sea were 
also clearly shown by the work of the John Murray Expedition, and a 
noteworthy discovery was made of the existence of large azoic areas off 
Arabia probably connected with petroleum formation. ‘The results ob- 
tained by the John Murray Expedition have been dealt with in various 
volumes which have already come out, but the principal findings have 
been dealt with by Sewell in various papers. 


FEATURES OF THE INDIAN OCEAN 


Our present knowledge of the Indian Ocean has been summarized 
by Schott (1935), Sewell (1937), and Sverdrup et al. (1950). The 
fact that oceanographic information relating to the Indian Ocean is 
imperfect has been often stressed and with more intensive work it is 
possible that some of the concepts now current may require modification. 
This is especially so for that part of the Indian Ocean south of the 
Equator. The Northern part of the ocean is broadly divided into the 
Arabian Sea and the Bay of Bengal, each with further geographical 
sub-divisions. The topography of the Arabian Sea is characterized by 
the existence of a long series of submarine ranges, the Carlesberg Ridge 
beginning from the region of the island of Socotra and Gape Gardafui 
’ and extending to the southeast along the Chagos Archipelago and fur- 
ther south to the Island of Rodriguez. To the southwest of the Carles- 
berg Ridge and lying parallel to it lies the Mascarane Bank covering 
the Islands of Seychelles and Mauritius together with a series of reefs. 
To the north, the Carlesberg Ridge is continued by a different forma- 
tion in the direction of Arabia and the Gulf of Oman; this ridge which 
is considered as the submarine continuation of the Kirthar Range of 
Sind is the Murray Ridge. The geology of these ridges and the sea 
floor require much further study before their origin could be established 


296 EIGHTH PACIFIC SCIENCE CONGRESS 


with certainty. In the Bay of Bengal a north to south range, the Car- 
penter’s Ridge, which probably is of volcanic origin, is situated to the 
west of the Andaman-Nicobar chain of islands. ‘The mouths of the 
Indus in the Arabian Sea and the Ganga-Brahmaputra at the head of 
the Bay of Bengal have given rise to deep submarine gulleys (Indus 
Swatch and Swatch of no ground). ‘The presence of the submarine 
ridges and gulleys substantially influences the circulation in the North- 
ern Sector of the Indian Ocean. Further, there are widespread forma- 
tions of coral reefs of the fringing and atoll types throughout the area 
except on the two sides of the Indian peninsula, although reefs are 
prominent around southernmost India and Ceylon, the Andaman-Nico- 
bar group and the Laccadive-Maldive group. ‘The reasons for their ab- 
sence in most parts of the Indian Coast have not been satisfactorily 
explained, although it is usually attributed to estuarine influences and 
silting on the east coast of India and to the upwelling of colder waters 
on the west coast of India (Sewell, 1937). 

Hydrologically the Bay of Bengal and the Arabian Sea present 
substantially different features and a careful study and interpretation 
of these differences might well explain the enormous disparity in fish 
production between the western and eastern coasts of India, the former 
contributing to more than two thirds of the total. The Bay of Bengal 
waters are generally less saline owing to the influence of the large rivers 
that empty into it. The eastern coast is also characterized by a well- 
developed estuarine fauna. On the other hand the salinity of the 
Arabian Sea waters is distinctly higher and the waters generally are of 
an oceanic character. Owing probably to the upwelling of deeper 
waters to the surface, the vertical mixing facilitated by the Carlesberg 
and Murray ridges and the turbulence resulting from strong S. W. Mon- 
soon winds, the Arabian Sea waters appear to be richer in nutrients 
having extensive areas of high productivity. It is noteworthy that shoals 
of plankton feeding fishes like the oil sardine of Malabar (Sardinella 
longiceps) and the Indian mackerel (Rastrelliger kanagurta) largely 
contribute to the west coast fisheries of India. 


Post War INTEREST IN FISHERIES AND OCEANOGRAPHY 


It may be said that the work carried out so far did not form part 
of any comprehensive programme for the investigation of Indian waters. 
Collection of further information has continued through the agency of 
survey ships and subsequent expeditions like that of the Discovery II 
and the Galathea. With the end of World War II, India, like many 
other nations of the world, was faced with problems of acute food short- 
age, and one of the subjects that received governmental attention was 


OCEANOGRAPHICAL AND FISHERIES RESEARCH IN INDIA 297 


the development of marine fisheries. It is natural that in connection 
with fisheries programmes a considerable amount of interest was also 
evinced in the further pursuit of oceanographical studies as an aid to 
the proper exploitation of marine fishery resources. A very small part 
of biological and chemical studies as a necessary ancillary to the de- 
velopment of fishery investigations was initiated in 1948 when arrange- 
ments for the systematic collection of hydrological data at selected 
fishery centres were made. ‘These attempts to obtain hydrological data 
have been purely from the standpoint of fishery work and it cannot be 
said that they have been carried out in any systematic manner in the 
absence of a Fishery Research Vessel for regular cruising. 


It is well-known that the arrival and departure of shoals of fish in 
any definite area are largely governed by their movements connected 
with their feeding and spawning habits, which are most intimately 
related to the physical and chemical properties of the sea water in which 
the shoals are located. In the sea there are periodical fluctuations in 
the physico-chemical conditions which may be annual, seasonal or even 
diurnal; these fluctuations are the combined results of the action of 
various meteorological and hydrodynamical factors. In addition to these 
more or less normal variations there may also be abnormal variations 
caused by geophysical disturbances or by factors unknown to us at the 
present time. A very systematic approach to these various problems is 
necessary to obtain a correct picture of sea fisheries of the Indian coast, 
which are largely seasonal and some of which, like sardines, show large 
variations from year to year. 


Indian marine fisheries are largely seasonal in character and the 
causes governing the movements of shoaling fish and the reasons for the 
failure or shift of seasons of a given fishery are at present unknown. 
Similarly the fishing grounds have not been charted, though a beginning 
has been made in this direction for areas around Bombay. The area 
now exploited for sea fishing includes only the narrow coastal zone of 
five to six miles from the shore. Power vessels to exploit the off-shore 
fisheries have begun operations on a pilot scale in Bombay under the 
aegis of the Government of India and in Calcutta by the Government 
of West Bengal. In the not too distant future, it is expected that more 
vessels will be put into operation from different centres like Cochin, 
Madras and Visakhapatnam. ‘The work of exploration of off-shore 
fishery resources and the charting of fishing grounds is one which calls 
for help from oceanographical studies as data on movements and com- 
position of the water masses would be extremely useful. 


298 EIGHTH PACIFIC SCIENCE CONGRESS 


CENTRAL BOARD OF GEOPHYSICS 


The Government of India constituted the Central Board of Geo- 
physics in 1949 and an Oceanographical Committee of the Central 
Board of Geophysics reviews the problems of oceanographical studies 
in India from time to time with the ultimate object of setting up an 
Institute of Oceanography. ‘This probably marks the first attempt in 
the country to think in terms of oceanography as an independent sci- 
ence which needs pursuit for its own sake without being subservient 
to the applied aspects of Fisheries, Harbour development, Coastal ero- 
sion, ‘Tide Prediction, Survey and Navigation. It may be recalled that 
the Survey of India has for a long time been carrying out prediction of 
tides for thirty-nine ports from Aden to Singapore and it is also re- 
sponsible for the mean sea level determinations. Expansion of tidal 
work is also contemplated by the Survey of India by placing tide gauges 
at most of the important ports and carrying out corresponding meteoro- 
logical surveys with the help of the India Meteorological Department. 


EXTENT OF AVAILABLE DATA 


The information on oceanographical topics available in India 
would therefore comprise (1) Salinity and temperature distributions as 
recorded by previous expeditions and part of which work is being 
continued with reference to Fisheries by the Central Marine Fisheries 
Research Station at Mandapam with the help of Fishery Naval and 
Merchant Vessels operating in Indian waters; (2) Data relating to tides, 
mean sea level and other physical aspects available with the Survey of 
India; and (3) Data on maritime meteorology available with the India 
Meteorological Department. 


An extremely useful compilation of sea temperature, currents and 
meteorological data has been published by the Netherlands Meteoro- 
logical Institute in the form of an Atlas in 1952. 


BEGINNINGS OF FISHERIES RESEARCH 


Early attempts relating to research on marine fisheries of India 
were directed to experimental trawling operations by ships belonging 
to the Madras, Bengal and Bombay Governments and the scientific 
work relating to the biology of the Oil Sardine of the Malabar Coast. 
The trawling operations were commercially unsuccessful and_ fishery 
work in most provinces suffered neglect during the periods of economic 
depression that followed the first World War. ‘The interest in the 
Sardine fishery of the west coast of India continued because of the 
disasters which this fishery suffered following the many successful years 


OCEANOGRAPHICAL AND FISHERIES RESEARCH IN INDIA 299 


for Sardines which led to the production of sardine oil becoming an 
important industry. Owing to the inadequacy of staff, lack of sufficient 
funds to carry out investigations with thoroughness, and the position of 
Fisheries as a Provincial Subject creating administrative problems when 
a fishery extends to two or more states, these efforts often lacked 
continuity. The first decision to tackle the marine fisheries investigation 
on an All-India basis was taken by the Government of India with the 
starting of the Central Marine Fisheries Research Station in 1947. 


CENTRAL MARINE FISHERIES STATION 


This Central Institute was started in February 1947 for handling 
marine fisheries research on an All-India basis with temporary head- 
quarters in the Biological Laboratories of Madras University until the 
permanent headquarters at Mandapam were ready for occupation. 
Buildings originally put up as a Naval Hospital by the Defense Depart- 
ment during World War II were converted into laboratories and tem- 
porary residential accommodation for the staff. Subsequently an aqua- 
rium was built with facilities for keeping organisms alive in circulating 
sea water and fittings to the laboratories were carried out. In addition 
to the headquarters station, there is a subsidiary research station at 
Kozhikode to deal with the special fisheries problems of the West Coast 
of India, and research units at Karwar in the Bombay State to deal with 
the mackerel fishery, at Narakkal in Travancore-Cochin to deal with the 
prawn fisheries and prawn farming operations, at Madras for handling 
studies on edible Mollusca and at Bombay for carrying out investiga- 
tions on off-shore fisheries. In order to collect fishery data from the 
long coast-line of India, fishery survey assistants have been posted at 
twelve centres representative of the various divisions of the Indian 
coast-line extending from Kathiawar to West Bengal. The data gathered 
are analysed and computed at Headquarters, setting up for the first time 
a machinery for the collection of All-India marine fishery statistics. 


PROGRAMMES OF MARINE FISHERIES RESEARCH 


The work of the institution is broadly divided into four categories, 
Fishery Survey, Fishery Biology, Marine Biology and General Physiol- 
ogy. Fishery Survey aims at assessing the marine fishery resources by 
computing fish landings and biological composition of catches to see 
if the marine fisheries in general are under- or over-utilized. Scientific 
study of exploratory work of the deep sea fishing vessels forms an essen- 
tial part of the survey programme. ‘The studies relating to Fishery 
Biology deal with the fish stocks, special habits, distribution, life-histo- 
ries and such aspects of fish life as have intimate bearing on fisheries 


300 EIGHTH PACIFIC SCIENCE CONGRESS 


problems. The major fisheries of India like the Sardines, the Mackerel, 
the Sharks and other less known categories of fishes are all investigated 
in detail in an attempt to understand the causes governing their abun- 
dance, and the efficiency with which the fish are caught and utilized. 
Subsidiary fishery resources like the prawns, the oysters, clams, etc. are 
also receiving close attention. Sea weeds which occur in considerable 
abundance in the sea and form a valuable raw material for the produc- 
tion of agar and other industrial products, are being investigated in 
detail to determine the extent of the resources. The third important 
category of investigations come within the field of Marine Biology deal- 
ing with the factors connected with the abundance of smaller forms of 
plant and animal life which ultimately form the food ‘of fish. This is 
also correlated with studies on the chemistry of sea-water with a view 
to understanding seasonal changes in the occurrence of nutrient salts. 
Bacteriology of sea-water and fish products is also investigated with a 
view to arriving at enforceable standards in the handling of fish prod- 
ucts. The physiology of fish and other commercially important forms 
of marine life are studied with a view to selecting suitable types that 
would be ideal for large-scale culture in coastal areas which could be 
developed into marine fish farms. The institution maintains a good 
library and a reference collection. 


CORRELATION OF OCEANOGRAPHY AND FISHERIES 


In the above paragraphs some idea has been given of the ap- 
proach to oceanographical and marine fisheries studies in India. ‘There 
is need for a standing machinery to collect and integrate synoptic data 
on the hydrology and maritime meteorology of the waters that surround 
India. The emphasis so far received has been biological and although 
marine biological investigations on a considerable scale have been car- 
ried out at Visakhapatnam, Madras, Mandapam, Trivandrum, Calicut 
and Bombay, the full interpretation of these results has to await more 
intensive physical-chemical work. Preliminary chemical data on phos- 
phates, nitrates, nitrites and silicates are already available for Madras, 
Mandapam and Calicut and it is hoped to extend these further in the 
near future. The greatest drawback, however, lies in the fact that stu- 
dies have principally been carried out in inshore or neritic waters with 
few observations in the open sea. An attempt to obtain a clear picture 
of oceanographic conditions in relation to Fisheries has now been 
initiated by the Central Marine Fisheries Research Station from Bom- 
bay utilizing the facilities of deep sea fishing vessels operating from 
that port and especially in view of the excellent results in trawling 
operations to the west of Kathiawar, which has now been found to be 


OCEANOGRAPHICAL AND FISHERIES RESEARCH IN INDIA 301 


one of the richest fishing grounds in India. A new line of work to cor- 
relate fishery conditions with oceanography has been developed in the 
study of mud banks of the Malabar Coast where it has been established 
that the fine silt which settles soon after the southwest monsoon in the 
form of a submerged bank acts as a reservoir of nutrient salts, probably 
influencing the fisheries of that area. On the physical side, work has 
been started by the Indian Navy in the Port of Cochin. There is need 
for more detailed coastal surveys and accurate charts and maps for the 
entire Indian coast, and for this purpose the surveys which are being 
repeatedly carried out by the survey ships will, it is hoped, contribute 
a large amount of data. 


FUTURE PROSPECTS 


Oceanography is an infant science in India as compared with the 
status of the subject in the more advanced countries where work has 
been in progress for some years. Absence of adequate training facilities 
for physical oceanography at Universities and non-availability of suit- 
able research vessels for oceanic work constitute the major obstacles to 
progress, but there is every reason to think that these will be overcome. 
The Andhra University on the East Coast of India has already formed 
a Department of Geophysics, and has initiated some work on physical 
and biological oceanography at Visakhapatnam. A few Indian Re- 
search Scholars are being trained abroad on the subject. Research 
Vessels for oceanographic and fisheries work are likely to become avail- 
able under the Five-Year National Plan of the Government of India 
and substantial additions to equipment available for marine work are 
now being made at several centres of Research. These developments 
in a country situated in one of the least explored of oceans will be 
watched with interest by all students of Marine Science. 


REFERENCES 


EKMAN, 8S. 1953. Zoogeography of the Sea. Sidgwick & Jackson, London. 

GULATEE, B. L. 1952. Tidal work in India. Assoc. Oceanogr. Phys. Proc. 
Verb. No. 5, 178. 

JOHN MurrAy EXPEDITION. Various Scientific reports. 

KONINKLIJK NEDERLANDS METEOROLOGISCH INSTITUUT No. 185. 1950. Indian 
Ocean Oceanographic and Meteorological Data. 

PANIKKAR, N. K. 19538. Fisheries Research in India—Pt. I. J. Bombay Nat. 
Hist. Soc., 50. 

ScHOTT, G. 1985. Geographie und Oceanographie des Indischen und Stillen 
Ozeans. Hamburg. 

SESHAPPA, G. 1953. Phosphate content of mud banks along the Malabar 
Coast. Nature, London, 171, 526-27. 


302 EIGHTH PACIFIC SCIENCE CONGRESS 


SEWELL, R. B. 8. 1925-35. Geographic and Oceanographic Researches in In- 


dian waters. Mem. Asiat. Soc. Bengal., Vol. 9. 
1987. Oceans round India: in Outline of Field Sciences of India, 


Calcutta. 
1953. Deep Sea Oceanographic Exploration in Indian Waters. 
J. Bombay Nat. Hist. Soc., 50, 705-717. 
SVERDRUP, H. U., M. W. JoHNSoN and R. FLEMING. 1942. The Oceans, their 
Physics, Chemistry and Biology. Prentice Hall, New York. 


OCEANOGRAPHY AND FISHERIES 


By G. L. KESTEVEN 
Marine Fisheries Section 
Food and Agriculture Organization cf the United Nations 
Rome, Italy 


The contribution of oceanography to fisheries research (which 
means research in economic and technical fields as well as in biological 
fields) is to be understood only in terms of the applied character of 
fisheries science: an effort is made in the following paragraphs to ex- 
pound the implications of this statement. However, it is desired here to 
stress a principal consequence of this position, namely that it brings 
upon the fishery scientist an obligation to exercise a keen discrimina- 
tion, and to undertake a frequent scrutiny of his activities, to determine 
whether they will stand a test of their applicability to real fishery 
problems. 


1. SoME DEFINITIONS 


The term Indo-Pacific is used in the sense in which it is employed 
by the Indo-Pacific Fisheries Council, namely, to signify the zoogeo- 
graphic area occupied by the warm-water marine fauna which is var- 
iously described as Indo-Pacific, Indo-West-Pacific (Ekman), and Indo- 
Australian (Weber and de Beaufort), the core of which is constituted 
by the Indonesian Archipelago. The term oceanography is taken to be 
the correlative of limnology and thus with that term to comprehend 
the whole of the scientific work bearing upon the hydrosphere with 
biological objective, or of biological use. ‘This definition derives au- 
thority from many works from among which perhaps that monumental, 
and already classical work “The Oceans’, by Sverdrup, Johnson and 
Fleming, may be chosen for citation. The validity of regarding oceanog- 
raphy as correlative of limnology may be found in the comprehensive- 
ness of the latter, as set out in such standard periodicals as the Revue 
der Internationale Gesammte Hydrobiologie and also in the standard 
text by Welch, which uses that term as title. 

It is to be stipulated that we reject the restriction imposed upon the 
term by some workers who regard it as concerned only with physical 
and chemical features of the oceans, and even as especially the pre- 
occupation of naval research establishments. Whilst, of course, there can 
be no challenge of their right to choose this usage, their attention may 


303 


304 EIGHTH PACIFIC SCIENCE CONGRESS 


well be drawn to the confusion which they create, especially since they 
do not offer us any alternative correlative of limnology. 


Oceanography is used by us to signify the study of the oceans in 
respect of themselves as water masses and of the biota which inhabit 
them; if not qualified, as it is in expressions such as ‘fisheries biology’, 
it is a pure science with no limitations upon the range or detail of the 
subject matter of its enquiry. A qualifying term, such as “fishery”, 
signifies an orientation of the enquiries and a limitation of the field, 
and not a specialized extension; thus, fisheries oceanography is that in- 
vestigation of the physico-chemical and biotic properties of the oceans 
required by fishery science—it does not mean oceanography which has 
swallowed fisheries research! 


2. GENERAL CONSIDERATION 


In a general way we may say that oceanography holds a relationship 
to fisheries corresponding to that which meteorology holds to agricul- 
ture. But we must go further and describe it also as the ‘soil-science’ 
of fisheries. “These two aspects were discussed by Tait, in his Auckland 
lectures, from the points of view of physical and chemical properties 
of the sea, respectively, in relation of fishes. “The more general, as well 
as more particular aspects of relations of aquatic organisms to the phys- 
ical and chemical factors of their environment, have been described 
in the new voluminous literature of ecology. In this paper I wish to 
make a plea, both for a special fisheries view of these relations and, at 
the same time, for further and more detailed investigations along what 
might be described as the classical approach to animal physiology and 
ecology. 

The programme of fishery biology traverses, in a general sense, six 
principal phases, a brief description of which I quote from a recent 
paper I presented to the General Fishery Council for the Mediterranean. 

“Firstly, if the area in which the biologist is working is virgin a 
survey must be made to determine the general characteristics of the 
area and of its fish stocks; the principal compositional features of the 
stocks must be described. For most of the present fishable areas informa- 
tion such as this has been accumulated in the course of fishing opera- 
tions and from work in marine biology; in such cases, a late starting 
programme in fishery biology must first collate all such information. 

‘Secondly, the general features of the stocks of the species to be 
investigated must be determined. ‘The species must be correctly iden- 
tified, and the continuity and taxonomic homogeneity of these stocks 
must be examined. ‘This work may or may not require the refined 


; OCEANOGRAPHY AND FISHERIES 305 


taxonomic study known as racial investigations, but it is im any case 
a distribution study which must take reference to details in the bio- 
nomics of the species. 

“Thirdly, the bionomics of the species must be discovered, that is 
the general-life-history, ontogenology (embryology, growth, and geron- 
tology), including feeding habits, reproduction and migratory habits. 

“Fourthly, the composition of the stocks is to be determined and, 
if the stocks exist in separate units, this determination must be made 
for each separately. ‘This compositional study concerns the age, sex, 
size, and maturity and other groups of the population. 

“This analysis generally reveals a fluctuation from year to year in 
composition of the stocks. Frequently there is also considerable varia- 
tion from area to area and between distinct segments of the stock. This 
study should see, not only to describe the composition and its fluctua- 
tion, but also to discover the causes of these fluctuations and, if possible, 
to evolve a system of prediction of the appearance of the fluctuations. 

“Fifthly, following directly out of the fourth stage, there is to be 
a measurement of the properties of the population. ‘These properties 
are potentials for growth and reproductions, and viability as a comple- 
ment to the mortality which the stock sustains. In this stage there is 
affected a considerable concentration of information since not only are 
data on the bionomics and composition of the stocks to be reduced into 
expressions summarizing the consequence of these structural features, 
but there must also be a reference to physiological, physical and other 
data concerning the factors which determine the properties of the pop- 
ulation as a whole. This work should also aim at a prediction system. 

“Sixthly, the fishery biologist must then collaborate with the fishery 
economist and fishery technologist in applying the general theory of 
fishing to give mathematical expression to the relations between the 
properties of the population and the effect of fishing operations.” 

The essential feature of this programme is that it is concerned with 
populations: its purpose is to develop a detailed description of the 
population as a whole and of the response of the properties of the popu- 
lation to changes in its environment, including among such changes, 
of course, those in fishing intensity. 

The biologists’ responsibility in respect of these populations is one 
or the other of two kinds, which may be summed up in two questions: 
Firstly, what type of population and where? Secondly, of what abun- 
dance? ‘The first question belongs in the main to the exploratory stage, 
the second to the management stage. In a way, also, these questions 
correspond to the different enquiries concerning abundance; those 
which relate to the availability of the fish to fishing operations, and 


306 EIGHTH PACIFIC SCIENCE CONGRESS 


those which relate to the real abundance of the stock; and these in turn 
are covered respectively by the first three and the last three of the 
stages listed above. 


3. OCEANOGRAPHY AND THE DISTRIBUTION OF FISH 


In its broadest sense this is a question primarily of marine zoo- 
geography, but for the fishery biologist the enquiry must press far 
deeper, since, in point of fact, for each species of commercial impor- 
tance he seeks to establish the ontogenetic distribution patterns and, 
moreover, the seasonal, annual, and even secular modulations of these. 
The great oceanographic cruises, of the Challenger and of others, have 
since established the major features of our picture of marine zoogeo- 
graphy and yet withal there remains much to be done to enable us to 
evaluate unexploited areas and to be able to give fishermen the in- 
formation on which they might plan the development of fishing 
operations. 

The zoogeographic account of the distribution of marine faunas is 
in effect a generalized one referring to groups of species and to indi- 
vidual species which characterise the fauna and serve as indicators of 
identified conditions. The distribution patterns referred to in the zoo- 
geographic account indicate the broadest limits within which the faunas 
are observed to occur. 

The more restricted limits within which the various ontogenetic 
stages move are not of as great importance to zoogeography as they said 
their seasonal and other modulations are to fisheries. But the greater 
pattern and its component parts are both the grosser manifestation of 
the reaction of the individual organisms to the various elements of its 
environment at the behest of its own physiology. ‘The general adjust- 
ment of the organism to its medium in respect of its respiratory and 
osmo-regulatory requirements set the general limits within which it can 
move differences, in these requirements, between ontogenetic stages 
may, theoretically, give separate distributions to these stages. The nu- 
tritional requirements and peculiar needs in respect of reproductive 
habits, further complicate the picture as the organisms undertake feed- 
ing and reproduction migrations in search of the situations where the 
necessary conditions are satisfied. It is perhaps no misrepresentation to 
say that in the first part of this enquiry, the task is to describe the dis- 
tribution of the first and the conditions under which they are found, 
whilst, in the second part, the task is to find means of predicting where 
these conditions will be found—as a means to predicting where the fish 
will be. It must be stressed, however, that the accurate account of dis- 
tribution requires elucidation of the keenomics of the species. 


OCEANOGRAPHY AND FISHERIES 307 


At this point we are concerned only with the types of fauna found 
in various situations, with the task of characterizing an area in respect 
of the composition of its fauna and, for situations whose fauna is known, 
with evolving means of predicting variations in the distribution of ele- 
ments of that fauna and of ontogenetic stages of those elements. 

The role of oceanography in this phase of the programme emerges 
very clearly; it must first furnish the description of the physical, chem- 
ical and biotic properties of the water masses and in this way it cor- 
responds to soil science coupled with climatology. Then, when the 
distribution patterns are revealed, the role of oceanography corresponds 
to that of meteorology in furnishing predictions as to the conditions 
which are likely to be found, and the task of the fishery biologist then 
is to predict the behavioral response of the fish stocks to such conditions. 


4. OCEANOGRAPHY AND THE ABUNDANCE OF FIsH 


In this part of the programme we may consider three types of prob- 
lems having common basis. We are concerned with the natural abun- 
dance of fish in an area, a problem which has practical meaning only for 
unexploited areas, although a method of estimating potential natural 
abundance of an exploited stock might solve many of the problems 
concerning abundance under conditions of exploitation. Next we are 
concerned with the fluctuations in abundance which have manifested 
themselves in all exploited stocks, whatever the degree of exploitation. 
Finally, we are concerned with the special problem of the effect of fish- 
ing operations on the abundance of the stock. 

The measurements of natural abundance of stocks in virgin areas 
is a task of peculiar difficulty which demonstrates, perhaps more than 
anything else, the special character of the work of fisheries science and 
the abstruseness of its problems. A simple example will serve to indi- 
cate the nature of the problem and the difficulties. Somali fishermen 
have for many years been catching tunas off the Somali coast, and for 
some years a few small canneries have been processing this catch for 
export market. The canneries would like to expand their operations 
and therefore require to increase their catch of tuna; the question is: 
do substantial stocks of tuna, accessible to fishing craft operating from 
Somalia, inhabit the waters on the Arabian Sea east of Somalia, or, are 
the occurrences from which the fishermen have made their catch merely 
sporadic invasions from a principal area lying somewhat remotely from 
Somalia? This, it will be noted, is not a simple distribution question, 
for the tuna are well known to appear in these waters. It might be a 
question of ontogenetic distribution pattern and the determination of 
this possibility could lead to development of a system of prediction of 


308 EIGHTH PACIFIC SCIENCE CONGRESS 


the times and conditions under which these occurrences take place, and 
even of the fluctuations in relative numbers of fish appearing from time 
to time. But this would still be insufficient: the cannery operators 
need to have some indication of the level of abundance in order to be 
able to decide the amount of fishing equipment (craft and gear) which 
could be brought to bear on the stocks, and thence the amount of pro- 
cessing equipment which would be required to handle the catch. 


There are probably two broad avenues of approach to this prob- 
lem. One is by way of evaluation of the area in terms of basic pro- 
ductivity and measurement of food chains. This would be possible 
only for stocks endemic to the area and not to transients. The other 
approach is by way of special sampling which, in the case of pelagic 
stocks, may include aerial observation. It may be noted that in this field 
of work there is urgent need to elaborate and improve the methodology 
of searching and sampling, and that in such improved methods, even 
greater use must be made of reference to oceanographic factors as de- 
terminants of the behaviour of the fish. 

In the more general sense of the productivity of an area, the ocea- 
nographer must take a leading role, and the task of the fishery biologist 
is to develop the understanding of the nutrition of the economic species 
in order to be able to use the data on food availability. 

We now turn to the other two problems concerning abundance. 

The structure of the problem was symbolized by Russel, in his well- 
-known equation, which says that the difference in a stock of fish, be- 
tween one season and another, can be represented by the balance 
between. 

Growth + Reproduction and Natural Mortality + Fishing Mor- 
tality. We may take these four elements as the plan for our enquiry. 

Growth:—The growth of any individual may be taken to be the 
result of the operation of factors which may be considered in three 
groups—genetic, food supply, and the environmental factors affecting 
food procurement and the subsequent metabolism; between these arise 
interactions. In the past fishery biology has concerned itself chiefly with 
measuring and describing the ontogenetic manifestations of growth: it 
has made little analysis of growth itself as physiological process. ‘The 
initial approach made by fishery biology to growth has furnished a 
useful description of growth phenomena at what might be called their 
grosser level, and some attempt has been made to measure the relations 
between these phenomena on the one hand, and food availability and 
environmental conditions on the other. Whether much further progress 
can be made along this line before more detailed enquiry is made into 
the physiology of growth might be questioned, but both types of enquiry 


OCEANOGRAPHY AND FISHERIES 309 


require much information from oceanography on the environment of 
the fish. The first information is that concerning food availability; the 
second is that concerning temperature, salinity, trace elements and biotic 
factors which influence the procurement of food it ingests. But the work 
of fishery biology has been concerned generally with estimates of aver- 
age growth in populations, and with this as a means of characterizing 
year-classes and the conditions prevailing from year to year. Recent 
work has carried the theory further to attempt to use those data on 
growth as a means of estimating the biomass production of the popula- 
tion as a whole. Such work will accomplish a practical effectiveness, 
however, only after the underlying physiology of nutrition and growth 
have been studied further, and this will mean, as in the study of nutri- 
tion and growth of domestic animals, that there must be controlled ex- 
periments in which both food supply and environmental factors are at 
least precisely measured if not actually controlled. 


In this field of enquiry, taking it to be the responsibility of fishery 
biology to measure the growth of the population, the contribution of 
oceanography is two fold: initially, in aiding the description and analysis 
of these systems; subsequently, in providing data for a prediction sys- 
tem. In the initial phase the contribution is of data on all factors which 
might directly or indirectly affect the nutrition and growth of the fish. 
In the prediction phase, the data would concern certain critical factors. 


Reproduction:—Although in the fishing theory equation this term 
refers essentially to recruitment into fishable stocks, the fishery biologist 
has some concern with the whole range of phenomena which lead to 
the reproductive act and those which lead from that act to recruitment. 
That is to say, there is a concern with sex ratios and fecundity, with 
length and age at first maturity, and (within each season) of the 
maturation of the gonads, with the spawning act itself (including fer- 
tilization), with embryonic development and hatching, with larval and 
post-larval development, and with growth and survival through these 
and the young-fish stages. Some workers consider that the only practi- 
cable approach to the problem of replenishment of the stock is by way 
of measurement of recruitment as it is taking place, or of the potential 
recruits shortly before they enter the fishery. Other workers contend 
that it is possible to enter more deeply into the system and to attempt 
some measurement of the series which connects spawners with recruits. 
Among these latter there are some who believe that, although in gen- 
eral the number of eggs produced at each spawning is always far in 
excess, in numbers, of the number of individuals which survive to be 
recruits to the fishery, so that little connection can be found between 
the number of eggs spawned and the subsequent recruitment, the brood 


310 EIGHTH PACIFIC SCIENCE CONGRESS 


strength is, in the main, determined by one or more critical factors at 
certain critical points in the life of the brood. Efforts at demonstrating 
this hypothesis have aroused some controversy. However, it is unques- 
tionable that the sequence described above is closely dependent upon 
environmental conditions and that any understanding of it, let alone 
any measurement of it or formulation of a prediction system, must make 
demands upon oceanography. 


Natural Mortality:—This term is perhaps even more recalcitrant 
than the other two. We may argue, a priori, that mortality may be 
caused by predatism, parasitism, disease, lethal genetic characters, mal- 
nutrition, and physical factors such as temperature and salinity extremes, 
but there seems to be little prospect yet of measuring the result of 
operation of each of these factors separately, or, as an antecedent to that 
result, the intensity of each factor. Nevertheless, again we must look 
to oceanography to furnish the fishery biologist with some of the in- 
formation which he will require in this field. At the present stage 
natural mortality must be accepted as a sum arrived at after deducting 
measured fishing mortality from estimated total mortality. It might be 
possible to correlate variations in natural mortality with variations in 
environmental factors and thus to approach both analysis of the causes 
and prediction of intensity. 


Fishing Mortality:—In this field, oceanography has a small contribu- 
tion to make in respect of the influence of weather and sea conditions 
on the intensity of fishing operations and their efficiency, but we defer 
further consideration of this to Section 5 of this paper. 


Fluctuations in Abundance:—A great deal of work has been done in 
describing the fluctuations in abundance of exploited stocks and analys- 
ing these fluctuations in terms, chiefly, if variations in strength of brood- 
classes and in recruitment into fishable stocks. ‘This work can proceed 
at one or other of various levels: either with simple description of the 
fluctuations and elementary correlation with various environmental 
factors—a course which does not promise much reliability in its results; 
or with varying degrees of penetration of the analysis into the systems, 
with the conviction that if relationships are truly identified, and rela- 
tions usefully measured, prediction systems may be evolved with prac- 
tical and reliable value. 


Fishing Theory:—Perhaps the ultimate objective of fishery science 
in respect of fishing operations is to prepare, for each unit fishery, a 
description of the fish stocks and of the effect on them of the fishing 
operations in order to permit the design of a plan of management of 
the fishing operations which will ensure the best exploitation of the 
stocks. The description of each unit fishery will be along the lines of 


OCEANOGRAPHY AND FISHERIES 311 


the Russel equation as discussed above, and the dependence of this work 
upon oceanographic inquiry is Clear. 

Best exploitation clearly means that which will give the best and 
most sustained yields, but in another way it may be signified by the term 
“fish husbandry’—a concept which has recently emerged in respect of 
marine stocks and which, at least, holds out a goal, even if we should be 
ready to find that the end-result might not be as precisely analogous to 
animal husbandry as our present speculative thinking imagines it. This 
touches upon the possibility that there might be other direct interven- 
tion in the stocks besides the fishing operations. Some speculative think- 
ing has turned to the possibility of intervening in some of the basic 
phenomena of the sea, and there has been experimentation in fertiliza- 
tion. The realization of artificial upwellings, or of control of the move- 
ments of marine stocks, will depend very largely on the work of the 
oceanographers. 


5. OCEANOGRAPHY AND FISHING OPERATIONS 


The dependence of fishing operations on weather and sea conditions 
needs no discussion, either in respect of the effect of environmental 
factors on the behaviour of the fish (which determines gear and method) 
or of the effect of weather and sea surface conditions on the craft. The 
pot to make here is that fishermen need more aid from the oceanog- 
raphers by way of predictions of these conditions. 


6. DiscUSSION OF THE RELATIONS BETWEEN OCEANOGRAPHY AND FISHERIES 


There is really no need to make a case for recognition of the im- 
portance to a knowledge of any organism (or population of organisms) 
of data concerning its environment, and as oceanography is defined here, 
it is the science which will furnish the environmental data required by 
the fishery biologist. I do not believe that it can be denied that in fact 
fishery science can no more do without oceanography than agricultural 
science can do without meteorology. But, whereas oceanography per 
se has the entire marine hydrosphere as its field of enquiry, and the 
limits are set only by the interest of the worker and the funds, equip- 
ment and help available to him, fisheries oceanography is to be defined 
strictly according to the area of interest and the kind of problem pre- 
sented by the fishery biologist. 

It will be clearly seen from the preceding discussion that different 
types of oceanographic information are required in the different situa- 
tions found in fisheries. Different sets of elements are to be observed, 
with different patterns of observation station, and different intensities 
of observation at each station according to the nature of the fishery 
problems. In the determination of general limits of distribution of a 


a2 EIGHTH PACIFIC SCIENCE CONGRESS 


fauna, or a species, broad isotherms, isohalines and so forth are sufficient, 
but for more detailed description of distribution, a more precise measure- 
ment, with much narrower intervals between the iso-lines, is required. 
The point which must be made is that the oceanographic programme 
for fisheries should be carefully planned with a clear view of what is 
required by the biologist’s problem and of the use which he can make 
of the material and data which are collected. And perhaps it would not 
be dogmatic to say that where resources for oceanographic research are 
limited, these should be employed in those situations in which the need 
for oceanographic data can at once be formulated, rather than in 
broader fields from which the data may be expected to be of use at some 
unspecified time in the future. 


7. OCEANOGRAPHIC REQUIREMENTS IN THE INDO-PACIFIC 


On the basis of the foregoing review, and making use of some of 
the criteria proposed for setting limits upon the oceanographic pro- 
gramme for fisheries, we may make a brief review of some of the urgent 
problems for oceanography in this region. 

In the first place it is as well to refer to the important problem of 
the basic productivity of tropical waters. This has now become a critical 
question, the solution of which would have considerable bearing on 
the planning of future development of fisheries. However, it is a long 
range problem which, at this stage, stands within the province of the 
oceanographer with his more general interest. Moreover, it is probable 
that further advances need to be made in perfecting the techniques for 
measurement of productivity and in marine biological research on food 
chains and the nutrition of marine organisms. 

Turning to immediate fishery problems, mention may first be made 
of the ‘major’ fisheries of the region, such as for the Rastrelliger spp. 
of the Indian and Malayan west coasts, of the Gulf of Siam and of In- 
donesia, the Sardinella longiceps in much the same areas, Stolephorus 
spp. also in similar areas, Sardinia sp. in Japanese waters, the reef stocks 
predominantly of Percomorph species, the Pseudosciaena spp. of the 
China Sea, the Flying fishes (Exocoetidia) of the Celebes and those for 
the Carangids and Scombroids, more especially within the various island 
groups. In respect of each of these fisheries the requirement is for 
oceanographic information bearing upon the distribution of the fish, 
and the related work concerning the bionomics of each species. In some 
cases the broad distribution limits are known and the present problem 
is to determine the distribution of ontogenetic stages and to develop 
prediction systems; Rastrelliger in the Gulf of Siam, Sardinia in Jap- 
anese waters, and Pseudosciaena in the China Sea are in this situation. 


OCEANOGRAPHY AND FISHERIES 313 


In other cases the situation calls for a more general exploration of dis- 
tribution and analysis of compositions; this is especially true of the reef 
stocks. In all of these cases there is need of estimates of level of abun- 
dance, in none of them, except perhaps the Japanese sardine, does the 
present knowledge of the stocks warrant the mounting of oceanographic 
programmes appropriate to a true population analysis as described above. 


The ioregoing instances are all of well established fisheries which 
stand in need of improvement in the knowledge of the biology of the 
resources. Of different status are two other broad classes of resources: 
the pelagic stocks of the high seas, and the demersal stocks of certain 
continental shelf areas. ‘The latter include the continental shelf of 
the Indo-Pakistan west coast, of the Bay of Bengal, or the deeper waters 
of the Gulfs of Siam and Tonkin, of the South China Sea, and of the 
Java and Arufura seas. Although there has been some exploration of 
these areas, and in some cases (e.g. off the Saurasthra coast) some sys- 
tematic fishing, the knowledge of the areas is generally patchy and in- 
complete; as soon as the development plans of the fishery industries of 
the adjacent countries warrant, there should be systematic exploration 
and survey of these areas, and this work should include the taking of 
appropriate oceanographic observations. Similarly, in the case of the 
pelagic stocks, survey work must be undertaken at some time and must 
include oceanographic observations. 


As a final note, I may say that, whatever my remarks above, I do 
not underestimate the difficulty which confronts a worker, or a director 
of a programme, in determining the limits of the work and the relevance 
of different avenues of enquiry which open up as an enquiry develops. 
One can only say that this must be left to the perspicacity and honesty 
of the worker. One cannot deny the desirability of general oceano- 
graphic enquiry, any more than the urgency of particular enquiries, 
demanded by economic necessity, can be ignored. 


FACTORS IN THE UTILIZATION OF CANADA'S 
PACIFIC MARINE RESOURCES 


By J. L. Harr 


Pacifie Biological Station 
Nanaimo, B. C., Canada 


In a simple society men use their hands or simple tools to take fish 
for their own immediate food needs. In an industrialized society com- 
plicated machines are used to catch and prepare fish for shipment and 
exchange for other commodities. In any region the extent and char- 
acter of the departure from the simple situation depend upon (1) the 
qualities and habits of the fish species available, (2) the geography and 
meteorology of the region, (3) the technological aptitude of the fisher- 
men, and (4) the economic condition of the inhabitants. These factors 
are also an influence in the attitude of peoples toward resource utiliza- 
tion. ‘Their application to the fishing industry of the Pacific coast of 
Canada is discussed in this account. 


FisH Usep 

Five species of salmon of the genus Oncorhynchus provide more 
than half the total value of the Pacific fishery in Canada. The fish are 
fat, preserved well by canning, freezing or salting, and are in general 
high demand. They differ substantially in life history but all are ana- 
dromous, and all attain most of their growth in salt water. On their 
spawning migration in summer and autumn all pass through the inlets 
and channels of the coast in large and readily captured schools. Thus, 
on its spawning migration each species is susceptible to easy depletion 
or even extermination by fishing. Human activities add to the natural 
hazards of the freshwater life of these fish: dams obstruct rivers; irriga- 
tion requirements divert water; impoundments “drown” spawning 
grounds; communities and industries pollute streams; logging and agri- 
culture result in silted spawning grounds or changes in stream flow. 

‘The second ranking fishery on the Canadian Pacific Coast is for 
herring (Clupea pallasi). Most of the catch is reduced and shipped to 
the markets of the world as oil and meal. Adult and adolescent herring 
for the most part spend their summers feeding offshore on the con- 
tinental shelf. In autumn and winter they form dense schools and ap- 
proach the coast as a preliminary to spawning in shallow water and on 
the beaches in March. The migrating aggregations are very vulnerable 


314 


UTILIZATION OF CANADA’S PACIFIC MARINE RESOURCES 315 


to large scale capture. ‘This suggests that intensive fishing operations 
could cause depletion. As it is beyond reasonable dispute that salmon 
can be depleted by unrestricted exploitation, it is assumed that herring 
can also be depleted by unrestricted fishing on pre-spawning popula- 
tions. This assumption is the subject of critical scientific examination. 

Of a dozen or so commercial species of groundfish the halibut is the 
most important. It freezes well and is shipped frozen to the markets 
of the continent. The fishery is principally by long-line in Hecate 
Strait (between the Queen Charlotte Islands and the islands along the 
mainland coast) and on the offshore banks of the continental shelf. It 
is administered by an International Commisssion (Canada and the 
United States) on the premise that at low or moderate levels of abun- 
dance, increased fishing effort produces less fish. ‘The sable fish or black- 
cod (Anoplopoma), so highly prized for smoking, is taken on the same 
gear in deep water. The remaining groundfishes—flatfishes (Pleuwro- 
nectidae), gray cod (Gadus macrocephalus), rock fishes (Sebastodes), 
lingcod (Ophiodon elongatus)—yield excellent fillets for the fresh or 
frozen trade on local or distant markets. They are taken principally by 
trawls on banks of intermediate depth (15-100 fathoms) at times when 
concentrations make for fast and hence profitable fishing. 

The only truly oceanic fishery to attract Canadian fishermen is the 
troll fishery for albacore. ‘The fish is canned as premium tuna for 
Canadian consumption or exported frozen. Fishing may be as close as 
six miles from shore but typically is offshore by 40 miles or considerably 
more. The fishery is very erratic in occurrence and yield. ‘There is 
in it an element of sport which appeals to many fishermen. 

A small but effective shore-based whaling operation uses half a 
dozen or more species of whales. The products (meal, solubles, oil, and 
meat for fur farms) are sold on the world’s market. The promised re- 
wards of the whaling industry are the only ones which have yet seemed 
sufficient to justify deploying valuable capital equipment in organized 
offshore projects. Canadian whalers work up to 150 miles off shore— 
much farther than other company-operated vessels. 


GEOGRAPHY AND METEOROLOGY OF THE AREA 


The coast of British Columbia has many islands and inlets. Race 
Rocks at the south end of Vancouver Island and Stewart at the north 
end of the Portland Canal are less than 600 miles apart in a straight 
line, but 16,900 miles of coast line intervene. The irregularities in the 
shore line provide numerous good harbours where small craft can wait 
out perilous weather or conditions which make fishing impossible. Al- 
though there are many good harbours there are few or no permanent 


316 EIGHTH PACIFIC SCIENCE CONGRESS 


residents on them. The shore in many places is rough and inhospitable 
and the surrounding terrain is so rugged as to make access by land dif- 
ficult or non-existent. In consequence fishing communities are few and 
widely separated and those with rail or road connections are even fewer. 

Tidal change is moderate (12 to 26 feet maximum change at various 
places). Tidal currents in the passages and inlets are, however, strong. 
In a few places they make navigation hazardous and in others they are 
too swift to be stemmed by small craft. They must be given thorough 
consideration for efficient navigation on the coasts. 

The prevailing winds are moderate to strong with occasional calms 
and gales. Sudden high winds are not common. In deep water, seas 
are seldom dangerous to properly loaded seaworthy vessels. However, 
in the shallow waters of Hecate Strait or in situations where the wind 
opposes strong tidal currents, steep waves develop which can be dan- 
gerous to small craft. 


"TECHNOLOGICAL POSITION 


The fishing industry of Western Canada has made use of the tech- 
nological knowledge of the Western Hemisphere. It has been applied 
both to processing and to capture. The principal method of process- 
ing is canning. ‘To it are applied the special techniques of machine 
cleaning of fish; and of filling, capping, exhausting, sealing, and retort- 
ing of cans. 

The fish reduction industry uses presses and centrifuges especially 
adapted to its purposes and special evaporators for concentrating solu- 
bles in the press liquor. General plant construction and arrangement 
take advantage of new power sources and engineering methods. 

The installations for the frozen fish trade apply principles of refri- 
geration engineering as developed by scientists of the Fisheries Research 
Board. Similarly, the application of newly developed principles to 
smoke house construction has improved control of the process to the 
point where the operation is largely freed of dependence on uncon- 
trolled conditions. 

The greatest single contribution of technology to catching is the 
development of compact, dependable, and economical power units to 
propel vessels and to operate deck equipment. More recent develop- 
ments of great general usefulness are the radio telephone which facil- 
itates concentration of the fleet on large bodies of fish and with shore 
headquarters or processing plants; and the echo sounder, which makes 
navigation more certain, allows troll and trawl fishermen to follow the 
contours of the bottom, and reveals the presence of deep schools of fish. 
General developments of more recent application are radar, which 


UTILIZATION OF CANADA’S PACIFIC MARINE RESOURCES 317 


facilitates prompt return to harbours in fog or dark, and the range 
finder and Loran for general assistance in offshore navigation. 

The machines mentioned above were developed for other purposes 
and later adapted to fishing vessels. “There are special developments, 
too. Prominent are power driven drums on the sterns of small boats 
for easily setting out and picking up gill nets (or handling long lines), 
larger drums for handling salmon purse seines, power driven gurdies for 
handling trolling lines, the older long line gurdies of the halibut boats, 
and stabilizers for trollers and other smaller craft. These are the pro- 
ducts of the ingenuity and enterprise of fishermen. Other ideas are 
constantly being tested and rejected or modified. All increase the ef- 
ficiency of fishing or reduce the physical labour of fishing and, in so 
doing, shift the emphasis for success in fishing from physical strength 
and hardihood to ingenuity and technical skill. 

A_ variety of factors contributes to the rapid development of ef- 
ficient fishing methods. ‘The army of fishermen is not a stable one: it 
is always receiving recruits from (and losing deserters to) other indus- 
tries—logging, farming, construction—so that new ideas, some practical, 
some naive, are continually being tried, with the good ones being 
adapted and applied to local conditions. Furthermore, Western Ca- 
nadian fishermen are recruited from a variety of the great fishing centres 
of the world so that methods successful in other places are available for 
trial under local conditions. In general, there is ample opportunity to 
try and apply new fishing methods within existing regulations. When 
successful ones are developed, the educational standard is high enough 
to facilitate the ready dissemination of information through trade and 
technical journals. ‘The organization of the industry is at once strong 
enough and adaptable enough to bring promptly into general use all 
really useful developments. 


ECONOMIC POSITION 


The fishing industry of Western Canada is centred on a favoured 
section of a favoured continent. The inhabitants of British Columbia 
have no urgent need of fish as a protein food. Rather, they use the 
choicer varieties occasionally as a change from meat. In general the 
processed products of the fishing fleets are shipped to the markets of the 
continent and the world to provide exchange for the foods and manu- 
factured goods which go toward maintaining a high standard of material 
welfare. 


APPLICATION 


The low local demand for untreated fish and the wages for labour 
expected by fishermen require that most of the fish be processed in one 


318 EIGHTH PACIFIC SCIENCE CONGRESS 


way or another. In general this can be done most cheaply in the few 
large centres of population having good transportation facilities. A 
few specialized communities relying entirely on fishing products have 
been located at places convenient to the fishing grounds. ‘Technological 
advances are improving established processing methods and developing 
new ones. 


The Canadian fishing industry depends upon exports, and in con- 
sequence is in an assured competitive position only in cases where there 
are advantages in fish availability or in some other way. There is little 
incentive to organize costly offshore operations (such as for tuna) in 
competition with exploiters from other nations. 


The vessels used must be large enough to deliver paying fares to 
fishing ports or buying stations which are rarely as much as a day’s run 
from the fishing grounds. They must be large enough to continue fish- 
ing in moderate weather in order to complete paying loads, but they 
need not ride out severe gales as safe harbours are always within reach 
of the fishing grounds. ‘The boats must, of course, be large enough 
to handle effectively the gear in use and to accommodate the necessary 
fishing aids. ‘The tendency is accordingly toward the use of craft of 
medium size. Boats used in the marine fisheries are customarily 35 to 
85 feet long depending on the gear used and the places and seasons of 
operation. Salmon gill net boats used in the inlets and river estuaries 
are smaller and lighter in construction. 


Because the economic situation puts the emphasis on financial re- 
turn rather than on efficient use of the whole resource, the fish utilized 
are those commanding the highest prices or those whose habits make 
it convenient to capture them in very large numbers. Only such species 
can produce sufficient return to allow the fishing profession to compete 
successfully for the time of potential fishermen. However, for these 
species more fishermen are attracted to the fishery than are necessary 
to take all the fish which can safely be removed from the reproducing 
stock. 


As the most important fisheries in Western Canada are for ana- 
dromous fishes which are liable to depletion by over-fishing, regulations 
have been introduced to assure each year an adequate number of 
spawners. These regulations limit fishing or define the gear. In general, 
the resource has been fully used for years. Consequently, each tech- 
nological advance in fishing efficiency must be matched by regulations 
reducing the effectiveness of the gear. A paradoxical situation is pro- 
duced but such seems inevitable in view of the biological facts and the 
accepted policy not to refuse fishing privileges to any citizen. 


UTILIZATION OF CANADA’S PACIFIC MARINE RESOURCES 319 


Regulations prevent fishing much above tidal influence or, at 
smaller streams, near the river mouths at all. Such regulations and the 
fishermen’s desire fer comfort and efficiency have, during recent years, 
promoted the use of gasoline-driven boats, replacing rowboats and sail- 
boats. Still more recently competition for fish has led to the use of 
larger and faster boats so that the fish can be met and caught as they 
approach the meuths of the rivers. There results an economic balance 
between the efficiency resulting from access to all of the fish as they 
approach the fishing grounds and the inefficiency arising from using 
better equipment than is necessary to do the work. The situation has 
been encouraged by the increasing market price for fish. When prices 
fall the point of economic balance may shift so that the use of expen- 
sive equipment may become unprofitable. Adjustment is likely to prove 
very awkward. 


RESEARCH ATTITUDE 


The fisheries resources of Western Canada are the subject of mod- 
erately intense research. Research on the wholly marine species (except 
herring) adapts traditional approaches to the local species and prevail- 
ing conditions. As a basis for assuring maximum sustained utilization, 
information is sought on such matters as migrations, population limits, 
the factors controlling abundance through year-class variation, factors 
influencing catchability by modifying shoaling habits, rates of growth, 
and intensity of the fishery. ‘he objectives and approaches for herring 
are complicated by the herring’s inshore spawning in the intertidal zone 
and the consequent conviction that the species is subject to economic 
extinction by overfishing. Full scale experiments to test the effective- 
ness of protective regulations aré in progress. 


Most research effort is devoted to salmon. ‘The anadromous habit 
makes salmon extremely vulnerable to fishing. The determination and 
provision of the number of spawners required to perpetuate the re- 
source without withholding an unnecessary surplus from the fishery, are 
major problems whose difficulty is increased by the variations in re- 
productive success which occur from year to year under natural condi- 
tions in the freshwater habitats of salmon. The parts played by droughts, 
freshets and frost in suppressing salmon populations are under investiga- 
tion. Such information is needed beth for the determination of the pro- 
portion of the runs which should be used by the fishery and for the 
prediction of variations in the abundance of available fish so that the 
industry may avoid economic loss through unnecessary surplus of fish 
on the spawning grounds. 


320 EIGHTH PACIFIC SCIENCE CONGRESS 


The special hazards which are faced by anadromous fish as a re- 
suit of human activities have been mentioned previously. Perhaps the 
most serious interference with natural conditions is produced by hydro- 
electric developments which intrude impassable barriers to upriver sal- 
mon, pass practically all of the water through their turbines, and create 
great new lakes in their storage reservoirs. Much effort is being put on 
studies of methods to guide upstream and downstream migrating sal- 

10n past obstructions. Culturing in coastal lakes or special nursery 
areas may prove necessary and the conditions controlling survival are 
being studied with that in mind. As hydro-electric power is in increas- 
ing demand, there is a great sense of urgency in the researches which 
seek means for preventing the destruction of the salmon fisheries. 


POISONOUS FISHES AND THEIR RELATIONSHIP TO MARINE 
FOOD RESOURCES IN THE PACIFIC AREA * 


By Bruce W. HALSTEAD 
School of Tropical and Preventive Medicine 
College of Medical Evangelists 
Loma Linda, California, U.S.A. 


INTRODUCTION 


Recent declines in fish catches in certain regions in the Pacific have 
stimulated scientific organizations to investigate ways and means of 
developing latent fishery resources. Other fishing grounds are being 
explored, and the addition of new fish species to the consumers’ menu 
is being considered. The decline in catches becomes even more serious 
when considered in the light of increasing human population through- 
out the world. ‘This increase is estimated to be progressing at the rate 
of 1 to 1.25 percent per annum, or in terms of numbers, about 25 
million people a year. Unfortunately, the population increase has not 
been matched by the production of food stuffs. Many of the southern 
Asiatic countries, which prior to World War II were exporters of food 
stuffs, have since become importers. 

Increases in population, decreased food production resulting from 
political and military upheaval, and the general decline in fish catches 
have all contributed toward making protein food stuffs a subject of con- 
cern. It is not unusual, therefore, that economists should focus their 
attention on the almost untapped protein food reserves of the sea. How- 
ever, the development of the shore fisheries of the tropical Pacific will 
present important problems regarding the edibility of certain fish species 
which fisheries and public health organizations must not ignore. 


ECONOMIC SIGNIFICANCE OF POISONOUS FISHES 


The economic significance of poisonous fishes can probably be more 
readily appreciated by reviewing a few instances which have occurred in 
the tropical Pacific within the last ten years. According to Mr. P. F. 
D. Palmer,! who has managed the Fanning Island Plantations Limited 
(Line Islands) and has been a resident of the island since 1936, poi- 

* This investigation was supported by a research grant from the Division of Research 
Grants and Fellowships of the National Institute of Health, Public Health Service, Bethesda, 
Maryland, supported in part by the United States Air Force under contract No. AF 18(600)— 


451, monitored by Research Secretariat, U.S.A.F., School of Aviation Medicine, Randolph Field, 
Texas, 


o21 


322 EIGHTH PACIFIC SCIENCE CONGRESS 


sonous fishes (exclusive of puffers) were unknown prior to World War 
II. Fishes of all types were commonly eaten and supplied to the native 
workers for their main source of protein. Between February 1946 and 
April 1947 there were 95 cases of fish poisoning amongst the population 
of 224 people on the island. A clinical account of these outbreaks has 
been published by Ross.? Palmer further states that from 1946 to 1950 
there were “hundreds” of cases of poisoning resulting from the very 
same species of fishes which they had formerly eaten without ill effect. 
The problem finally reached the point where feeding their native per- 
sonnel became critical. Fortunately most of the pelagic species, mullet 
and some of the lagoon fishes remained edible. Within the last year or 
two the situation seems to be improving and some of the species have 
been placed on the edible list again. 

A report received from Dr. Vernon Brock, Director, Division of 
Fish and Game, Board of Agriculture and Forestry of the Territory of 
Hawai,’ indicated that more than 60 tons of red snapper (Lutjanus 
spp.), ulua (Caranx spp.) and miscellaneous reef fishes were shipped 
to the Honolulu fish markets during the years 1930 to 1937. During 
this time not a single outbreak of fish poisoning was known to occur 
as a result of eating these fishes. Since the year 1944 scores of outbreaks 
have resulted from eating Line Island fishes. Some of these outbreaks 
have been reported by Lee and Pang.‘ 

As a direct result of these epidemic unfavorable publicity has de- 
veloped regarding Line Island fishes. Species such as red snapper (Lut- 
janus gibbus, L. vaigiensis, L. bohar), manini (Acanthurus triostegus), 
grouper (Epinephelus spp.), seabass (Variola loutt), ulua (Caranx 
spp.) and others, are no longer permitted to be imported from the Line 
Islands and sold in the Territory of Hawai. A situation such as this 
results in both fishermen and consumers refusing to have anything to do 
with fishes coming from a poisonous fish zone. 

During the period September 1950 to July 1953, field studies were 
conducted by our organization in the Phoenix, Line, Hawaiian, Maria- 
nas, Eastern and Western Carolines, Johnston, Okinawa, Japan, Gala- 
pagos, Cocos, La Plata Islands, the Gulf of California and Panama Bay. 
Studies thus far indicate that the poisonous fish population of the trop- 
ical Pacific is much larger than was formerly believed. ‘Toxic species 
have been found to occur in the Pacific from the Galapagos Islands to 
the Philippines and Okinawa, and from Midway to the Society Islands. 
The survey at Canton demonstrated that about 27 percent of the reef 
fishes were toxic. The survey at Johnston Island indicated that about 
75 percent of the species tested were poisonous. Once an area has estab- 
lished a reputation it is very difficult to change public opinion. As 


POISONOUS FISHES 323 


new fishing grounds are entered and the spectrum of food fishes 
broadened, public acceptance will be one of the factors determining the 
success of the venture. A few epidemics can have disastrous effects in a 
struggling industry, resulting in enormous financial losses and wanton 
waste of valuable fisheries resources. With the present trends in world 
population and food supply we can ill afford waste of any food resource 
and particularly those supplying protein. 


RESULTS OF SURVEY STUDIES 

The following report is based upon the field investigation pre- 
viously mentioned. ‘Table I consists of a compilation of families of 
fishes which have been incriminated in human intoxications, animal 
feeding and inoculation tests. This tabulation was made from 574 case 
histories and technical reports. Cases resulting from ordinary bacterial 
food intoxications were not included. In addition, approximately an- 
other five hundred reports were received that were concerned with more 
general aspects of poisonous marine organisms. 

Many persons have the erroneous idea that poisonous fishes are 
restricted to “trash fishes’, those species which would be generally un- 
acceptable as food for humans, but such is not the case. Perusal of 
Table I will reveal that the phylogenetic spread is remarkably broad. 
Families marked with an asterisk indicate those groups which are gen- 
erally considered to be of commercial importance by various Pacific 
peoples. Some of the families listed are fresh-water, European, Asiatic 
or American, but the bulk are Pacific marine fishes. The list obviously 
fails to consider a number of important factors, viz., geographical lo- 
cality, ecological biotope, maturity of the fish, and season of the year. 
Hence, because a family is listed in this table it does not mean that any 
or all of the members of that family are poisonous throughout their 
geographic range. 

The problem of recognizing a poisonous plectognath is a relatively 
simple one, since most of the members of this order adhere to a fairly 
consistent morphological pattern. Numerous toxicological surveys and 
case reports by Japanese, Australian and American scientists clearly in- 
dicate that most plectognaths are to be regarded with suspicion until 
proven otherwise.* However, the identification of poisonous non-plec- 
tognath fishes presents some very real problems because of a number of 
unique factors, viz.: (1) Apparently, under the proper environmental 

*In Japan and many of the other Oriental nations poisonous puffers are routinely eaten 
and considered a delicacy. The fishes are prepared in a special manner in order to remove 
the poison and thus make them safe for human consumption. However, in spite of these pre- 
cautions, the Japanese Government reports more than 125 deaths a year resulting from the 
eating of these fishes. During the 1l-year period from 1927 to 1937 puffer poisoning accounted 


for 44 percent of the total food poisonings in Japan and was listed as their greatest single 
eause of fatal food intoxication. 


324 EIGHTH PACIFIC SCIENCE CONGRESS 


conditions, any fish-like vertebrate is capable of developing (concentrat- 
ing or metabolizing—which?) ichthyosarcotoxins which can be lethal to 
man. (2) Poisonous fishes are widely distributed throughout the torrid 
zone, and some species are known to occur in temperate and arctic 
waters. (3) A fish that is a valuable commercial species in one area 
may be poisonous to humans in another locality. Hence, conclusions 
derived from an epidemiological survey in one area may have little or 
no bearing upon the incidence or identification of poisonous fishes else- 
where. Distances of even a few miles may entirely alter the epidemiolog- 
ical picture. (4) The problem is not a static one. Fish species which 
were once edible and commercially valuable species have within the 
last ten years become poisonous. The situation which has occurred at 
Line, Johnston and Midway Islands may be cited as classical examples. 
There are no valid statistical data whether the over-all incidence of fish 
poisoning is probably on the increase. (5) There is no correlation be- 
tween the incidence of toxicity and season of the year in most species. 
Instances of intoxication commonly occur throughout every season of the 
year. (6) There is no simple field test whereby a toxic fish can be dis- 
tinguished from an edible one. A poisonous fish appears in form and 
action no different than a non-toxic fish. 

The question of why a fish becomes poisonous is a difficult one to 
answer. Numerous theories have been propounded, but few of them 
harmonize with the field observations. The reader is referred to the 
works of Gudger,® Hiyama * and Halstead * for a more complete review 
of these theories. ‘There is no single explanation that will satisfy the 
entire picture. 

Recent studies indicate that ichthyosarcotoxins evolve from a num- 
ber of different sources and through the interplay of a variety of phy- 
siological processes. Hence the term ‘ichthyosarcotoxism’ is an all-em- 
bracing one in which are included a number of different and distinct 
clinical entities. This is indicated by the symptomatology of humans 
resulting, for example,* from the European barbel (Barbus barbus 
[Linnaeus]), the Pacific puffer (Arothron hispidus [Linnaeus]), the 
Greenland shark (Somniosus microcephalus [Bloch and Schneider]) , 
the bluefin tuna (Thunnus thynnus [Linnaeus]), the moray eel (Gym- 
nothorax flavimarginatus [Ruppell]), and red snapper (Lutjanus vai- 
giensis [Quoy and Gaimard]), are quite distinct. Nothing is known re- 
garding the origin of the poisons found in fresh-water fishes, such as the 
barbel, nor in sharks. The histamine-like poisons found in scombroid 
fishes (tuna, bonito, mackerel, etc.) are believed to be tissue break- 
down products, possibly the result of bacterial action. Such fishes as the 


* The fishes listed are representative cf various groups of poisonous fishes which are capable 
of producing different types of intoxications. 


POISONOUS FISHES 3825 


puffer, moray eel and red snapper are believed to become poisonous 
because of their eating habits. 

The acquisition of poisonous properties by a fish is thought to be 
derived as a result of herbivorous fishes feeding on poisonous marine 
algae. Carnivorous fishes would become poisonous by feeding on poi- 
sonous herbivores. Controlled laboratory feeding studies have demon- 
strated that at least one species, Leptocottus armatus Girard, the Cal- 
ifornia staghorn sculpin, has the ability to feed on poisonous fish flesh 
and harbor the poison in various tissues of its body with no apparent 
alteration in its behavior. Studies are now in progress on this particular 
phase of the program and will be reported at a later date. This food 
chain theory has been presented in greater detail in our “Survey of the 
poisonous fishes of the Phoenix Islands.” * 

Ichthyosarcotoxism in man is frequently confused with various 
types of bacterial food intoxications. True fish poisoning is in no way 
related to putrefactive processes, hence the state of freshness of the fish 
has no bearing on the production nor the potency of the poison.* ‘The 
chemical nature of these poisons, exclusive of puffer poison, are un- 
known. Some fish poisons appear to. exert a variety of physiological 
effects which represent the combined action of the different compo- 
nents. Many of the symptoms resemble those produced by such com- 
pounds as aconitine, muscarine and curare. Many of the scombroid 
(tuna-like) fishes produce rather violent histamine-like reactions, which 
appear to be dependent on the freshness of the fish. On the other hand 
some of the skipjacks contain neurotoxins which are frequently present 
in freshly caught specimens. 

Japanese scientists have studied tetraodon toxin or puffer toxin in 
great detail. Tetraodon toxin has been assigned the provisiona! formula 
of C,,H,,NO,,. It has been isolated as a white hygroscopic powder 
soluble in water and insoluble in the ordinary organic solvents. It is 
neither a protein, an alkaloid, nor a protamine. ‘The exact chemical 
nature and relationship of other ichthyosarcotoxins have not been stu- 
died to date. All fish poisons, however, are water soluble and relatively 
heat stable. Ordinary cooking procedures do not destroy or appreciably 
alter the potency of the poison. 


CLINICAL CHARACTERISTICS 
Since the Pacific Science Congress is primarily concerned with 
Pacific research, the discussion of the clinical aspects of ichthyosarco- 
toxism is limited to the four clinical types of ichthyosarcotoxism com- 
monly recorded for the Pacific area. 
* The only exception to this statement is in the case of scombroid poisoning which results 


from eating inadequately preserved fishes. However, the symptoms are quite different from 
ordinary. types of bacterial food poisoning. 


326 EIGHTH PACIFIC SCIENCE CONGRESS 


]. Tetraodon (Puffer) poisoning: The causative organism is a 
puffer, one of the members of the suborder Tetraodontoidea. The 
symptoms commonly noted are in time frequency numbness of the lips, 
tongue, tips of fingers and toes, which usually develops within 30 minutes 
after the ingestion of the toxin. This is followed by nausea, vomiting, 
headache, dizziness and extreme weakness. Power of speech becomes 
impaired and dyspnea is marked. Within two hours as a rule, the 
patient suffers complete paralysis with muscles relaxed, body limp, and 
inability to speak although conscious. Just prior to death the patient 
lapses into unconsciousness. Death generally occurs in severe cases with- 
in 1 to 24 hours as a result of respiratory paralysis. Mortality rate is 
estimated to be about 60 per cent. Prognosis is considered to be good 
if the patient survives the first 24 hours. 

2. Gymnothorax (Moray eel) poisoning: ‘The causative source is 
a member of the genus Gymnothorax. Symptoms of tingling and numb- 
ness about the lips, tongue, hands and feet usually develop within 20 
minutes to 7 or 8 hours after ingestion of the toxin. Nausea, vomiting, 
laryngeal spasm, aphonia, excessive mucus production, foaming at the 
mouth, injection of the conjunctiva, paralysis of the respiratory muscles, 
motor incoordination, violent clonic and tonic convulsions, abnormal 
deep and superficial reflexes and coma follow in rapid sequence. The 
mortality rate is estimated to be about 10 per cent. 

3. Ciguatera: Numerous species of marine fishes are capable of 
causing this type of poisoning. Tingling followed by numbness usually 
develops almost immediately or within a period of 30 hours after in- 
gestion of the toxin. Nausea, vomiting, diarrhea and abdominal pain 
are present in about 75 per cent of the cases. Joint aches, malaise, chills, 
fever, prostration, headache, profuse sweating, pruritus, metallic taste, 
generalized motor incoordination, muscular weakness, and myalgia are 
common. Sensory disturbances are present in most cases, hot objects 
are interpreted as feeling cold and cold objects as hot or like “electric 
shock” in typical complaints. Convulsions and severe paralyses are less 
common. ‘The mortality rate is comparatively low, estimated to be about 
2 to 3 per cent, and recovery from severe intoxication is very slow, some- 
times taking weeks or months to recover completely from the weakness 
and myalgia. 

4. Scombroid poisoning: Members of the genera Euthynnus and 
Katsuwonus are common offenders. In rare instances these fishes may 
produce symptoms typical of the ciguatera type of fish poisoning, but 
more frequently the clinical characteristics are typical of a violent his- 
tamin-like reaction. It is the only form of ichthyosarcotoxism known 
in which inadequate preservation or freshness of the fish appears to be 


POISONOUS FISHES 327 


a factor in the production of the poison. The symptoms generally de- 
velop within a few minutes after ingesting the fish and consist of nausea, 
vomiting, redness and flushing of the face, engorgement of the soft tis- 
sues of the eyes, swelling and cyanosis of the lips, tongue and gums, 
giant urticaria, severe itching, headache and respiratory distress. ‘The 
victim usually recovers within eight to twelve hours. ‘The few bacte- 
riological analyses of the fish flesh for human pathogens have been nega- 
tive. Moreover, the toxin appears to be water soluble and is not de- 
stroyed by ordinary cooking procedures. The problem of scombroid 
poisoning has been discussed in greater detail elsewhere.° 


“TREATMENT 


There is no known specific antidote at the present time. An at- 
tack of fish poisoning does not impart immunity. ‘The treatment is 
purely symptomatic. Gastric lavage and catharsis should be instituted 
at the earliest possible time. Intravenous 10 per cent calcium gluconate 
in many instances has given prompt relief while in others it has been 
ineffective. Victims suffering from moray eel poisoning appear to be 
particularly susceptible to violent convulsions and may present dif- 
ficult nursing problems. Since the convulsions are precipitated by noise, 
rest, quiet and sedation are essential. Paraldehyde and drop ether have 
been reported to be the drugs of choice in controlling the convulsions. 
Coramine or one of the other respiratory stimulants are advisable in 
cases of respiratory depression. Excessive mucus production in the 
buccal cavity is treated by aspiration and constant turning of the 
patient. Atropine has been found to make the mucus more viscid and 
difficult to aspirate, and is not recommended. If laryngeal spasm is 
present, intubation and tracheotomy may be necessary. Nasal oxygen 
and intravenous fluids supplemented with parenteral vitamins are usual- 
ly beneficial. If the pain is severe, opiates will probably be required. 
Morphine given in small divided doses has been recommended. Cool 
showers have been found to be effective in relieving the severe itching. 
Fluids given to patients suffering from the paradoxical sensory disturb- 
ance should be warmed. Vitamin B complex supplements are advisable. 


SUMMARY 


he expansion of commercial fishing interests and the utilization 
of various species of shore fishes in the tropical Pacific impose upon 
fisheries and public health organizations an urgent solution to the prob- 
lem of poisonous fishes. Poisonous fishes are widely distributed through- 
out the torrid zone, but some species occur in temperate and arctic 
waters. Poisonous fishes are distributed throughout the entire phylo- 


O28 EIGHTH PACIFIC SCIENCE CONGRESS 


genctic series of fish-like chordates, including cyclostones, elasmobranchs 
and numerous groups of true fishes. Edible and commercially valuable 
species in one locality may prove violently poisonous in another area. 
The pharmacological and chemical properties of most ichthyosarco- 
toxins are unknown. ‘The poisons are water soluble and are not de- 
stroyed by ordinary cooking procedures. Bacteria are not involved in 
the production of the poison. Ichthyosarcotoxism or fish poisoning ap- 
pears in the form of different clinical entities. Four clinical types of 
ichthyosarcotoxism typified by various neurological and gastrointestinal 
symptoms are known to be endemic to the Pacific area: ‘Tetraodon, Gym- 
nothorax, Ciguatera and Scombroid poisoning. ‘The interrelationship of 
the various poisons involved is not understood. The treatment of fish 
poisoning is largely symptomatic. Research is urgently needed on the 
distribution, biology, ecology and systematics of reef fishes. “he prob- 
lem of poisonous fishes and fish poisoning will become of increasing 
economic and public health importance in the Pacific area in the years 
to come. 


ACKNOWLEDGMENT 


The author takes pleasure in acknowledging the many helpful sug- 
gestions and kindly constructive criticism received from Dr. K. F. Meyer 
in the preparation of this manuscript. 


LITERATURE CITED 


1. PALMER, F. D. Personal communication. April 11, 1958. 

2. Ross, S. G. Preliminary report on fish poisoning at Fanning Island. (Cen- 
tral Pacific). Med. Jour. Australia, 2 (21): 617-621, (Nov. 22) 1947. 

3. Brock, V. Personal correspondence. June 10, 1953. 

4, Leg, R. K. and H. Q. PANG. Ichthyotoxism—fish poisoning. Amer. Jour. 
Trop. Med., 25 (8): 281-285, 1945. 

5. GUDGER, E. W. Poisonous fishes and fish poisonings, with special reference 
to Ciguatera in the West Indies. Amer. Jour. Trop. Med., 10 (1): 
43-55, (Jan.) 1980. 

6. Hiyama, Y. Poisonous fishes of the South Seas. U.S. Fish and Wildlife 
Serv., Spec. Sci. Rep., Fish. 25: 1-188, 1950. 

7. HALSTEAD, B. W. Ichthyotoxism—a neglected medical problem. Med. Arts 
and Sew., 5 (4): 1-7, 1951. 

Some general considerations of the problem of poisonous fishes 
and ichthyosarcotoxism. Copeia, (1): 31-38, 1953. 

8. HALSTEAD, B. W. and N. C. BUNKER. A survey of the poisonous fishes of 
the Phoenix Islands. Copeia (in press). 

9. HALSTEAD, B. W. A note regarding the toxicity of the fishes of the genus 
Euthynnus, the black skipjacks. Calif. Fish and Game (in press). 


POISONOUS FISHES 


“ATWUABY SIG? UIGIIM VIXO} aq 0} pdjJIOdel AjIPI[EA DIuIOUOXE}, e[qeUOI4sendD Jo satoads JO JaqUINU 93} Sd}VOIPUL SIseyjUCIBd UL IaqUINN es 
“A[TULBZ SIG} UIGIIM DIXO} eq 0} pazIOder satoads Jo AsquINU day} So}JOIPUI sSISAayJUSIed yNOYWIM AIqUINAT » 

‘sojdoad oytoeg 0} a0UeIOdUIL [VlOAaWIUIOD JO PpatapIsUOD A[[BIaUes salrUIeT } 
spuezsa'y 


(T) 


(Z) 
(1) 
(1) 


(9) 
(3) 


N 


ca 


VO SHAH SHOHYHAMONAYAANL ANA 


sieddeus—oepiuelyny 4 

ss01j sulysy—ervpriiydoT 
soysp[leus—oepiiedry 

soyId 1ed—ovplojsosideT 
sieyjnd—oepreydoo0se'] 
SOSSVIM—OPPLIQGe'T 
syoefdiys—ovpiuomnsyey 
Syleys [elayoeul—oeplains] 
soysy[ortinbs—oepiijusd0[oH 
Sy1VYSMOI—oeplyouexe}y 
syeoqy[ey—oeprydueyszuie 
S91qo3—oepIiqor 

Yoted LeATIS—oepli1ey 
S]e1eyoeu oyxevus—oepr[Aduies 
SYCQ9[YO1IS—ovpioqso.1e4sexy) 
Spoo—oepripey 
soyid—oeprloosy 
SsolAoyoue—Iepl[neisuy 
speys p1ezzis—oepiuloso10g 
ysy ourdno10d—oepruopoig 
sfeisulys—eoepizyedseq 
syleys puvlusce1y—oepiye[eq 
Sosy] —eepljyuopouraday 
SMOUUIUI—~eeprIulIdsg | 
Sjeteyoeut ystueds—eoepriqhky | 
suldjnos—eepizjo9 4 


Sr 


qe te te ie 


(T) 
(T) 


(g) 
(3) 


(1) 


(g) 


xx (T) 


{ 
\ 


GI40M FHL dO SAITINVY HSIYT SQONOSIOG dO LSI'T 


I Wlavi 


* 


VHA TE ANT HA MN HONE nA TOMA OAN OAH EA 


ban] 


N 


N 


ho 


Tad 


seysy ulydjop—eepiuseydA109 


S[99 Iadu0I—oeplisu0) 
SuULLIeEy—eepiodn[p 
Sioyjnd—oepluly.zeuoyyn 
SV.1OVULYO—oeplLioeullyy 

seysy Alj1044nqg—oeprIyuopoyoeyyD 
soysypueq—eeprjoday 

syreys wWemnbei—oepiluryreyo1eg 
soueduiod—ovpiduei1e) 

Jajjnd poesou-dieys—oeeptiioysesiyyueg 
$}eUose.Ip—oeplulAUOl[e9 
S1epunojy poAojjoT—eepryz0g 
seysyo[poou—oepiuojeg 
Soysypeo}—oepiproyoeryeg 
SoYysy.1033113—oeplisl[egq 
soysyjedwun.14—orprwuojsopny 
soysyyeo vos—orplliy 
—oeeprAjoepoldy 
soysy.do01J—ovpliieuuejuy 

S[9e 1oyeMYso1yJ—oepl]insuy 
SOysy-J[OM—oevpipeyoiyleuy 
Soysyo[Y—oepiron[ vy 
soysyApe[—oepr[nq y 
Soysyjeo—oeplsolouesy 
Su00d.1Nn}sS—oepllosucdly 
Soysyuosdins—oeplinyyueoy 


p 


qo 


EIGHTH PACIFIC SCIENCE CONGRESS 


300 


“A[YOIBY STYR UIATM 97x09 aq 


0} peytodar AjIplyeA olwWoOUCXe, s[qeUOT{sonD JO soloeds JO AequINU dy} SoJedIpUL SIseyzUeIed Ur JequINN 4» 


‘A[LULBF SITY} ULY}IM OLX0} OQ 0} pozyTOder soloeds JO JaqwNnU 9Y} SozBdIPUL SIseyjUSIed ynoyIIM AeqUINHT » 
*‘se[doad oylovg 0} ao0ue,1OdwE [elatemu0ds JO petepisuod A[[eteues soarime7 | 


syeys yeo—ovprurytorpéog 


ysyzyeo3—orplInW 


it 
fi 
{L 


ft 
U 


qn 


| 


= Je 


spueszeT 

a 06 EIST V 01 (= 1X0} e[qeuorysen® 

STs Ce ec) sotoeds d1XO], 

GG rite eet sescesseesseseeess sores o1x0} payodey 

BE tts sesesss goueqodut [eroreuluiod oyloeg jo Sel[iume,7, 

> S[@107, 
(1) I PpoulULteyep JOU sorT[IUWey (g) OE soysyuordtoos—aeprtused.100g 
T S[OPL YSLLoof[—ovprpoue7z, (9) 8 S[OLOyOeUI—oepliquiodg 
T soysypioms—ovpriydry | (3) g S10VOLI—OBPIUIVlIG 
“4 -—oePpIqUOPpOLL T —oepiseydoyeog 
(T) T s1oyovod—oeplIL.siq J, (Z) Gi soysyjo11ed—oeplieog 
G SyIVys punoy YLOOUS—oeplyVls J, (1) S qno1} ‘UOuUlles—eeprluoulles 
v —oeplyyULoeVLL TL, (1) & soyeys—oeprl fey 
T sAVi d11j.e[a—ovptiulpod.10o 7, 1 Sejnyeyeo—ovpiyyueovlig 
v sveunj—ovepiuunyy, | G Soysylosuep—oveplijusoeulog 
(9T) vs Sieyjnd—oepryuopoeryey, | T Soysyyeo [eJULLoO—eeptsojo] 
it S[lejorenbs—eeplinuose.r4a LT, o Iepunojy poso,Y.sl1I—ovplqoouoine[ g 
T soysyprzezi[—eeplqucepoudsg G sforduie,[—eepiuozAuloryeg 
I soysyodid—oepriyyeususg (T) val SoysyyUN1}— oevpI}UOINV.14SO 
a syieys josue—oeovepruryenbs T S}[oWsS—eepLIoulsoO, 
iE Syleys pvoysloumurey—eeprurzsyds G sjoo oyeus—eorepriAyiyoiydg 
L epnoeireq—oeepiueeiAydg | T soysyyeq—eevpr[eyda0003Q 
(6) IE sols1od—orpiiedsg | iE soysy.svy—ovplulxA[ 
G soysyuyeo—oevplinjis iE —oepliAyy 
g soysy yiqqei—eevpiuesig | o sket oj sevoa—oevpryeqorAW 
(9) 96 sosseq—orplueiieg 4 (8) 6T sjeo AVLOU—~ovpluSBIN], 
9 
iE 


oda 


seysy woouljyey—oeprdioog 


(penurzuoD) I AIAVL 


SB[OUI—oepI[O][ 


SOME ASPECTS OF FISHERIES PROBLEMS IN THE 
SOUTH PACIFIC AREA 


By A. H. J. Kroon 


Economic Development, South Pacific Commission 
Noumea, New Caledonia 


Fish plays an important role in the life of most inhabitants of the 
South Pacific area. It is their main source of protein. The Fisheries 
Conference held in 1952 at Noumea under the auspices of the South 
Pacific Commission stressed the importance of fish in the diet and 
pointed out that as land animal protein is not a regular item in the 
diet of the peoples of the region and as in most territories, social and 
economic factors limit the possibility of an early or rapid expansion 
of protein food supplies from livestock, fish is the most accessible and 
also the cheapest source of animal protein. 

In Melanesia, the present consumption of fish is on a lower scale 
than in Micronesia and Polynesia, where the consumption of fish and 
other marine products (algae, molluscs and crustacea) seems rather 
high, though accurate data are not yet available. 

A part of the population of the region, and even a great part, are 
not in a position to obtain fish easily. I am mainly thinking here of the 
impression that there are great untapped resources available. It is felt 
of the other islands fish production is often insufficient to cover the 
needs of the population, chiefly due to seasonal influences. 

The enormous acreage of the South Pacific Ocean leads to the 
impression that there are great untapped resources availabie. It is felt 
that the Pacific Ocean is a region where enormous quantities of valuable 
food are produced, and that we have to do with the problem of the 
“untaken crop.” One may ask if the untaken crop problems such as 
those in the field of fisheries, sago production, timber production and 
so on, are not somewhat over-emphasized in modern times. The un- 
taken crops in the world can only contribute to economic development 
in as far as the harvesting is within economic possibilities. 

Though there are still vast acreages of forests in the world, their 
exploitation is often impracticable for economic reasons. ‘There are a 
number of rubber producing plants in nature, but their harvesting is 
not practical, as it is cheaper to leave those resources “‘unharvested”’ 
and to grow hevea rubber. 


331 


Bon EIGHTH PACIFIC SCIENCE CONGRESS 


Mankind has nearly always passed from the stage of collection, of 
harvesting what was available in nature, to the stage of cultivation; 
from collecting and hunting to growing and raising. 

In fisheries we see the same picture, on the one hand fish catching, 
the harvesting of what is available in nature, and on the other hand 
fish culture, or controlled production. 

The abundance of fish in the Pacific Ocean and the fact that the 
largest ocean in the world furnishes food for only a few million people 
could lead to the idea that there is no need of fish culture in addition 
to fish catching. But reality seems to point in a different direction. It 
is a strange fact that the fish production in the South Pacific area is not 
sufficient to meet the needs of the population. Instead of being a fish 
exporting region the Pacific islands are importing fish. New Guinea’s © 
imports of fish and fish products in 1952 amounted to a quantity of 
more than 1,744,000 Ibs. with a value of nearly fAust.186,000; the 
figures for Fiji are 1,748,000 lbs. with a value of £¥F.154,500; Western 
Samoa 1,280,000 lbs. with the value of £NZ.46,230; American Samoa 
405,000 Ibs. having a value of $47,380. Other territories such as Papua, 
Tonga, New Hebrides, New Caledonia, French Oceania, Gilbert and 
Ellice Islands Colony and Netherlands New Guinea also have an ap- 
preciable import of fish. Although complete figures of fish imports are 
not available, a rough estimate gives a value of £400,000 Sterling per 
year for the region. The available figures indicate furthermore that 
imports are increasing. ‘Thus it seems possible that fish production in 
the region has not kept pace with the increasing population. It was 
stated at the Fisheries Conference that coastal populations sometimes 
abandon fishing and prefer to buy their food, even including fish in tins. 
Especially the deep-sea fishing (for pelagic fishes) seems to be declining. 
The report of the Fisheries Conference refers to: 


“A declining interest among the local populations in the 
conduct of fishing operations at market-fisheries level and some- 
times even at subsistence level.” 


FisH RESOURCES 


The resources within the region can be divided into: 
(a) marine fisheries; 
(b) inland fisheries. 
The marine fisheries are generally divided into: 
(a) coral reef and lagoon resources; 
(b) mangrove and estuarine resources; and 
(c) oceanic resources. 


FISHERIES PROBLEMS IN THE SOUTH PACIFIC AREA BO) 


The inland fisheries can be divided into: 
(a) fish catching in rivers, lakes, swamps and fresh water 
estuaries; 
(b) fish culture in ponds. 


Reef fishing is the main source of fisn supply. The limited reef 
area of some islands and the fact that fish stocks on the reefs are isolated 
within their particular reef systems set a limit to the yield. The Fisheries 
Conference states: 


“In some localities, in the neighbourhood of concentration of 
regional population, these resources appear to have been over-ex- 
ploited and the current harvest is small. These instances include 
reefs in the neighbourhood of Rarotonga (Cook Islands), Pago 
Pago (American Samoa), Papeete (Tahiti), Suva (Fiji), and 
Noumea (New Caledonia) .” 


The rapid rate of population increase in Polynesia and Micronesia 
and the deficiency of the diet in the interior of New Guinea make the 
problem of how to allow for higher levels of fish consumption per head, 
even more acute. Under such conditions it seems not unlikely that this 
reef and lagoon source, already over-exploited in some areas, will be- 
come more and more deficient in relation to the increasing demands 
of the future. 


The mangrove and estuarine resources are believed to be abundant 
and relatively unexploited in New Guinea. ‘The Conference report 
states: 


“It is in mangrove and estuarine areas that the greatest poten- 
tial for pond culture exists, but in New Guinea and large islands 
in Oceania the relatively large tracts of land might be expected, 
with appropriate social and economic change in the lives of the 
people, to make a contribution of animal protein on a scale which 
obviously could not be reached by the smaller islands of the 
region.” 

Oceanic resources: ‘The development of pelagic fisheries in the 
open ocean outside the reefs offers the best opportunity for increased 
fish production, not only for markets within the territories but also 
for export. ‘There are, however, in this field many unsolved problems 
due to lack of knowledge of the pattern and distribution of the prin- 
cipal species in these waters. Stocks in abundance sufficient to carry 
commercial operations have been indicated in equatorial waters north of 
New Guinea and south of the Caroline Islands. The Fisheries Con- 
ference expressed the opinion that most prominent among these re- 


304 EIGHTH PACIFIC SCIENCE CONGRESS 


sources are the tunas, but there are numerous other species of potential 
commercial value, such as flying fish, half beaks and mackerels. 


The fisheries industry on a commercial basis should go together 
with a more differentiated community where a group of fishermen 
could earn their livelihood by catching fish for sale. Such differentiation 
does not exist to any marked degree. ‘The number of fishermen in the 
region who earn their livelihood by fish catching, although not known, 
is very small. Development in that direction requires better processing 
techniques. 


PROCESSING 
The Conference stated: 


“The only methods of processing employed in the region are 
salting, smoking and drying, mostly by crude and primitive tech- 
niques. Only small proportions of fish caught are processed.” 


In the papers submitted to the Fisheries Gonference some valuable 
information on fish processing is supplied. ‘The paper submitted by 
the Australian Delegation based on a survey of native methods of fish 
preservation in New Guinea carried out by Mr. K. W. Anderson of the 
Food and Transport Division, C.S.I.R.O., during April, May and June, 
1950, states that the objects of that survey were: 


“I. To evaluate methods at present in use; 
2. To determine what improved methods might be introduced 
to increase the storage life of the fish and make it available: 
(a) for smoothing out seasonal fluctuations in supply 
(b) for distributing to inland protein deficient com- 
munities.” 


In summarizing their observations, they state: 

“As far as could be ascertained, the sole method for preserva- 
tion of fish used throughout the territory was a simple, crude dry- 
ing over a hot fire.” 

The paper gives full information as follows:— 

“The extent to which the fish is dried varies somewhat with- 
in uncontrolled limits, but can broadly be classified into two 
groups:— 

(a) short term, partial drying, with or without prior cleaning of 
the fish, giving a product that is relatively soft, probably has 
moisture content in the range of 40 to 60% and a storage life 
of one to seven days. ‘This is the technique used in the great 
portion of the territory. 


FISHERIES PROBLEMS IN THE SOUTH PACIFIC AREA 335 


(b) a more complete drying of cleaned and split large fish or whole 
uncleaned small fish, down to a moisture content of about 20% 
where it is hard and dark in colour, but, when protected from 
attack by insects, probably has an indefinite storage life even 
under tropical conditions. This latter technique seems con- 
fined to the Sepik River area.” 


The same paper states that:— 

“It is clear that in the absence of controllable pond fisheries 
the preservation of coastal fish as a means of smoothing out seasonal 
fluctuations in supply and of distributing inland to protein de- 
ficient communities with a poor system of communication will 
initially best be done by the traditional process of salting, drying 
and smoking in suitable combination, rather than by adopting 
elaborate processes such as freezing, canning and controlled 
smoking.” 

The importance of salt in the improvement of the existing primitive 
processing techniques was emphasized by the Australian Delegation, 
who stated that this salt will either have to be imported from Australia 
or produced by setting up a plant for its recovery from sea water within 
the territory itself. 


Lack of cheap salt and a small market for preserved fish are partly 
responsible for slow development in Netherlands New Guinea. 


Controllable pond fisheries as a means of smoothing out seasonal 
fluctuations in supply has already been mentioned. The culture of fish 
in ponds is not unknown to the Polynesian and ponds seem even to 
belong to the Indonesian-Polynesian cultural sphere. Fish cultivated 
are the milk fish (Tuamoto Archipelago, Nauru Island, the Gilbert 
Islands, the Lau Group), whilst the carp (Cyprinus carpis L.) was in- 
troduced into Fiji fifteen years ago. ‘The Fiji Government initiated 
pond culture experimentally in 1950 and yields of fish reached 1200 Ibs. 
per acre per year. However, since sewage had been run into the ponds 
to promote growth of algae, the Fijians would not eat the fish. In 
other territories also there is a growing interest in pond culture. It is 
unknown to what extent fish culture in ponds would contribute to a 
higher fish production in the region and to a smoothing out of seasonal 
influences. ae ae 

The lack of information and data on Pacific island fisheries in 
general was plainly shown and expressed in the papers submitted to the 
Fisheries Conference. One of the recommendations of the Conference 


Was: 


336 EIGHTH PACIFIC SCIENCE CONGRESS 


“That periodical and regular compilation and assessment of 
quantitative and qualitative information on the fishing industries 
be recognized as essential prerequisites to regional development.” 
It is still not quite clear what course a short term development in 

the field of fisheries should take. The necessary basic survey and assess- 


ment of the fisheries resources and potentialities of the region is still 
most essential and urgent. 


At its Twelfth Session the South Pacific Commission authorized the 
appointment of a Fisheries expert for a term of three years, to assist 
and stimulate fisheries investigation and development in the region, in- 
cluding inland fisheries and pond culture. It is hoped that these ac- 
tivities will contribute to an absolute increase in production and to in- 
creased production per head, permitting an improvement of the nutri- 
tional value of the islanders’ diet. 


November 19, 1953 


SYMPOSIUM ON MARINE PROVINCES IN THE INDO-PACIFIC 
REGION 


(SPONSORED BY UNESCO) 


Convener: Mr. A. W. B. Powext, Auckland Institute and Museum, 
Auckland, New Zealand. 
Secretary: Mr. INoceNcio A. RoNQUILLO, Bureau of Fisheries, Manila. 


AWARDEES OF THE UNESCO SUBVENTION 


Name Address Nationality 


1. BRUUN, ANTON Fr. Deputy Keeper Danish 
University Zoological Museum 
Copenhagen K—Denmark 
2. CHU, TSU-YAO Meteorologist, in charge of Re- Chinese 
search Section 
Taiwan Weather Bureau 
64 Kong Yuen Road 
Taipei, Taiwan, China 
3. CLEMENS, WILBERT A. Director Canadian 
Institutes of Oceanography 
and Fisheries 
University of British Columbia 
Vancouver, Canada 
4, HARDENBERG, J. D. F. Head, Laboratory for Investi- Dutch 
gation of the Sea 
Passar Ykan, Djakarta 
Indonesia 
5. HipaKa, Kosi Professor Japanese 
Geophysical Institute 
Tokyo University 
Tokyo, Japan 
6. PANIKK4R, N. KesAvA Chief, Central Marine Indian 
Fisheries Research Station 
Mandapam Camp, South India 
7. POWELL, A. W. B. Assistant Director New Zealander 
Auckland Institute & Museum 
P. O. Box 9027, Newmarket 
Auckland, S. E. 1. 
New Zealand 
8. SERENE, RAOUL R. Director, Institut French 
Oceanographique 
Nhatrang, Viet-Nam 


337 


308 EIGHTH PACIFIC SCIENCE CONGRESS 


9. SERVENTY, D. L. Senior Research Officer Australian 
Wildlife Survey Section 
C.S.1.R.O., Arundale Hall 
1 Museum St., Perth 
Western Australia 
10. THOMPSON, THOMAS G. Professor of Oceanography American 
University of Washington 
Seattle 5, Washington 
UC S.A. 


PROCEEDINGS 


The Symposium was sponsored by UNESCO, organized and con- 
vened by Mr. Powell, the Assistant Director of the Auckland Institute 
and Museum, Auckland, New Zealand. It was alloted one whole day 
for presentation. ‘There was a large attendance drawn from Zoology, 
Geology and Botany as well as Oceanography. ‘The rather full pro- 
gramme of fiiteen papers was accommodated by mimeographing all pa- 
pers in full and distributing copies the day before the meeting. ‘his 
avoided tedious full length reading of contributions and allowed ade- 
quate time for discussion after each paper and a reasonable amount of 
time at the end of the session for general consideration of the topic. 

The symposium convened at 9:00 A.M. with Mr. Powell opening 
the convention by speaking briefly on the manner in which the sym- 
posium was to be conducted, the number of minutes to be alloted to 
each paper, and the scope of the discussions. 

The papers were grouped into three categories, namely deep sea, 
distribution for general areas, and distribution for particular areas. 
The subjects represented by the fifteen papers embraced algae, plankton, 
holothurians, bryozoa, mollusca, fishes, and birds. 


The first paper read. was that of Dr. W. A. Gosline, Hawaii, 
entitled “The Nature and Evolution of the Hawaiian Inshore Fish 
Fauna.” The paper dealt with the Hawaiian provinces and inshore 
fisheries in the upper 200 meters of water. He endorsed the Schilders’ 
Hawaiian Province, into which he advocated including Midway and 
Line Islands. The geography, water temperature, and current systems 
of the Hawaiian Chain in relation to the evolution and endemism of 
Hawaiian fishes were discussed. 

Mr. Powell’s paper, “Marine Provinces of the Indo-West Pacific,” 
outlined the several published propositions for subdividing the area. 
It was suggested that the 18 named provinces for the Indo-West Pacific 
advocated by F. A. and M. Schilder (1939) were in excess of practical 
requirements. It was also suggested that this nomenclature applied 
mainly to shallow water faunas and that consideration of both deep 


PROCEEDINGS 339 


sea and pelagic faunas would probably require separate consideration. 
Both these points were affirmed by other contributions and endorsed 
by several speakers. “Iwo slides and a full page map were presented. 
A question in methodology was brought up but it was suggested that 
it be taken up in the afternoon discussions. 


The next paper, “An Outline of the Distribution of Pacific Deep- 
Sea Animals”, was presented by Dr. Anton Fr. Bruun, Denmark. It 
covered the deep areas at and below 2,000 meters and described the 
Pacific Abyssal and abysso-pelagic fauna as part of a cosmopolitan deep 
sea fauna. The suggested subdivisions of the deep sea faunas were 
(1) Pacific and (2) Atlantic-Indian Ocean from which an Antarctic 
region may be separable. Slides showing specimens of deep-sea species 
accompanied the presentation of the paper. 


Dr. Rolf L. Bolin, California, on “Deep-Water Biological Provinces 
of the Indo-Pacific’, based his classification on the Archibenthic fish 
family, Macrouridae, which occur within a 200—2,000 meter range. It 
discussed myctophids and bathymetric fishes as indicators of biological 
provinces in the Indo-Pacific. Dr. Bolin’s suggested provinces were 
fewer, of larger scope, and were obviously not delimited by the same 
factors that gave rise to the shallow-water provinces. ‘The author spe- 
culated on the existence of other marine biological provinces as indi- 
cated by fishes and other marine fauna, but suggested more compre- 
hensive and detailed investigations before drawing conclusions. ‘There 
was agreement, however, in the recognition of a Hawaiian Province. 


Professor Martin W. Johnson of Scripps Institution of Oceanography, 
in “Some Outlines of Piankton Concentration in the Eastern and Tro- 
pical Pacific’, dealt with surveys involving marine plankton distribution 
along this west coast of North America and in some parts of the tropical 
Pacific. “The surveys were made by different scientific institutions in 
connection with the California Cooperative Sardine Research Program. 
The discussion related to the constitution of the plankton found in 
western Indonesia and also that found near the California coast. Dis- 
cussion follows: 


Dr. HARDENBERG: May I ask whether you can tell us about the com- 
position of the plankton? 

Dr. JoHNson: ‘They are mostly edible diatoms, Rhizosolenia, and are 
substantially not dinolagellates or watery planktons as Salpa. 

Dr. HARDENBERG: In Western Indonesia, there are few diatoms in the 
plankton. They are mostly Peridinium and watery organisms. 

Dr. JoHNSON: We need more work on plankton. We should give em- 
phasis to knowing what we are working on. 


340 EIGHTH PACIFIC SCIENCE CONGRESS 


Dr. HarpENBERG: It is hard to study our plankton due to the great 
abundance of floating water organisms. 

Dr. Jounson: The plankton is not worked out seasonally. It is not 
such in watery plankton. However, near the California Coast, in 
spring, there is a large volume of plankton. 


Drs. Yaichiro Okada and Shizuo Mawatari of Japan, in their paper 
entitled “Distributional Provinces of Marine Bryozoa in the Indo-Pa- 
cific Region”, presented a preliminary report on the distribution of the 
Indo-Pacific bryozoa, tracing geographical isolation and the oceano- 
graphical factors responsible for the formation of Bryozoan Provinces 
in the Indo-Pacific region. They recognize three subregions, the In- 
dian, the Western Pacific and the Central and Eastern Pacific with eight 
provinces: (1) Ethiopian and (2) Indian for the Indian Subregion, 
(3) Malayan, (4) Chinese and (5) Papuan for the Western Pacific 
Subregion, and (6) Hawaiian, (7) Polynesian and (8) Mexican for 
the Central and Eastern Pacific Subregion. Discussion follows: 

Mr. Domantay: In your study of Japanese Bryozoans have you come 

across species of Bowersbankia? 

Dr. Oxapa: Yes, there are four species found in Japan but these are 
not mentioned in this paper. 


“The Distribution of Polychaetes within the Indo-Pacific Region” 
by Mr. G. A. Knox of the Canterbury University College, New Zealand, 
is the first distributional survey of this group for the area. ‘The poly- 
chaetes inhabiting the shelves of 24 regions in the Indo-Pacific area 
were dealt with. Description of the species in the text was supple- 
mented by tables on the distribution and number of species found in 
each of the 24 regions. Extensive tables are given, an analysis of which 
points to recognition of the following faunal areas:—(1) Indian, with 
possibly a separate Arabian Sea region, (2) Malayan, (3) Philippine, 
including South China Sea, (4) Southern Japanese, (5) Northern Jap- 
anese, (6) Hawaiian, (7) Tropical Pacific. This paper was read by 
Mr. Powell. 


Dr. Leonard P. Schultz in his paper, “A New Approach to the Dis- 
tribution of Fishes in the Indo-West-Pacific Area” presented a grouping 
of. marine ecological habitats. It advanced the concept that the so- 
called species as named by Zoogeographers are actually composed of two 
or more species, subspecies or races, each more or less inhabiting sub- 
faunal areas. He considered that too much reliance has been placed 
upon check lists prepared by ichthyologists with only a local faunal 
concept and that the nomenclature used often stressed greater differ- 
ences between faunas actually occurs zoologically. He advocates com- 


PROCEEDINGS = a41 


prehensive revisional work on generic, specific, and subspecific levels. 

The discussion related to the spawning periods of marine organisms 

in different areas. It was stated to be all the year round with certain 

species in tropical Djakarta, March the month for most prevalent spawn- 
ing of fishes at Palmyra and March, April and May for the Marshall 

Islands. Comments and discussion follow: 

Dr. HarvenBerc: In tropical Djakarta, most species spawn the whole 
year round. We found two types that breed the whole year round 
and another type that spawns during the fall and spring only. Are 
your Carangids more or less related to our species? 

Dr. ScHULTz: Yes. 


Dr. Gostine: I found that the check list and list of species of fishes 
of Guam could not be used in the case of the Hawaiian fishes. I 
aiso found that the Hawaiian Islands are not coralline, that coral 
reefs there are very small, with almost no atoll present, and that 
those parts with cooler waters have different fishes. 


Dr. ScHuLTz: You just have to ignore the list of fishes of Guam. Only 
50% of it is correct. In one case, 35 species were listed as new 
but the listing were later found not valid, and this is probably true 
of other species. In the Samarano, if the ichthyologist cannot de- 
scribe these, he classifies them as new, as was found in the case of 
parrot fishes. 


Dr. HALSTEAD: I made various studies of coral atolls at various times 
of the year. In Palmyra I found that March is very definitely the 
month when the fishes are most active as far as reproduction is 
concerned. 


Dr. Jonson: In the Marshall Islands, March, April and May show 
very heavy spawning in plankton samples. It is probably so in 
other places. 


After the discussion on Dr. Schultz’s paper, Mr. Powell announced 
a recess for refreshments. 


The after-recess session began at 11:30. Only one paper, “The 
Zoogeographical Distribution of the Indo-Pacific Littoral Holothurio- 
idea”, by Mr. Jose S. Domantay of the Philippine Bureau of Fisheries, 
was read. The paper covered the study of the littoral forms of Holo- 
thurioidea found at depths not exceeding 50 fathoms. It proposed the 
zoogeographical division of the Indo-Pacific Ocean based on the Holo- 
thurian fauna, into the following ten provinces: (1) North Pacific 
(2) South Pacific (3) East Pacific (4) West Pacific (5) Northwest 
Pacific (6) Southwest Pacific (7) Northeast Pacific (8) Southeast Pa- 
cific (9) Central Pacific and (10) Indian Ocean. ‘These areas for the 


342 EIGHTH PACIFIC SCIENCE CONGRESS 


most part fall readily into the named scheme of the Schilder’s. He also 
advanced opinions on the causes for the unequal distribution of the 
North and South Pacific Holothurian fauna. The number of the dif- 
ferent species of the various provinces were tabulated and presented in 
graphs and charts. 

The session adjourned for lunch at about midday. 


When the afternoon session resumed at 2:00 P.M. Mr. Powell an- 
nounced that there were six more papers to be presented. He said that 
aside from the discussion after each paper, there would be a general 
discussion after all the papers had been read. Comments and sugges- 
tions would be entertained. Mr. Powell then called upon Dr. Har- 
denberg to read his paper. 


Dr. Hardenberg’s paper entitled ‘Distribution of Marine Fishes in 
South East Asian Waters” presented the general range of distribution 
of tropical marine fish fauna of South East Asian seas. The complex 
pattern of the occurrence of fishes in different regions was discussed. 
It mentioned the division of the seas into regions, and the factors im- 
portant to the ecology of the marine fauna. Various species were cited 
for particular fish fauna of several regions with common ecological 
characteristics. 

The discussion was mostly concerned with the location of the eggs 
and post-larval stages of parrot fishes. 

Dr. Scuuttz: I have been troubled for years about parrot fishes and 
how their eggs look like. Have you seen some eggs of these fishes? 

Dr. HarpvENBERG: No. I saw only ovaries with small eggs. I have seen 
a parrot fish in the open sea. 

Dr. ScHuttz: We are troubled as to the identity of pelagic eggs at 
Bikini Atoll. They looked like anchovies but these fish are not 
found there. We even found certain fish eggs that looked like an- 
chovy eggs. 

Dr. Jounson: I found fish eggs 20 miles from the nearest land. 

Dr. Scuuttz: What is the smallest parrot fish you have found? 

Dr. HARvENBERG: ‘The smallest fish I have found is about 20 mm. 
long. I observed the same condition in Caesio. ‘The smallest I 
have seen is about 5 to 6 cm. long. I have seen Caesio spawn at 
the edge of coral reefs and the larvae get away after spawning. 


Dr. D. L. Serventy in “An Analysis of the Pelagic Bird Faunas of the 
Indo-Pacific Oceans”, working on taxonomy in relation to distribution 
patterns, considered that the whole of the Indian Ocean and the west- 
ern and central part of the Pacific represented one homogeneous fauna 
consisting of long-established descendants of the ‘Tethyan fauna of the 


PROCEEDINGS 343 


Tertiary. He did, however, recognize a sub-speciation centre in the 
region of the Kermadec Islands. It interpreted the known taxonomic 
and zoo-geographical facts. Factors regulating the ebb and flow of 
species movement were analyzed. Faunal elements in the Indo-Pacific 
region were presented with enumeration of bird species with their 
habitat and migration. The paper was illustrated with three maps. 

Dr. Murphy referred to this paper as an admirable review in which the 

author reached a series of conclusions in harmony with the known geo- 

logical history and without resource to hypothetical land gaps or land 
bridges. Discussion follows: 

Dr. Mvurpuy: Dr. Serventy’s study is more admirable than that review 
it indicates. He found the breeding grounds of the sea bird spe- 
cies not familiar to the audience. He built up a series of conclu- 
sions which then coincides and harmonizes with the groups of sea 
birds and the geological history. He needed no land gaps and land 
bridges. 

Mr. Tuss: I would like to ask about the flying habits of the frigate 
birds. I have observed those that circle up to the point of invi- 
sibility and, when very high, cross the country where they roost. 
Boobies are also seen from land when nesting. ‘They fly direct to 
waters near the nest. 

Dr. SrrvENTy: Iam glad to know that frigate birds cross land and that 
they fly far from roosting islands. I have not seen this in the lite- 
rature. 

Dr. HARDENBERG: I wish to confirm the statement of Mr. Tubb con- 
cerning the flying habits of the frigate birds. 

Dr. WoostER: When we were opposite Cape Monticino, a bird stayed 
on our ship for three hours when we were about 1,500 miles from 
land. I would like to know if petrels form colonies. 

Dr. SERVENTy: ‘There are big scale conditions where petrels form co- 
lonies, that is, from South America to California. There in a ran- 
dom collection of birds we could recognize the New Zealand birds, 
and other sea birds were presented. ‘There is no evidence, how- 
ever, of migration of sea birds in historic times. 


Dr. E. Yale Dawson’s paper, “Some Distribution Patterns Repre- 
sented by the Marine Algae of Nhatrang Bay, Vietnam”, was read by 
Dr. Maxwell S. Doty. It presented a brief picture of the present knowl- 
edge of the marine algal flora of Indo-China. Results of the algal 
study undertaken by the author on the distribution of the different 
species and their occurrence were presented. ‘The paper also presented 
two generalities on marine algae of the Indo-Pacific; namely, the out- 
standing deficiency of information about algae not only of the South 


344 EIGHTH PACIFIC SCIENCE CONGRESS 


China Sea but also of the whole Indo-Pacific region, and local varia- 
tions in ecology as the cause for the extreme diversity between algal 
associations of adjoining localities. 


‘The paper, “Some Problems on Marine Biogeographical Micro- 
Provinces Surrounding Japan”, by Tadasige Habe, Tokubei Kuroda, 
and Denzaburo Miyadi was read by Dr. Okada. It points out that in 
southern Japan cold water continental coastal faunal elements often 
survive in bays whereas the adjacent open coast may have a warm wa- 
ter fauna belonging to a different marine province. Stress was made 
on the idea that biogeography based on taxonomic differences is only 
one side of biogeography. A comparison of bay fauna with littoral 
fauna of the open sea, with specific examples of various species, was 
presented. Several authors interpreted the term biogeographic prov- 
inces in the ecological or zonation issue and this led to some discussion. 
The characteristic aspects of marine littoral fauna which bear on bio- 
geographical segmentation of Japanese seas were discussed. 


The paper of R. K. Dell of the Dominion Museum, New Zea- 
land, entitled ‘““The Marine Mollusca of the Kermadec Islands in Rela- 
tion to Molluscan Faunas in the South West Pacific’, came next and 
was read by Dr. Hiatt. It reviewed briefly the literature on the marine 
mollusca of the region and the author’s own findings in his investiga- 
tions of the different species and genera. 


“The Geographical Variation of Early Embryonic Processes in Ma- 
rine Eggs” was read by Dr. Alexander Wolsky, Principal Scientific Of- 
ficer of Unesco in South East Asia. It dealt with the different factors 
affecting the development of marine eggs, and the causes of geographic 
variation in the embryonic processes. Dr. Boschma commented on the 
paper. 

Dr. BoscuMa: I agree with Dr. Wolsky that some species of animals 
found in the North Sea and in the Mediterranean have differences 
in their development. ‘The study of their embryos must be inte- 
resting. 

After this paper had been read, Mr. Powell opened the meeting 
for general discussions. 


Dr. Bruun: We found some Actinians in the Philippine Deep and also 
in the Java ‘Trench. I believe that this form is endemic in the 
trenches. We also found more in the depth of 6,000 meters, which 
cannot differ much from those found in the deep waters of India 
and Japan. As shown by the work of Dr. ZoBell, the bacteria for 
the Philippine Trench die when subjected to a pressure of 800 
atmospheres, while they live at a pressure of 1200 atmospheres. It 


PROCEEDINGS 345 


is possible that the deep sea fauna can be split according to dif- 
ferences in pressure, i.e. variation in pressure at the slopes rather 
than differences in temperature. 


. GostinE: I found that the fishes in the high island are similar to 


those found in the coral reefs and in the low islands. However, 
I found that in high islands with low water temperatures the spe- 
cies of fishes are poorer. 


. ScHULTz: I have noticed the relationship of fishes in the different 


provinces. As the distance gets farther for wide ranging species, 
there is a considerable difference in morphology and color distinc- 
tions. In different fish populations the colors vary widely. For 
example with reference to eels the use of the color for differentia- 
tion is very difficult to apply in the field. 


. PANIKKAR: It is interesting that prawn is marine in the Mediter- 


ranean but is estuarine in India and fresh water in China and 
Japan. ‘They belong to the same species but differ physiologically. 
Another example is Arenicola, which was recently found in the 
Gulf of Bombay. 


. Hratr: I hope that we are not confusing here ecological conditions 


and biological distribution. We may find new arrivals of animals 
in certain localities but we should not discuss these animals im- 
ported by men, i.e., those that had not existed in that locality 
before. 


. Harry: I observed that the faunas in the Atoll area are different 


from those in Hawaii, i.e., where the land shelf drops fast, and that 
similar atolls have similar fishes. 


. Borin: Rough shore and sandy beaches are different. Differences 


in habitat in a biological province are not so important but the 
similarities of fauna in high island and coral atoll are important. 


. PowELL: ‘This symposium stimulates more interest along the line 


of biogeographic distribution. Gentlemen, we have to conclude 
this part of the session. When I say this part of the session, I am 
referring only to the official presentation on the subject today, for 
I am sure sufficient materials have been presented today to be the 
subject of wide and lengthy discussions for a long time to come, 
and I am very thankful indeed to all of you for your splendid 
response to this symposium which I had the great pleasure of or- 
ganizing. ‘Thank you very much. 


The symposium adjourned at 4:30 in the afternoon. 


: amen 
met Hany tee 


i ae ; ert ise ia } 


THE NATURE AND EVOLUTION OF THE HAWAIIAN 
INSHORE FISH FAUNA! 


By Witii1AM A. GOSLINE 


University of Hawaii 
Honotute 1. Ls H., U.S. A: 


INTRODUCTION 


A very large number of the shallow-water animals of the Hawaiian 
Islands are endemic, and the area is usually considered a major zoo- 
geographic subdivision of the great, marine, shallow-water, Indo-West- 
Pacific region (Ekman, 1953). Among Hawaiian species of inshore 
fishes estimates of endemism range between approximately 15% (Fowl- 
er, 1928) and 50% (Jordan and Evermann, 1905). In my opinion 
the latter figure is about correct. Neither the distinctiveness of the 
Hawaiian inshore fish fauna nor its derivation from an Indo-West- 
Pacific stock are in doubt, and these matters will not be discussed here. 
‘The purpose of this paper is to present a preliminary analysis of the 
factors that appear to have brought about the present. status of the 
Hawaiian shore-fish fauna. It is based on five years of investigation 
and on collecting trips to Johnston, Wake, and most of the Hawaiian 
Islands. Nevertheless, present knowledge is insufficient to provide more 
than leads to the subject, and no help is to be obtained from other 
components of the Hawaiian shore fauna, for they are more poorly 
known than the fishes. Consequently the ideas presented here can de- 
serve no rating higher than that of working hypotheses. 


GEOGRAPHY 


The Hawaiian Islands (Fig. 1) form a long, narrow chain extend- 
ing for some 1600 miles along a southeast to northwest axis. Hawaii, 
at the southern end of the chain is the largest island in the central 
Pacific, whereas Kure, at the opposite end, is the northernmost coral atoll 
in the Pacific. he greatest distance between any two islands in the 
chain is less than 200 miles. For zoogeographic purposes, Johnston 
Island (Fig. 1), about 450 miles to the south of the central part of 
the chain, must be considered an outlying component of the Hawaiian 
faunal area. 

The nearest shallow waters to the north and east are those of the 
Aleutians and Alaska, somewhat less than 2000 miles away. Between 


1 Contribution No. 49, Hawaii Marine Laboratory in cooperation with the Department of 
Zoology and Entomology, University of Hawaii. 


347 


348 EIGHTH PACIFIC SCIENCE CONGRESS 


Hawaii and the mainland United States lie about 2000 miles of deep 
water. There are no shallow-water fishes common to the Hawaiian 
Islands and the shores of North America, though a few high seas 
species, e.g., the albacore, inhabit both regions. ‘To the south of the 
United States, America slopes away from Hawaii, so that the distance 
from Hawaii to Panama is about 4000 miles. ‘Thus the nearest American 
coasts with water temperatures similar to those of Hawaii are separated 
from that island by at least 2500 miles of deep sea. ‘The Hawaiian fish 
fauna has derived little or nothing from tropical American waters. 

The nearest shallow-water areas to the Hawaiian chain lie to the 
south and west. The Line Islands (Fig. 1) south of Honolulu extend 
to within about 850 miles of Hawaii and to 800 miles southeast of 
Johnston. Due west of Hawaii, Wake (Fig. 1), a northern outlier of 
the Marshalls, lies about 1200 miles southwest of Midway (and about 
half way between Honolulu and Japan). 


WaTER TEMPERATURES 

With regard to surface-water temperatures, it can be seen from 
Table I that all of the islands of the Hawaiian chain, Wake, Johnston, 
and Palmyra (in the northern Line Islands) have about the same tem- 
peratures in summer; there is, however, considerable difference between 
the northern parts of the Hawaiian chain and the other islands men- 
tioned in winter. Since the Hawaiian fish fauna is essentially a tropical 
one, it would seem probable that if any temperatures are critical for 
Hawaiian fishes, they are those of winter. Consequently summer tem- 
peratures will be dismissed from further consideration. In winter, the 
differences in water temperatures within the Hawaiian chain are greater 
than those between Hawaii and the northern Line Islands or Wake. 


TABLE I 


SURFACE WATER TEMPERATURE (FROM SVERDRUP, JOHNSON, AND FLEMING, 
Cuarts II Anp III) 


FEBRUARY AUGUST 
TEMP. C. DIFFEREN CB TEMP. Cc. 4 DIFFERENCE 
Wake 25 aI ean 28 
i da 2 
Midway 18 26 
6 0 
Hawaii 24 26 
1 1 
Johnston 25 oT, 
| aL 0 
Palmyra ez it | 


NATURE AND EVOLUTION—HAWAIIAN INSHORE FISH FAUNA 349 


If cold water were the principal limiting factor in the differentiation 
of Hawaiian shore fishes, then greater variation would be expected 
within the Hawaiian chain than between the northern Line Islands 
or Wake and Hawaii. ‘This, however, dces not occur. On the contrary, 
the fish fauna throughout the Hawaiian chain seems to be quite homo- 
geneous. Except for slight indications of racial differentiation in two 
species (Kuhlia sandvicensis and Istiblennius zebra), attempts to dis- 
tinguish even races of fishes within the Hawaiian chain have been un- 
successful. 

As to number of species, there are several a priori reasons for sus- 
pecting that it might differ at the two ends of the Hawaiian chain. 
One is the great differentiation in winter water temperatures within 
the chain noted above. A second is that the southeastern islands are 
high and volcanic, whereas the northwestern are low coral atolls. Pre- 
sumably all the atoll habitats are present around the high islands; how- 
ever, the volcanic rock habitats of the eastern islands are absent from 
the whole western part of the chain. Finally, there is the possibility 
that the low western islands have a larger fauna because they are older. 
Unfortunately, it is impossible to say whether the number of species 
at the two ends of the Hawaiian chain actually does differ, for the low 
leeward islands have been very poorly collected and the absence of 
species records from these islands means nothing. Consequently, it be- 
comes necessary to fall back on general impressions for what they are 
worth. After collecting at most of the islands from Hawaii to Midway 
it is my personal feeling that there is a decrease, though probably not 
an evenly graded one, in the number of species from southeast to north- 
west. Indeed I have collected no species in the leeward islands that 
I had not already collected in the high Hawaiian islands. (On the other 
hand the number of individuals of a species seems to increase from 
south to north. Also, judging from a few non-commercial species, the 
maximum size of individuals within at least some species increases from 
south to north.) If, however, there are species on the high islands 
restricted to lava rock habitats, I do not know them. In Oahu, the great 
majority, at least, of the species found over lava rock may also be en- 
countered over coral or coralline limestone areas. It seems necessary 
then to fall back on winter temperatures as the cause of the decrease 
in number of species in the leeward group, if indeed such a decrease 
really takes place. 


CURRENT SYSTEMS 


The adults of most Hawaiian inshore fishes are bottom feeders that 
would presumably starve in the open sea. It is generally believed, 


350 EIGHTH PACIFIC SCIENCE CONGRESS 


though by no means verified, that most such fishes arrived in Hawaii 
as planktonic larvae carried in by the ocean currents. Under such pos: 
tulates the current systems should play a dominant role in the develop: 
ment of the Hawaiian inshore fish fauna. 

However, there seems to be little correlation between the present 
current systems of the Hawaiian region and the fish immigration routes. 
Although the Hawaiian inshore fish fauna has come in from the south 
and west, there are no known northeasterly-flowing currents reaching 
the Hawaiian Islands (see Sverdrup, Johnson, and Fleming, 1942, Chart 
VII). The North Equatorial Current, in which Hawaii lies, flows to- 
ward the west, and the eastwardly flowing Equatorial Counter Current 
does not pass within 800 miles of these islands. If the derivation of 
the Hawaiian inshore fishes is to be tied in with present current sys- 
tems there would seem to be only two possibilities, both in my opinion 
rather remote. One is that the larval forms were carried to the east 
of Hawaii in the Counter Current and then doubled back in a great 
eddy of the North Equatorial Current that carried them over 800 miles 
north. ‘The other is that Hawaiian fishes were carried in to Kure and 
Midway from the Bonins and Japan by a southern tongue of the Ku- 
roshio Current (see Sverdrup, Johnson, and Fleming, 1942: 122). This 
would involve transport in a slowly moving current across more than 
2000 miles of deep water. 

There is of course the possibility that the current systems of the 
Hawaiian area were different in the Pleistocene than they are today. 
However, Arrhenius (1952) has shown that there was little or no dis- 
placement of, at least, the Equatorial Counter Current during the Pleis- 
tocene. 

If the immigration of Hawaiian fishes took place randomly, e.g., 
via occasional eddies within the major current systems, then it would 
seem logical that they came in from the nearest islands, namely, John- 
ston and Wake. ‘There is indeed considerable evidence in the Johnston 
fish fauna that this island has formed something of a way point in both 
the immigration and emigration of Hawaiian fishes. 


NATURE OF THE HAWAIIAN FisH FAUNA 

Before treating the endemism among Hawaiian fishes it seems ad- 
visable to divide these into several ecological categories. First, there 
are a small number of Hawaiian fishes, mostly gobies, that have taken 
up a primarily fresh-water existence in the streams of the high islands. 
At the other end of the scale are the deep-water fishes, both bathy- 
pelagic and bottom dwelling forms. ‘Third, there is a group in which 
the adults are pelagic, e.g., most sharks, the tunas, flying-fishes, and 


NATURE AND EVOLUTION—HAWAIIAN INSHORE FISH FAUNA 351 


Schindleria. All three of the above-mentioned groups will be omitted 
from further consideration in this paper. ‘The remaining, inshore fishes 
will again be divided into two categories for purposes of treatment here. 
One group contains those species ordinarily living in depths of ap- 
proximately 200 to 600 feet, and the other those fishes usually inhabit- 
ing depths of less than about 200 feet. 

OF those fishes living between 200 and 600 feet, relatively little is 
known. In Hawaii there is a considerable hand-line fishery for such 
species, but only the larger forms are taken, and of these only the edible 
forms are brought in. About all that can be said of this group is that 
it seems to show less endemism and a greater affinity to the Japanese 
fish fauna than is present among shallower-water forms. 

The rest of this paper will be devoted to those fishes usually living 
in less than 200 feet of water. “This inshore group is not only the best 
known, but contains well over half of all the fishes recorded from the 
Hawaiian Islands. Four main features must be noted about these forms. 
First, a large proportion of the Hawaiian species appear to be endemic. 
Second, at most a very few of the Hawaiian genera are endemic. ‘Third, 
the Hawaiian inshore fish fauna, in distinct contrast to the Hawaiian 
terrestrial biota, is a harmonic (balanced) one. Finally, the Hawaiian 
fish fauna does not appear to be a particularly impoverished one by 
Central Pacific standards. 

It is necessary to discuss each of the above points in some detail. 
Since the lack of endemic genera and higher categories is most easily 
dismissed, it will be dealt with first. ‘There are, to my knowledge, only 
two genera of Hawaiian shallow-water fishes (Gregoryina and Micro- 
brotula) that can be considered endemic. However, both of these are 
made up of small, rarely collected forms that may have been overlooked 
elsewhere. 

The statement that a large proportion of Hawaiian inshore species 
of fishes are endemic needs some qualification, for the question may be 
raised whether the Hawaiian endemics are not merely subspecies. In- 
deed it cannot be proved that these endemics will not and do not in- 
terbreed with their central Pacific counterparts (see below). Never- 
theless, there are two basic reasons for considering the Hawaiian en- 
demics as full species. One is that the Hawaiian representatives of an 
Indo-Pacific Artenkreis are usually better differentiated than any other 
populations of the Artenkreis, e.g., Acanthurus sandvicensis in the A. 
triostegus complex (Schultz and Woods, 1948). ‘The other and more 
important reason is that no intergradation can be demonstrated at the 
borders of the ranges between the Hawaiian and the central Pacific 
forms. Johnston and Wake (Fig. 1) are both islands which geograph- 


352 EIGHTH PACIFIC SCIENCE CONGRESS 


ically lie somewhat between the Hawaiian and central Pacific faunal 
areas, and a mixture of these two faunas (but with a high predom- 
inance of Hawaiian forms) is found at Johnston. Nevertheless, no 
intergradation between the Hawaiian endemics and their central Pacific 
counterparts was found at Johnston. Among four species complexes 
investigated in some detail (Muraenichthys cookei- laticaudata, Gymno- 
thorax eurostus-buroensis, Acanthurus sandvicensis-triostegus and Kuhlia 
sandvicensis), the Johnston populations of the first three represented 
the pure Hawaiian stock, and of the fourth the pure central Pacific 
form. In no instance were both the Hawaiian and the central Pacific 
forms found at Johnston, nor have they been found together elsewhere. 

As to the harmonic nature of the Hawaiian fish fauna, a very high 
proportion of the families and genera of shore fishes found in the central 
Pacific east of Samoa have representatives in Hawaii. ‘There are, how- 
ever, two notable and curious gaps in the Hawaiian shallow-water fish 
fauna. Throughout most of the tropical Pacific, two of the most prom- 
inent genera are Lutjanus and Epinephelus. In the northernmost of the 
Line Islands, for example, perhaps a half dozen species of each of these 
genera occur. In the Hawaiian Islands and Johnston Lutjanus appears 
to be totally unrepresented, and Epinephelus occurs only in a single, 
deep-water form. Yet the families to which these two genera belong are 
abundantly represented in Hawaii by other, smaller, deeper-water genera. 
These gaps seem especially peculiar in that both genera are made up 
of generalized, moderate to large sized fishes. Furthermore, both are 
present in Japanese waters that would seem to be colder than those of 
Hawaii. 

With regard to the relative size of the Hawaiian fish fauna, little 
can definitely be said. On the one hand numerous central Pacific species 
are unrepresented in Hawaii. On the other, more inshore species are 
recorded from Hawaii than from any one central Pacific island group 
east of Samoa. However, except for Hawaii, no central Pacific island 
group east of Samoa has been adequately collected. Under any circum- 
stances the Hawaiian inshore fish fauna, with some 400-500 known 
species, cannot be called depauperate. 


CHARACTERISTICS OF HAWAIIAN ENDEMIC FISHES 

The characteristics by which Hawaiian endemic fishes differ from 
their ancestral forms, i.e., their central Pacific representatives, can best 
be treated under two categories: physiological and morphological. In 
morphological features the Hawaiian endemic fishes show no pattern 
of divergence from their central Pacific relatives. One Hawaiian en- 
demic has a greater number of fin rays; a second has fewer gill rakers; 
a third has the dorsal fin originating farther forward; a fourth has 


NATURE AND EVOLUTION—HAWAIIAN INSHORE FISH FAUNA 358. 


slightly longer jaws; a number differ in various details of color pattern; 
etc. Even within a family no trend of divergence is shown by the various 
Hawaiian endemic members. Consequently there seems to be no pos- 
sibility of correlating the morphological peculiarities of Hawaiian en- 
demics with distinctive features of the Hawaiian environment, e.g.,. 
colder water temperatures. One anticipated correlation of this sort is 
strikingly absent: Hawaiian coral reefs are notably dull colored as 
compared with those of the central Pacific, yet the fishes seem to be as. 
brightly pigmented as those to the south. It is not, therefore, easy to 
escape the inference that the morphological peculiarities of Hawaiian 
endemic fishes are per se non-adaptive. 

‘Treatment of physiological differentiation is handicapped by the 
fact that almost nothing is known of the physiological reactions of 
tropical marine fishes. It might be expected that Hawaiian fishes have: 
become physiologically adjusted to life in colder waters than their more 
tropical ancestors. ‘There is some indirect evidence for, and none against,. 
this supposition. The best available bit of information in this connec- 
tion is derived from the spawning seasons of certain Hawaiian fishes. 
One would expect (Ekman, 1953: 113) that a tropical species living 
in Hawaii would spawn, at least primarily, during the summer months 
when water temperatures most closely approximate those of its an- 
cestral home. However, many Hawaiian fishes spawn primarily or en- 
tirely in winter at temperatures below those ever reached in more trop- 
ical regions. One example will suffice. Around Honolulu Pomacentrus. 
jenkinst spawns from December to March; no ripe females have been 
taken during the remaining months. At Arno, 10° nearer the equator 
in the Marshalls, Dr. Strasburg informs me that ripe females of this. 
same species were taken in July. (Hawaiian specimens of Pomacentrus 
jenkinst do not seem to be morphologically distinguishable from their 
central Pacific counterparts, which further emphasizes the advisability 
of treating the morphological and physiological peculiarities of Ha-- 
walian forms separately.) 

The restriction of spawning in Pomacentrus jenkinst (and other 
similar examples can be given) to winter around Oahu is the reverse: 
of what would be expected, and the explanation for this phenomenon 
is obscure. Perhaps the Hawaiian populations of P. jenkinst have at 
one time become adapted to waters even colder than exist around. 
Oaliu today, e.g., in the Pleistocene, and the winter spawning is merely 
a holdover from such adaptation. (In any event, the Hawaiian fishes. 
must either have come in since the Pleistocene, under which supposi- 
tion it is difficult to explain the high degree of endemism, or they must. 
have been able to survive the Pleistocene water temperatures of Hawaii.), 


354 EIGHTH PACIFIC SCIENCE CONGRESS 


CAUSES OF ENDEMISM AMONG HAWAIIAN FISHES 


In the preceding sections the nature of the Hawaiian fish fauna 
has been discussed. It remains, however, to attempt some explanation 
to the question of why it is as it is. Why, on the one hand, has not 
the fish fauna undergone the adaptive radiation found in the Hawaiian 
terrestrial fauna (see Zimmerman, 1948)? Why, on the other hand, 
is there any endemism among Hawaiian fishes at all? 

The answer to these questions would seem to be found in the 
degree of isolation of the Hawaiian Islands. “Though the Hawaiian 
chain is equally isolated in space for both fishes and terrestrial organ- 
isms, the fishes (and other marine organisms) seem far better adapted 
to getting there than most terrestrial forms. ‘This is immediately in- 
dicated by the balanced nature of the fish fauna as compared with the 
terrestrial biota. Indeed there are a large number of central Pacific 
fishes unrepresented in Hawaii, but on the whole it looks more as though 
such absences were due to unsuitable conditions for survival rather 
than to inability to arrive there. 

If the foregoing is correct, most or all suitable inshore environ- 
mental niches have been filled by immigration, and the possibility of 
an adaptive radiation among Hawaiian fishes is precluded. But also, 
if the foregoing is correct, the question of why there is any endemism 
at all among Hawaiian fishes becomes difficult to answer. 

In my opinion, the endemism among Hawaiian fishes has been 
brought about by two factors acting together and, in general, additively. 
The primary cause is a moderate degree of isolation. ‘The secondary 
cause is the slightly colder water of the Hawaiian Islands as compared 
with the tropical central Pacific. 

With regard to isolation, it has been stated above that the vast 
majority of central Pacific fishes have probably arrived in Hawaii at one 
time or another. By this it was not meant that the Hawaiian fish po- 
pulation is deluged by an influx of immigrants every year, but rather 
that one or a small number of specimens of most central Pacific species 
have managed to get to the Hawaiian chain from time to time. Pre- 
sumably the original entrants, if they survived and reproduced, would 
have had time to saturate the islands with their descendants before the 
next immigrants arrived. ‘There is some evidence that such a process 
does take place. As already noted, at Johnston the pure central Pacific 
stock of Kuhlia sandvicensis is represented, but among three other 
fishes the pure Hawaiian form is present. Apparently what has occurred 
is that in the case of Kuhlia the central Pacific stock has been able to 
saturate the island with its representatives. Subsequent immigrants 
from Hawaii were either unable to survive at Johnston, or if they 


NATURE AND EVOLUTION—HAWAIIAN INSHORE FISH FAUNA 355 


survived and interbred with the central Pacific form they did so in such 
relatively small numbers as to leave no trace of intergradation on the 
Johnston population. For the other three fishes the situation would 
seem to be similar except that the Hawaiian form has either arrived 
first or totally displaced the central Pacific type. 

The original immigrants to Hawaii that gave rise to the descend- 
ant population may or may not have been aberrant members of the 
ancestral stock. Furthermore, during at least the initial increase in the 
population, random drift may have been effective. Finally, among 
Hawaiian fishes, these possibilities of aberrant initial immigrants and 
random drift may have occurred at least twice, once at the stepping 
stone of Johnston (or possibly Wake) and again on first arriving in 
Hawaii. 

The above factors (more fully treated in Zimmerman, 1948: 122- 
125) may have caused differentiation through isolation per se, and this 
differentiation would be of a non-adaptive type. Once arrived in the 
Hawaiian Islands the fishes may have undergone further differentia- 
tion in adapting themselves to the colder waters of this area. (Evidence 
for one such adaptation has already been discussed.) Such adaptive 
physiological differentiation would increase the ability of the residents 
to compete with further immigrants, so that these would be able to 
pass even fewer genes into the resident population than before (provid- 
ing of course that they could interbreed at all). Consequently, I believe 
that the integrity of a Hawaiian endemic species has been maintained 
whether or not an occasional central Pacific immigrant has interbred 
with it, and that the physiological adaptations of the endemics have 
insured them from extermination through competition with the central 
Pacific immigrants that may have arrived subsequently. 


REFERENCES 


ARRHENIUS, G. 1952. Sediment cores from the East Pacific. Reports of the 
Swedish Deep-Sea Expedition 1947-1948, vol. 5, fase. 1, pp. 1-227. 
EKMAN, S. 1953. Zoogeography of the sea. Sidgwick and Jackson Limited, 

London: 417 pp. 

FowLer, H. W. 1928. The fishes of Oceania. Memoirs of the Bernice P. 
Bishop Museum, vol. 10, pp. 1-540. 

JORDAN, D. S. and B. W. EVERMANN. 1905. The aquatic resources of the 
Hawaiian Islands. Part I. The shore fishes. Bulletin of the U.S. Fish 
Commission for 1903, vol. 28, pt. 1, pp. 1-574. 

SCHULTZ, L. P., and L. P. Woops. 1948. Acanthurus triostegus marquesensis, 
a new subspecies of surgeonfish, family Acanthuridae, with notes on re- 
lated forms. Journal of the Washington Academy of Sciences, vol. 38, 
pp. 248-251. 


356 EIGHTH PACIFIC SCIENCE CONGRESS 


SVERDRUP, H. U., M. W. JOHNSON, and R. H. FLEMING. 1946. The oceans. 
Prentice-Hall, Inc., New York: pp. 1-1087. 

ZIMMERMAN, E. C. 1948. Insects of Hawaii. Volume 1. Introduction. 
University of Hawaii Press, Honolulu: pp. 1-206. 


ODT 


NATURE AND EVOLUTION—HAWAIIAN INSHORE FISH FAUNA 


‘aZIS Ul Ppo}Bladsexe 


DMD H 


a 


W 


A[}BO18 SBITB PUBT 


gol 


voysuyor 


“yl OF JSotVOU SpuBI[SE vy} pue UTBYY UBLIVABH OUL—']T “SI 


08! oo?! 


SONV TSI 
TIVHSYVAN 


RE ET. SO OR ES REO EMT = 


MARINE PROVINCES OF THE INDO-WEST PACIFIC 


By A. W. B. POWELL 


Auckland Institute and Museum, New Zealand 


The precise definition of shallow-water provinces in the tropical 
Indian and Pacific Oceans is difficult since accurate faunal lists are few, 
not many bibliographies have been published, and the systematics of 
only a few groups are adequately known. 

The purpose of this paper is not to present a scheme based upon the 
systematics and biogeographic data of one phylum (mollusca) but to 
invite discussion of the topic by workers representative of as many phyla 
as possible. 

If a working plan satisfactory to the majority of interests emerges 
from this discussion it is hoped that agreement may be reached regard- 
ing both the nomenclature and the respective boundaries of any ap- 
proved provinces. 

It is realized that provinces apparent in the littoral do not neces- 
sarily extend to the deep waters, not even to the continental shelf in all 
instances. The abyssal faunas probably bear no relation to the shallow- 
water faunas and will require separate consideration. Pelagic faunas 
also will probably require special treatment. 

The recent appearance of Ekman’s “Zoogeography of the Sea’ 
(1953) will undoubtedly cause a renewed interest in biographic studies. 
Ekman’s classification of the tropical faunas is as follows: 

1. Indo-West Pacific. Indian ocean to 30-35°S and the western 
part of the Pacific between 35-40°N and 30-35°S; extending from 
the east coast of Africa to the Hawaiian, Marquesas and Tua- 
motu Islands. 

2. Atlanto-East Pacific. 

A. Tropical and Subtropical America 
a. Pacific American warm water region. 
b. Atlantic American warm water region. 
B. Tropical and Subtropical West Africa. 

We are concerned only with the Indo-West Pacific which Ekman 
subdivided into— 

]. Indo-Malayan, 2. Islands of the Central Pacific (excluding Ha- 
wall), 3. Hawaii, 4. Subtropical Japan, 5. Tropical and Subtropical 
Australia, and 6. Indian Ocean. 


359 


360 EIGHTH PACIFIC SCIENCE CONGRESS 


Recognition of the Indo-West Pacific as a homogeneous faunal 
region is irrefutable. To this region alone is confined all the Recent 
sea snakes. Of the 46 Recent species of the coral Fungia only one is 
found outside the region. Among living molluscs Nautilus, Hippopus, 
Tridacna and Malleus are not found elsewhere. Without mentioning 
specific instances Ekman (1953) refers to many coral and alcyonarian 
families confined to the Indo-West Pacific, and Myers (1940) recognises 
many families and genera of fishes not found outside this region. 

The outstanding paleogeographic condition that gave rise to this 
vast faunal region was undoubtedly Suess’ Tethys Sea which allowed 
almost unimpeded dispersal in the tropical zone. This sea is known 
to have persisted with but brief local interruptions from the Lower 
Cambrian to the Tertiary. 

The recognition of the influence of this vast waterway readily dis- 
solves many otherwise anomalous cases of discontinuous distribution. 
In molluscs, for instance, the spread to the Austro-Neozelanic provinces 
in the Tertiary of characteristic Paris and Vienna Basin genera (Eocene- 
Miocene), such as Baryspira and later Pecten and Ranella, is note- 
worthy. 

Although the segregation of faunas within the Indo-West Pacific 
must be of late development a fairly clear segregation is even now ap- 
parent with endemism strongly marked in areas of continental origin 
as opposed to the oceanic faunas of islands of coral or recent volcanic 
origin. 

A false impression of uniformity in the molluscan faunas of the 
widely scattered insular areas of the Indian and Pacific oceans is given 
by the extensive distributional patterns of common species of spectacular 
appearance; i.e. the spotted cowrie Cypraea tigris, and the spider-shell 
Lambis lambis. 

In many unrelated tropical gastropod families two efficient free- 
swimming larval types, known respectively as Sinusigerid and agadinid, 
are characteristic of most of the Indo-West Pacific wide ranging species. 

It is therefore among the sedentary and less conspicuous elements 
that endemism is apparent and in the mollusca in particular many 
-regional species and subspecies are apparent. 

Ekman’s six divisions of the Indo-West Pacific are in my opinion 
conservative, and on the other hand the eighteen divisions advocated 
by F. A. Schilder and M. Schilder (1939) on the basis of a world survey 
of the Molluscan family Cypraeidae are certainly excessive. Ekman 
made no reference to this work in his “Zoogeography of the Sea.” 

The Schilders advocated the division of the Indo-West Pacific into 
three ‘“‘provinces”’ and eighteen “regions”. ‘Their terminology should be 
reversed of course, i.e. “province” = subregion, and “region” = province. 


MARINE PROVINCES OF THE INDO-WEST PACIFIC 361 


The scheme is as follows:— 
A. INDIAN PROVINCE. 
]. Erythraean Region. Red Sea. 
2. Persian Region. Persian Gulf to Karachi. 
3. African Region. Somaliland to Mozambique and Southern 
Madagascar. 
4. Lemurian Region. Northern Madagascar, Reunion, Mauri- 
tius, Seychelles and Maldive Islands. 
5. Indian Region. India and Ceylon. 


B. CENTRAL INDO-PACIFIC PROVINCE. 
6. Sumatran Region. Andaman and Nicobar Islands, Sumatra, 


Christmas Island, Sunda Strait and south coast of Java. 

7. Moluccan Region. Bali Strait to Timor, Aru Islands, West- 
ern New Guinea and Moluccas. 

8. Java Sea Region. Southern Celebes, S.E. Borneo, North Java, 
Malaya and Gulf of Siam. 

9. Sulu Sea Region. Annam, Northern Borneo, Northern Ce- 
lebes and Philippines. 

10. Japanese Region. S.E. China, Formosa and Southern Japan. 

11. Dampierian Region., N.W. Australia and Western Australia 
north of Sharks Bay. 


C. PACIFIC PROVINCE. 
12. Queensland Region. New South Wales to Port Curtis Queens- 


land, Lord Howe Island and Norfolk Island. 

13. Melanesian Region. Northern and Eastern New Guinea, Bis- 
mark Archipelago, Solomon Islands, Torres Straits Islands, 
New Hebrides, Loyalty Islands and New Caledonia. 

14. Samoan Region. Kermadec Islands, Fiji, ‘Tonga, Niue and 
Samoa. 

15. Oceanic Region. Gilbert and Ellis Islands, Vokelau and 
Marshall Islands. 

16. Micronesian Region. Caroline Islands, Palau Islands, Guam, 
Marianas and Bonin Islands. 

17. Polynesian Region. Cook Islands, Society Islands, ‘Tuamotus, 
Marquesas Islands and Easter Island. 

18. Hawaiian Region. Hawaiian Islands and Midway Island. 


Practically every worker will disagree in detail with the Schilders’ 
scheme which in places suggests convenience rather than the expression 
of natural biogeographic areas. Nevertheless the scheme provides a 
useful framework upon which either to build or to dismantle. 


362 EIGHTH PACIFIC SCIENCE CONGRESS 


Perhaps because I know my own region best I find most fault with 
the East Australian-South West Pacific section of the scheme. For in- 
stance, No. 12, the “Queensland Region” has been subdivided to the 
satisfaction of Austro-Neozelanic workers on the basis of systematic 
studies in mollusca, echinoderma and aigae, with a recent endorsement 
from the ecologists (Bennett & Pope, 1953). 

There is general recognition of the Peronian warm-temperate prov- 
ince for New South Wales and the Solanderian tropical province for 
Queensland to Cape York. It may be noted, however, that Whitley 
(1932) restricted the Solanderian to the Great Barrier Reef and added 
a new province, the Banksian, for coastal Queensland. <A further sub- 
division of Schilders’ “Queensland Region”, the Phillipian has been 
advocated for Norfolk and Lord Howe Islands by Whitley (1932). 

No. 13, the “Melanesian Region”, should surely include Fiji which 
has a similar continental fauna to that of the Sclomon Islands and New 
Caledonia. ‘The latter incidentally was segregated as a special province, 
the Montrouzierian, by Whitley (1932). 

On molluscan evidence there seems to be no need to recognise more 
than one province to cover the Schilders’ three South West Pacific “Re- 
gions’, the Samoan, Oceanic and Polynesian. 

I am unable to assess the value of the “Micronesian Region” but 
undoubtedly the “Hawaiian Region” is a good one. Although most 
of the widespread Indo-West Pacific coral fauna is represented in the 
Hawaiian group there is a relatively high percentage of endemic or- 
ganisms. ‘The “Oceanic Region” should certainly disappear since its 
chief characteristic is the almost total absence of endemic species. 


REFERENCES 


BENNETT, I. and E. C. Pope, 1958. Intertidal Zonation of the Exposed 
Rocky Shores of Victoria, together with a Rearrangement of the Bio- 
geographic Provinces of Temperate Australian Shores. Austr. Journ. 
Marine & Freshwater Research, 4 (1) pp. 105-159. 

EKMAN, SVEN, 1953. Zoogeography of the Sea. Sidgwick & Jackson Ltd. 
London. 

SCHILDER, F. A. and M. SCHILDER, 1938-39. Prodrome of a Monograph on 
living Cypraedae. Proc. Malac. Soc. London, 23 (8-4) pp. 119-231. 
STEVENSON, T. A., 1948. The Constitution of the Intertidal Fauna and Flora 

of South Africa. Ann. Natal Mus., 11 (2) pp. 207-324.- 

WHITLEY, G. P., 19382. Marine Zoogeographical Regions of Australia. The 

Austr. Naturalist, 8, pp. 166-167. 


063 . 


MARINE PROVINCES OF THE INDO-WEST PACIFIC 


“sy Teazeny a 


J vare ty 
obopdryoay mer”. a4 
N Pgs 
'S] Susenbsvy- “Vx y 
°¢ 


‘T weponbsyy © 


Pa 


cae ah 


y 
Fae 
ne a 


ght 
aN asda 


"¥ 

AML Soden OT iy 
MARU Fay aan 
Naess i 


ij 
‘ 


yeh 


Me 
i 


Hive Tey 
POT Hit 


an 


AN OUTLINE OF THE DISTRIBUTION OF PACIFIC 
DEEP-SEA ANIMALS 


By ANTON Fr. Bruun 


Tniversity Zoological Museum 
Copenhagen K, Denmark 


When it is remembered that the existence of a deep-sea fauna has 
been known for less than a century, that the Pacific Ocean covers 50 per 
cent of all seas, and that the Pacific deep-sea fauna has been studied 
relatively less than those of the Indian and Atlantic Oceans, it is no 
wonder that an outline of the distribution of the animals must rest 
on a very scanty material. 

We shall only consider true deep-sea animals, i.e. those living at 
2000 meters or deeper, the abysso-pelagic and abyssal fauna. In this 
way are excluded such species as may be considered to have their main 
distribution on the continental slopes. Again this means by far the 
greater part of the Pacific, 87.3 per cent, as the continental shelves cover 
only 5.7 per cent and the continental slopes 7.0 per cent of this ocean 
(Sverdrup, Fleming & Johnson 1946). 

Ekman (1953a, p. 303) is of the opinion that “the open-sea abyssal 
can be divided zoogeographically into only three or four main regions: 
an Atlantic, Pacific, Arctic and perhaps Antarctic region.” And on 
p. 291: “Not even for the most extreme abyssal species of the benthos 
can a cosmopolitan distribution, however, be considered as the rule. 
The lack of common species between the Atlantic and the other oceans 
may up to a point be due to the insufficient knowledge of the fauna, 
but this is only partly true.” When the term “Pacific” is used in this 
connection, Ekman means “an Indo-Pan-Pacific region” (p. 292). 

The echinoderms are especially well suited for consideration re- 
garding the distribution of deep-sea animals because they are numerous 
qualitatively as well as quantitatively, and they are easily caught. 
Therefore, it is of special interest to compare the conclusions of Mad- 
sen (1953) with Ekman’s statements above. Madsen is of the opinion 
“that the known distribution of the deep-sea Echinoderms strongly fa- 
vours the view that the main zoogeographical regions of the extreme 
deep-sea of today are, on the one hand, the Pacific, and, on the other 
hand, the combined Atlantic and Indian Oceans. As the deep-sea re- 
gion next in importance to these comes the Antarctic deep-sea region, 
but other regions of the deep-sea I think it difficult to define from the 


365 


366 EIGHTH PACIFIC SCIENCE CONGRESS 


distribution of the Echinoderms, and special fauna elements in certain 
regions will probably mostly prove to be off-shoots of neighbouring 
archibenthal regions.” 

To get such different opinions to meet is very difficult at a time 
when much new evidence is under way, e.g. from The Swedish Deep 
Sea Expedition 1947-48 in the North Atlantic (Nybelin 1951, 1953), 
from the Russian investigations in the North West Pacific (Zenkevitch 
1953), and from the Danish Galathea Expedition Round the World 
1950-52 (Bruun 1951, 1953a, 1953b, Dahl 1953, Gislén 1953, Kirkegaard 
1953, Madsen 1953, ZoBell 1953). At present it can only be done in 
a sketchy way, by putting forward some postulates for further examina- 
tion. It should also be emphasized that very much more collecting 
must be carried out even if the deep-sea expeditions after 1945 have 
brought knowledge a step forward. 

As true abyssal animals only species which breed regularly at depths 
exceeding 2000 meters should be considered. Very little is known about 
the reproduction of abyssal animals, but it may be expected that cer- 
tain species breeding on the continental slopes may have juvenile stages 
carried by currents to deeper water, where they can live but not breed. 

A parallel example would be the abyssal records of the deep-sea 
eel Synaphobranchus; different species of this genus have been found 
in all eceans, from the Arctic Circle in the Atlantic to the latitudes of 
New Zealand in the Pacific. But the distribution is governed by the 
epipelagic breeding-places, which seem to be much the same as those 
of the freshwater eel (Anguilla), as shown by the distribution of the 
leptocephali of both genera (Bruun 1937). 

Some examples of how scanty is our knowledge of the deep-sea 
animals may be given. The polychaete Nepthys elamellata Eliason was 
found only in 1948 in the North Atlantic at 4270 and 4600 meters by 
_ The Swedish Deep-Sea Expedition; it was found again in the Pacific 
in the Kermadec Deep (Kirkegaard 1955) at 6140-6960 meters. 

The elasipod holothurian Elpidia glacialis Théel which has been 
considered as one of the most typical species of the Arctic Ocean, was 
taken by the Galathea in several localities in the Java and the Banda 
Deeps and in one of the hauls in a number of about 3000 specimens 
(Madsen 1953). From the Banda Deep at a depth of 7250 meters 
may also be mentioned the depth record of the irregular echinoid Powr- 
talesia aurorae Koehler caught by the Galathea, while this species was 
only known formerly from the Antarctic from 440-1690 meters (Mad- 
sen 1953). The same author also gives the Galathea finds of another 
peculiar irregular echinoid genus Echinosigra (which hitherto was 
known only from the North Atlantic and the Atlantic sector of the 


DISTRIBUTION OF PACIFIC DEEP-SEA ANIMALS 367 


Antarctic) ; it was found in the Indian Ocean (£. paradoxa Mortensen) 
and in the South West Pacific (E. phiale [Wyv. Thomson]). 

Finally may be mentioned a fish Bathymicrops regius Koefoed, 
known since the Michael Sars Expedition in 1910 from the North At- 
lantic, caught there again by The Swedish Deep-Sea Expedition (Ny- 
belin 1951), and found in the Indian and Pacific Oceans by the Gala- 
thea (Fig. 1). 

More examples of this kind could be given, and many more will 
surely be added when present and future collections have been studied. 
At the same time the confused state of taxonomy of many deep-sea ani- 
mals may be cleared up, and present apparent differences in the com- 
position of the faunas may also be reduced in this way. 

All this would lead to the postulate that the Pacific abyssal and 
abysso-pelagic fauna is part of the Cosmopolitan true deep-sea fauna. 
This is really to get back to the views held in the early days of deep-sea 
research. But this does not mean that differences in the composition 
of the animal communities from one area to another would not be 
found; indeed, they will occur and arise from two major ecological fac- 
tors: 1. Depth (= pressure) and 2. Supply of food. 

The importance of pressure has been evidenced very clearly from 
ZoBell’s studies (1953) of the barophilic bacteria, especially from the 
Galathea samples from the deep trenches, right down to 10000 meters. 
The distribution of many abyssal animals indicates that they may also 
be called barophilic, e.g., Bathymicrops (Fig. 1) or sthenobathic; another 
group, like Pourtalesia and Elpidia mentioned above, seem to be eury- 
bathic, as no morphological differences have been found within the 
enormous vertical range. The presence of physiological differences, 
however, cannot be excluded and seems quite likely. 

Zenkevitch (1953) relates that Russian investigations in the Kurile- 
Kamtschatka Trench, trawling down to 9800 meters gave the following . 
zonation: 

I Surface zone, influenced by winter cooling, 0-200 m. 
II Transition zone, warm oceanic water masses, 200-500 m. 
III Deep-sea zone, 500-6000 m. (“rormal ocean depths’’) 
1. Upper subzone, 500-2000 m. 
2. Lower subzone, 2000-6000 m. 

IV Deep-sea trenches (“super oceanic depths”) 6000-10000 m. 

In accordance with the general impression derived from earlier 
investigations (for literature see Ekman 1953a) and the collections of 
the Galathea, keeping the abyssal zone from 2000 meters and down- 
wards seems more natural. Vertically this zone may then tentatively 
be divided in three: 1. Depth range 2000-4000 meters, 2. Depth range 


368 EIGHTH PACIFIC SCIENCE CONGRESS 


4000-6000 meters (example in Fig. 1), 3. Depth range 6000-10000 me- 
ters, the trench-faunas. It remains to be seen how such a division will 
work in detail; especially in the case of the trench faunas a certain 
endemism may be expected. If animals really are adapted to live at 
a pressure of e.g. 800-1000 atmospheres in the Philippine Trench, such 
species will not be able to spread to other trenches. The extent of 
endemism of the single trench fauna may also reflect to a certain degree 
the relative age of the trench. 

In this connection it may be of interest to give a preliminary list 
of the deepest records of a number of animal groups, as found by the 
Galathea Expedition. 


TABLE I 


DEEPEST RECORDS OF A NUMBER OF ANIMAL GROUPS. 
RESULTS FROM THE GALATHEA EXPEDITION. 


NUMBER 


GROUP DepTH, M. aa. Savane TRENCH 
ACEINATIAG see ne olin: 10190 1 Philippines 
Wechiuroidearenss cm aceice — i sales 
Holothunioideaece es -— 2 st 
Bivialviasute ecussnari ce Garo — il our 
Roly chactay esr ney actin. — 1 ats 
Amphipoday cn ascites 9770 1 —_ 
Tsopodaye ee ewcier terior: — 1 Les 
Tanaidaceayponcireiascis 8210 3 Kermadec 
Sipunculoideagerci eee. — il i, 
Crincideamee conser — 1 us 
Gastropoda sacon. ssc a 1 2m 
Hiyvdrozo0ame. sce — il vee 
AStEroldea. scien sues 7630 1 ras 
Hechinoideasseisaeicceee 7250 if Banda 
Cumaceaes. ois hetcieictoeiae 7130 1 Java 
INeopternycllgmaemciaect — 1 his 
POLE am crime ie as 6960 9 Kermadec 
Cirripedia ys s.r ween — il pe 
BrAachyuname eee eee = 1 eb 
Anthipathariagercts sore. 6940 1 Java 
Scaphopoday yar reign — 1 eats 
Ophiureidear- ns. een 6660 il Kermadec 
INSCIGL ar ais rc otek — 1 Bis 
Scypnoz0a an ane ise ere 6620 1 ane 
INematodauiesee cme wet 1 ve 
Pyenogonida tn. eericisen 6480 1 Banda 
Aleyonariay)crioriiccerente 6140 iL Kermadec 
AOanihariaemsercmereciie = it pate 
Ostracodat ene a cee 5850 il -- 
BYyOzZ08, Pites, nec ores oa 1 — 


DISTRIBUTION OF PACIFIC DEEP-SEA ANIMALS 369 


The details will be found in the forthcoming scientific reports. 
There is a good general agreement with Zenkevitch’s statement (1953) , 
translated from German: “In the greatest depths the holothurians ex- 
ceed 90 per cent of the bio-mass, followed by sponges, which do not 
reach 7000 meters. The Asteroidea do not reach 8000 meters, and 
between 8000 and 9000 meters disappear Octocorallia, Amphipoda and 
Isopoda, somewhat deeper than 9000 m. Actinia and Mollusca. In the 
greatest depths (9800 meters), studied by us by trawling, was only found 
Polychaeta, Echiuroidea, Holothuroidea, and Pogonophora.” 

The food supply varies very much from one place to another; its 
origin may as a rule be from the production of phytoplankton, in which 
case deep-sea areas close to regions with up-welling water will have fau- 
nas rich both as regards the number of species and the quantity present, 
as in the Eastern Pacific along the subtropical and tropical American 
coasts. 

In other areas a considerable amount of terrigeneous débris brought 
out by rivers or from mangrove swamps is a very important addition; 
this has been found in inland seas like the Sulu, Celebes, and Banda 
Seas. 

In certain areas with a very special circulation of the deep water, 
causing a much higher temperature as in the Sulu Sea (about 10°C), the 
composition of the fauna may be quite different, but this remains still 
to be studied. 

The general conclusion about the Pacific abyssal fauna would there- 
fore be that it is part of the Cosmopolitan deep-sea fauna and that dif- 
ferences in composition from one area to another would mainly be due 
to ecological factors, primarily depth and food supply; only the trench 
faunas may have developed endemisms. 


List oF LITERATURE 


Bruun, A. F. 1937: Contributions to the Life Histories of the Deep Sea 
Eels: Synaphoebranchidae. Dana-Report No. 9, 19387. Copenhagen. 
1951: The Philippine Trench and its Bottom Fauna. Nature, vol. 
168. London. 
————- 1953a: Problems of Life in the Deepest Deep Sea. The Geograph- 
ical Magazine, vol. 26. London. 
1953b: Dybhavets Dyreliv. In Bruun, Greve, Mielche & Sparck: 
Galatheas Jordomsejling 1950-52. Copenhagen. 
DAHL, E. 1953: The Distribution of Deep Sea Crustacea. XIV Intern. Zool. 
Congress Copenhagen. IUBS Colloquium. 
EKMAN, S. 1953a: Zoogeography of the Sea. London. 
1953b: Betrachtungen tiber die Fauna der abyssalen Ozeanbdéden. 
XIV Intern. Zool. Congress Copenhagen. IUBS Colloquium. 
Face, L. 1953a: Remarques sur les Conditions de Vie de la Faune Benthique 
Abyssale. XIV Intern. Zool. Congress Copenhagen. IUBS Colloqium. 


370 EIGHTH PACIFIC SCIENCE CONGRESS 


Face, L. 1958b: Remarques sur les pysnogonides abyssaux. XIV Intern. 
Zool. Congress Copenhagen. IUBS Colloquium. 

GISLEN, T. 1953: On the Bathymetric Distributien of the Deep Sea Crinoids. 
XIV Intern. Zool. Congress Copenhagen. IUBS Colloquium. 

GREY, M. 1953: Fishes found below a Depth of 2000 meters. XIV Intern. 
Zool. Congress Copenhagen. IUBS Colloquium. 

KIRKEGAARD, J. B. 1953: The Zoogeography of the Abyssal Polychaetes. XIV 
Intern. Zool. Congress Copenhagen. IUBS Colloquium. 

MADSEN, F. J. 1953: Some general Remarks on the Distribution of the Echi- 
noderm Fauna of the Deep-Sea. XIV Intern. Zool. Congress Copenhagen. 
IUBS Colloquium. 

NYBELIN, O. 1951: Introduction and Station List. Reports of the Swedish 
Deep-Sea Expedition. Vol. II. Zoology. No. 1. Goteborg. 

1958: Sur la Distribution Géographique et Bathymétrique des Bro- 
tulidés, trouvés au-dessous de 2000 métres de Profondeur. XIV Intern. 
Zool. Congress Copenhagen. IUBS Colloquium. 

SVERDRUP, H. U., M. W. JOHNSON and R. H. FLEMING. 1946: The Oceans, 
their Physics, Chemistry, and General Biology. New York. 

ZENKEVITCH, L. A. 1953: Erforschungen der Tiefseefauna in Nordwestliche 
Teil des Stillen Ozeans. XIV Intern. Zool. Congress Copenhagen. IUBS 
Colloquium. 

ZOBELL, C. E. 1953: The Occurrence of Bacteria in the Deep-Sea and their 
Significance for Animal Life. XIV Intern. Zool. Congress Copenhagen. 
IUBS Colloquium. 


DISTRIBUTION OF PACIFIC DEEP-SEA ANIMALS ol 


Fic. 1.—The Distribution of Bathymictops regius Koefoed. Caught by 
(a) The Galathea Expedition; (b) The Swedish Deep Sea Expedition 1947-48; 
(c) The Norwegian Michael Sars Expedition 1910. The figures denote the 
depth in meters. 


Ly 


Ma 
iw 


y 
AY n 
ay, 


DEEP-WATER BIOLOGICAL PROVINCES OF THE INDO-PACIFIC 


By Ror L. BoLin 


Hopkins Marine Station 
Stanford University, Pacific Grove, California, U.S.A. 


The bathymetric range of so-called bathypelagic fishes, based on 
the questionable data from the open nets in which they are normally 
taken, is not definitely established. In attempting to use myctophids 
and other “bathypelagic’” fishes as indicators of biological provinces, I 
have come to the conclusion that most of them tend to be distributed 
in relation to the water temperatures of the upper 200 meters, and that 
they must be considered as primarily inhabitants of the superficial 
layers. 

Abyssal bottom fishes are so rare that they do not lend themselves 
as satisfactory subjects for zoogeographical investigation, and some of 
them give hints of practically cosmopolitan distribution—a corollary of 
the widespread uniform habitat of the great depths. 

It is therefore among the archibenthic fishes that evidence as to the 
limits of comparatively deep-water biological provinces must be sought. 
The large, widespread, almost exclusively archibenthic and compara- 
tively well-investigated family Macrouridae provides convincing data 
on which it is possible to establisk definite provinces in the 200 to 2000- 
meter layers of the Indo-Pacific, which area I propose to treat in its 
broad sense as including both oceans in their entirety. 

‘The Antarctic Province is a circumglobal region of very low tem- 
perature bordering Antarctica. Its northern limits, in the intermediate 
depths, lie at approximately 45° south latitude, well north of the sur- 
face Antarctic Convergence. ‘This province boasts no archibenthic mac- 
rourids, although two abyssal species, Nematonurus armatus and Lio- 
nurus filicauda, occur there, and the latter is apparently restricted to it. 
This province has no northern Indo-Pacific counterpart. 

Immediately to the northward of the Antarctic Province lies the 
Antiboreal Province, some 10° to 20° in width and including the 
southern coasts of Australia and most of New Zealand. ‘This province 
is characterized by water of moderate temperature in the intermediate 
depths. At least one species, Coelarhynchus fasciatus, extends its range 
throughout the entire province, being known from off the Cape of 
Good Hope, southern Australia, Tasmania and southern Chile. Several 
species—Macruronus novae-zealandiae, Coryphaenoides denticulatus, Coe- 


373 


aT4 EIGHTH PACIFIC SCIENCE CONGRESS 


larhkynchus australis and Lionurus nigromaculatus—known only from 
the area of southern Australia and New Zealand, indicate the effective- 
ness of the wide abyssal reaches of the southern Indian and Pacific 
Oceans as barriers and indicate that it would be advisable to designate 
a distinct Tasmanian Sub-province. 

The Boreal Province, characterized by moderate temperature similar 
to those of the Antiboreal Province, has a continuous Asiatic-American 
continental shelf which has provided a pathway for the wide dispersal 
of archibenthic species. Characteristic macrourids, the most adaptable 
of which have invaded the Okhotak and Bering Seas, are Nematonurus 
clarki, N. pectoralis, Coryphaenoides acrolepis, C. cinereus and C. lep- 
iurus. ‘This province, characterized by extended ranges does not appear 
to be amenable to subdivision. 

From eastern Australia and the Solomon Islands a broad tongue of 
warm water, centered on the Tropic of Capricorn, extends eastward to 
approximately 120° west longitude, and this may be designated the 
Australo-Pacific Province. ‘The region is poorly explored, particularly 
in its eastern portion, but its few known macrourids seem to be limited 
to the province. Among them are Bathygadus cottoides, Coryphaenoides 
rudis, Coilorhynchus kermadecus and Cetonurus crassiceps. ‘The nu- 
merous islands dotting its entire expanse provide ample archibenthic 
habitats and, with further investigation, it may be possible to establish 
several subprovinces within this area. 

Extending eastward from southern Japan and the northern Phil- 
ippines is a deep warm-water mass similar to but somewhat smaller than 
that of the Australo-Pacific Province. Lack of islands throughout the 
greater part of its extent restricts archibenthic habitats to its western 
portion. ‘This Japanese Province shows, through half a dozen species 
which range far to the southward, some degree of relationship to the 
Indo-Australian Province (to be discussed later), but it has numerous 
species not found elsewhere. An incomplete list includes Bathygadus 
antrodes, Gadomus multifilis, G. colletti, Nematonurus longifilis, Cory- 
phaenoides marginatus, C. altipinnis, C. nasutus, Coelrhynchus kishi- 
nouyet, C. jordani, C. productus, C. tonkiensis, C. japonicus, Hymeno- 
cephalus lethonemus, Lionurus garmant, L. misakius and L. condylura. 

The major portion of the Indian Ocean, from its northern borders 
to almost 40° south latitude and excluding only the extreme eastern 
portion between Java and Australia, appears to constitute a single 
province characterized by warm waters at very considerable depths. 
Little is known of the fauna of its southeastern section, but numerous 
endemic species extend their ranges from southeastern Africa to the Bay 
of Bengal and the Andamen Sea. Among these can be counted Cory- 


DEEP-WATER BIOLOGICAL PROVINCES OF THE INDO-PACIFIC 375 


phaenoides lophotes, C. wood-masoni, Coelorhynchus flabellispinus, C. 
quadricristatus, Hymenocephalus cavenosus, H. heterolepsis, Ventrifossa 
peterson, Lionurus polylepis, L. investigatoris, L. brevirostris, L. sem- 
iquincunciatus and Mataeocephalus microstomus. 

Differing markedly from the Indian Ocean Province, the Indo-Aus- 
tralian Province, which comprises the Philippines and the East Indies, 
is characterized by comparatively cold water in intermediate depths. 
Bordered to north and south by the warm Japanese and Australo-Pa- 
cific Provinces, its cool deep temperatures are not duplicated in the 
western Pacific between latitudes 35° north and south. ‘This is in 
strong contrast to the surface layers in which the warmest water occurs 
in the equatorial region. Another large group of endemic species—Ga- 
domus denticulaius, G. introniger, Coryphaenoides hyostomus, Coelo- 
rhynchus argentatus, C. maculatus, C. argus, C. amithi, C. radchiffi, C. 
platorhynchus, C. commutabilis, C. macrorhynchus, Hymenocephalus 
longiceps, H. nascens, Ventrifossa nigrodorsalis, V. divergens, V. nigro- 
marginata and Trachonurus villosus—ranges throughout this area. 

The Indo-Australian Province may readily be subdivided. ‘The Sulu 
Sea, with its shallow sills and consequently very warm deep water, has 
given rise to a few endemic species such as Coelorhynchus sexradiatus, 
C. notatus and C. triocellatus, and forms the Sulu Subprovince which 
tends to isolate the Philippines from the East Indian region. ‘Thus 
limited to the Philippine Subprovince are Bathygadus sulcatus, Gado- 
mus magnifilis, Coryphaenoides semiscaber, Coelorhynchus quincuncia- 
tus, C. thompsoni, C. velifer, C. macrolepis, C. acutirostris, Hymenoce- 
phalus longipes, Malacocephalus luzonensis, Ventrifossa macronemus and 
V. lucifer, while Bathygadus filamentosus, Coryphaenoides tydemani, C. 
aequatoris, Coelorhynchus acantholepis, Lionurus evides, L. vittatus, L. 
parviceps and Mataeocephalus adjustus are known only from the East 
Indian Subprovince. 

In addition to the very large number of endemic species in the Indo- 
Australian Province, several more eurythermic forms such as Bathygadus 
spongioceps, B. furvescens, Macrouroides inflaticeps, Malacocephalus 
laevis and Lionurus pumiliceps range widely throughout both this area 
and the Indian Ocean; others such as Gadomus multifilis, Coelorhynchus 
parallelus, Cetonurus robustus, Hymenocephalus striatissimus and Tra- 
chonurus villosus, range from the East Indies to southern Japan, while 
two of them extend far into the Indian Ocean, and one of these is found 
in northern New Zealand as well. ‘The combined ranges of all of these 
forms centering in the Indo-Australian Province indicate that this area 
together with the Indian Ocean, the Japanese and the Australo-Pacific 
Provinces constitute a single great unit which may be termed the Indo- 
Pacific Superprovince. 


3876 EIGHTH PACIFIC SCIENCE CONGRESS 


Due to inadequate exploration the eastern limits of the Indo-Aus- 
tralian Province are unknown. It may, however, be stated that, although 
its deep waters have hydrographic characteristics very similar to those 
of the Hawaiian Islands, the wide intervening abyssal area has acted 
as an effective dispersal barrier with a consequent attenuation of the 
fauna and a great endemism in the Hawaiian Province. None of the 
Hawaiian macrourids are known from other areas. Among the endemic 
forms may be listed Bathygadus bowersi, Coelorhynchus gladius, C. atra- 
trum, C. doryssus, Hymenocephalus antraeus, H. aterrimus, H. striatu- 
lus, Malacocephalus hawainesis, Lionurus antherodon, L. ctenomelas, 
L. propinquus, L. holocentrus, L. gibber, Mataeocephalus acipenseriuus 
and Trachonurus sentipellis. 

The Panamanian Province, comprising the west coast of Central 
America and northern South America, is even more isolated from the 
East Indies than is Hawaii, and its deep waters are warmer than those 
farther west. Here appears another large group of endemic forms: Tra- 
chyrhynchus helolepis, Coryphaenoides bucephalus, C. capito, C. boops, 
C. carminifer, C. anguliceps, Coelorhynchus canus, Lionurus loricatus, L. 
convergens, L. latirostris and L. fragilis. 

The gap on the North American coast between the Boreal and Pa- 
namanian Provinces suggests the existence of still another faunal area. 
This Californian Province is poorly defined. Of its three known archi- 
benthic macrourids, Lionurus liolepis is endemic, L. stelgidolepis ranges 
to Panama and is undoubtedly a southern derivative, while Coryphae- 
noides acrolepis is a boreal species which extends to Kamchatka. It is 
probable that a comparable Peruvian Province exists in the southern 
hemisphere, but our knowledge of the deep-water fishes of that area is 
so incomplete that no definite conclusions can be reached. 


377 


DEEP-WATER BIOLOGICAI, PROVINCES OF THE INDO-PACIFIC 


DsAldvd-OWIsny 
I~ 


JILIN 


eet 


nw- 


; ifn 
/ Snares bye 
pipet el _ 
artis ep 

ay 


SOME OUTLINES OF PLANKTON CONCENTRATION IN THE 
EASTERN AND TROPICAL PACIFIC * 


By Martin W. JOHNSON 
Secriprs Institution of Oceanography 
University of California 
La Jolla, California, U.S.A. 


INTRODUCTION 


In recent years, especially following World War II, there has been 
a marked increase in research involving marine plankton along part of 
the west coast of North America and in parts of the tropical Pacific. 
While much of this work was undertaken to elucidate fisheries problems, 
the results will doubtless prove of much wider application in general 
marine biology and oceanography. 

From these studies there is emerging in broad outlines a picture 
of relative plankton concentrations and of pelagic communities that 
characterize different areas, water masses, or current systems. It is rea- 
sonable to believe that the relative concentration of plankton (a fun- 
damental source of food) will be reflected in the type and distribution 
of the benthic communities. 

Figures 1 and 2 for the eastern Pacific are from one of several cruises 
made jointly by Scripps Institution of Oceanography, the U.S. Fisn and 
Wildlife Service, the California Fish and Game and the California 
‘Academy of Sciences—all in connection with the California Cooperative 
Sardine Research Program. (Progress Report 1950 and 1952.) 

Figures 3-6 for the tropical Pacific are based on collections made 
during Scripps Institution’s “Capricorn Expedition” 1952-53. 


West Coast, NorTH AMERICA 


The area of routine study varies somewhat with season but in total 
it extends over a thousand miles along the coast of California and Baja 
California and seaward up to 350 miles. ‘Three oceangoing vessels par- 
ticipated in each monthly cruise. 

Methods. The tow nets employed were approximately 5 meters in 
length with a mouth opening of one meter in diameter, and constructed 
of No. 30xxx grit gauze (mesh opening 0.65 mm). A flow meter 
provided a measure of the water strained. 


* Contribution from the Scripps Institution of Oceanography (new series), Number 658. 


379 


380 EIGHTH PACIFIC SCIENCE CONGRESS 


In operation the nets were drawn obliquely through the water 
inainly from a depth of 70 or 150 meters to the surface. 


Results. There is usually a large northern area of high plankton 
production within the California Current (Fig. 1) and along the coast as 
indicated by total zooplankton volume (displacement volume after re- 
moval of large forms) per thousand cubic meters of water strained by 
the I-meter net. 

In Figure 2 is shown the volume distribution for cruise No. 3 which 
provided a good geographic coverage with rather typical results. In 
Figure 2 the average for 70-Om hauls for the whole area was 208cc/ 
1000m? of water, but for 64 northern stations the average was 300cc/ 
1000m° as contrasted with an average of 75cc/1000m? for 43 southern 
stations. ‘The larger northern volumes consisted mainly of the northern 
copepods Calanus cristatus, C. tonsus and Eucalanus bungit of both 
northern and southern varieties. 

There is also usually a marked decrease in volume at the offshore 
stations, particularly in the southern section. For example, in Figure 2, 
the outer 2 to 5 stations of the seven southern lines yielded an average of 
23.6cc/1000m3 for 26 stations. Commonly there is an increase in volumes 
along the coast in the vicinity of central Baja California. 

For three successive years, April and May have yielded volumes 
somewhat above the average for the year. October and November are 
somewhat below average. ‘The other months sampled were less con- 
sistent though June and July catches may be relatively high and Septem- 
ber and December low. 

Contributing to the enrichment of the plankton are certain areas 
of upwelling along the coast where the water is characterized by lowered 
temperatures and oxygen content and increased salinity and phosphate 
content. ‘This upwelling is associated with periods of northwest winds, 
usually occurring during spring and summer. ‘The coastal areas most 
affected from north to south are Cape Mendocino, Soberanes Point, 
Point Conception and the region off central Baja California. 

The coastal area is devisable also on a qualitative basis which out- 
lines more or less clearly adjoining northern and southern pelagic faunal 
areas. ‘These are separated roughly by the 13°—-14°C isotherms for the 
30-meter depth. In spring the isotherms cut obliquely from offshore at 
35-40’ North latitude towards the coast of Baja California at 30°N 
(Fig. 2). 

Conspicuous in the plankton of the northern area are especially 
the copepods Calanus cristatus, C. tonsus, and Eucalanus bungit. Can- 
dacia columbiae, Epilabidocera amphitrites, while rare, are indicative 
of the northern fauna. Other planktonic crustacean groups with species 


PLANKTON CONCENTRATION—EASTERN & TROPICAL PACIFIC 381 


that characterize the areas (with some overlapping of sparse numbers) 
are the hyperiid amphipods (T. Bowman M.S.) and the euphausiids 
(B. Boden, M.W. Johnson and E. Brinton, M.S.). 

South of 35°N the southern extension of the more abundant 
northern species is commonly 150 miles offshore in the California cur- 
rent in the deeper layers. Apparently they do not readily survive the 
northward flowing counter currents and eastern portions of eddies that 
often prevail inshore south of Point Conception. 

In the offshore area the picture is not so clear since the distribution 
there involves more oceanic and warm water species which extend into 
the warm surface waters to the north outside the California current, 
and in the south, tend to impinge more closely upon the coast of Baja 
California. 

The plankton volumes obtained by the Scripps Institution ‘‘Slell- 
back Expedition’ 1952 have been studied by Milner B. Schaefer and 
Leo Berner, who find an offshore continuation of low plankton all the 
way to the equatorial current system. 


TROPICAL PACIFIC 


It has long been known that in certain offshore oceanic areas in 
the region of the equatorial current system, there occurs an increased 
abundance of fish, birds and larger invertebrates. More recent studies 
have shown that there is also an increase in the plankton abundance, 
thus providing an explanation for the impressive display of higher 
forms. ‘The equatorial crossings reporting increased plankton within 
the current system are Graham (1941) for the Carnegie crossing at ap- 
proximately 140°W; King and Demond (M.S.) for Pacific Oceanic 
Fisheries Investigations crossings in the central Pacific between lon- 
gitudes 155° and 175°W. King and Demond report similar findings by 
Takashi Tokioka (1942) along 134°E. 

In the present paper is given the results of plankton hauls taken 
aboard the Scripps Institution vessel “Horizon” in connection with the 
“Capricorn Expedition” in 1952-53. The area covered extends over 
much of the tropical Facific mainly below the equator but with cross- 
ings of the equatorial current system at about 169°E and about 124°W. 
(Figs. 3 & 4) 

Methods: Two types of nets were employed: (1) a I-meter net, of the 
type described above, for the general larger zooplankton, and (2) a small 
truncated net of No. 20 bolting silk to sample the microplankton. This 
second net had a filtering cone one meter long attached to a ring 28 
cm. in diameter. The truncated portion had a mouth opening of 18 cm. 


382 EIGHTH PACIFIC SCIENCE CONGRESS 


In operation the I-meter net was hauled obliquely from about 150 
meters to the surface with 200 meters of wire out. It was retrieved at a 
rate of 10 m. per minute, giving a 20-minute haul. The towing angle 
was maintained as nearly as possible to 45°. A few deeper hauls were 
made with 600 m. of wire out. In these hauls the retrieving time was 
20m /min. 

The amount of water filtered was calculated on the basis of per- 
formance of identical nets provided with flow meters and towed under 
similar conditions. 

The relatively small volumes obtained in the deep hauls with 
600 m. wire out (Fig. 3) would indicate that the major concentra- 
tion of zooplankton is in the upper layers, for while the net strained 
much more water during the deep hauls, the time spent-in the upper 
presumably more concentrated layer was one-half that spent there dur- 
ing the shallow hauls. 

The No. 20 net was lowered and raised vertically by hand, sampling 
from 50 meters to the surface. 

Results: ‘The volume of zooplankton caught by the I-meter net was 
measured by displacement in cc. and is graphically shown for each sta- 
tion in Figure 3. 

The noteworthy feature is the marked increase in plankton at both 
crossings of the equatorial current system especially at the eastern cross- 
ing where a greater number of samples were taken. The volumes of the 
l-meter net hauls in the current system are made up primarily of cope- 
pods, but chaetognaths were also abundant. Euphausiids and sipho- 
nophores, while common, did not add materially to the bulk. 

The volumes of microplankton are similar in geographic distribu- 
tion to those obtained by the l-meter net (Fig. 4). In each haul 
there is a mixture of phyto and zooplankton, but at the eastern cross- 
ing the phytoplankton constituted about 3/4 of the settling volumes. 
‘The pictures presented in Figures 3 to 6 are not materially influenced 
by diurnal migration of the plankton for most of the samples were 
taken during daylight hours. In Table I, the beginning time of sampling 
is shown for the I-meter net hauls. 

In the eastern crossing of the equatorial current system only one 
station (at 01°05’S) was sampled during darkness with the No. 20 net. 

In Figure 5 is shown the thermal structure of the water at the west- 
ern crossing of the equator together with the corresponding microplank- 
ton volumes at eleven stations along the section. ‘There is a moderately 
high even plankton concentration from about 02°S to 03°N, between 
which at about 01°—02°N there is some indication of upwelling. 


PLANKTON CONCENTRATION—EASTERN & TROPICAL PACIFIC 383 


TABLE I 
BEGINNING TIME OF SAMPLING AT STATIONS SHOWN IN FIGURE 3 
STATION TIME STATION TIME STATION TIME 
il iL sala 13 07:30 25 17:05 
2 10:45 14 21:44 26 08:35 
3 M520 15 14:50 PA 21:10 
4 11:20 16 06:58 28 09:06 
5 11:40 17 06:46 29 08:40 
6 09:40 18 09:46 30 Ie Seal 
i" 13523 19 18:23 31 16:54 
8 06:41 20 16:57 32 08:12 
9 20:30 Pall 13} 8747/ 33 16:54 
10 INSITE 22 21:16 34 17:44 
ih 07:51 2a iT SAB r/ 35 08:21 
12 07:06 24 08:51 


In Figure 6 the plankton volumes from both types of net hauls are 
shown in relation to the isotherms at the eastern crossing. In the ab- 
sence of complete hydrographic data and somewhat too great spacing 
of the stations, it is not possible to say with certainty just what portion 
of the current system supports the greatest plankton volumes, but the 
structure of the water mass and the volumes obtained suggests a high 
plankton concentration at the southern edge of the counter current. 

In contrast to the plankton-rich waters of the equatorial currents, 
there was a dearth of plankton along much of the ship’s course north 
and northwest of the Fiji Islands and from these islands westward below 
the equator through the Tonga, Samoa, Society and Marquesas Island 
groups. ‘The “Dana” also found low plankton volumes in much of this 
area (Jaspersen 1935). 

Increased plankton volumes were again obtained in the eastern 
South Pacific over the Easter Island Rise between about 10° to 16° S, 
113° to 124° W (Figs. 3-4). Correlated with this more abundant plank- 
ton, there was a marked increase in the number of schools of flying fish 
and of squids. 

BIBLIOGRAPHY 


GRAHAM, HERBERT W. 1941. Plankton production in relation to the character 
of water in the open Pacific. Jour. Mar. Res. 4(8): 189-197. 
JASPERSEN, P. 1935. Quantitative investigations on distribution of macro- 
plankton in different ocean regions. “Dana” Report No. 7. 

KING, J. E. and J. DEMOND. Zooplankton abundance in the central Pacific. 
U.S. Fish and Wildlife (in press). 

Progress Report California Cooperative Sardine Research Program. State of 
California Department of Fish and Game Marine Research Committee 
1950 and 1952. 

TOKIOKA, TAKASHI. 1942. Plankton abundance in Twayama Bay and waters 
surrounding Palau Islands. (Kagaku Nanyo) 5(1): 44-55 (In Jap- 
anese). 


384 EIGHTH PACIFIC SCIENCE CONGRESS 


ILLUSTRATIONS 


FIGURE 1 


Hydrographic conditions off the coast of California, Oregon and Baja 
California. Cruise 3 April 28-May i4, 1949. 


FIGURE 2 


Plankton volumes off the coast of California, Oregon and Baja Cali- 
fornia. Cruise 3 April 28-May 14, 1949. 


FIGURE 3 


Plankton volumes for 1-meter net hauls along the course of the ‘‘Capri- 
corn Expedition”. Black columns for hauls with 200 m. wire out, open co- 
lumns with 600 m. wire out. 


FIGURE 4 
Microplankton volumes with No. 20 mesh net. 


FIGURE 5 


Microplankton volumes together with isotherms at a series of stations 
across the western crossing of the equatorial current system. 


FIGURE 6 
Plankton volumes together with isotherms at the eastern crossing of the 
equatorial current system. Open columns for 1-meter net hauls, block columns 
for microplankton hauls—not drawn to same scale (see Figs. 3 & 4 for vol. 
readings). 


PLANKTON CONCENTRATION—EASTERN & TROPICAL PACIFIC 385 


CRUISE 3 
28 April - 14 May 1949 


DYNAMIC HEIGHT ANOMALIES 
(0 OVER 1000 DECIBARS) 


CORRECTED FOR TIDAL EFFECT 


Contour Interval: O.05 dynamic meters 


Distance Between 
Contours 
beret 


| 


5 i 1.0 knots 
10 © Y 50 cm/sec 
Current Speed (32°N) 


@ 


Current Direction as 
indicated by arrows. 


FIGURE 1 


386 EIGHTH PACIFIC SCIENCE CONGRESS 


CRUISE 3 
28 April - 14 May 1949 


y jf TOTAL ZOOPLANKTON VOLUMES 


PLANKTON CONCENTRATION—EASTERN & TROPICAL PACIFIC 387 


@ AaADIY 
H C3) 4 3 a B) a v 
t 


Kw oe Ww OW 62 wt we Sz we 6222 (2 02 61 @ aio GI i) \ cow ul Oe 8 2 9Ge ¢ 


IIVI IV d Ngoj0buol @ 


St VONOL 


eS Sinisa ed 
Ww 


i) 
WS 
(=) 


St VORWS 


S| SYS3INOWUA 


42)0m ,wW 0001/99 
SPWMOA (jam) juIW290)d51 


1POY JON 2219— | 


NOILIO3dX3 NYOOdV9 5 
* 1 uropo loam yae q 


— =, amen 5 = - Vivnsava 


IISI IVA 


Sivewy 


- EIGHTH ..PACIFIC SCIENCE CONGRESS 


388 | 


UOI10jS @ 

wt 0 
bt BWNOA Bul] WIS 
BNOY 10915424 O-OG 
Jd{HWOIPTWI Bl J9U YSeW OZ ON 
04 UD) GOs 31 


7 
a@ 


ina 
1 
ay 


Pp AMNDIY 


DINAN DVd 


PLANKTON CONCENTRATION—EASTERN & TROPICAL PACIFIC 389 


Surface 


50 


100 


150 


DEPTH (meters) 


200 


250} 


. 6° = 4° 7 3° : : Oo 2° 7 : 4° 
(south) LATITUDE (north) 


FIGURE 5 


14° 


12° 


25°C 


26°C 


aa 


6° 


4° 


128°s)'w 
2 


Surface 


26°C 


24° 


EIGHTH 


PACIFIC SCIENCE CONGRESS 


(north) 


LATITUDE 


(south) 


FIGURE 6 


DISTRIBUTIONAL PROVINCES OF MARINE BRYOZOA 
IN THE INDO-PACIFIC REGION 12 


By YAICHIRO OKADA 3 
and 
SHIzUO MAWATARI 4 


Although the present condition of our knowledge on the bryozoan 
fauna of the Indo-Pacific Region is not yet quite satisfactory, the accu- 
mulated works of numerous authors have revealed much of the truth 
on the distribution of the group. ‘The following authors contributed 
much in the faunal study of each region: Waters (1909, 1910, 1913) 
and Thornely (1905, 1907, 1912, 1916) on the Bryozoa of the Indian 
Ocean; MacGillivray (1880-1891), Kirkpatrick (1888, 1890, 1924-1929), 
Waters (1887, 1889) and Hastings (1932) on that of Australia; Harmer 
(1915, 1926, 1934) on the Siboga collection from the East, Indies; Canu 
and Bassler (1929) on the Albatross collection in the #% lippine region; 
Ortmann (1889), Okada (1917, 1918, 1921, 1923, 1929) and Silen (1941, 
1943) on Japanese Bryozoa; Canu and Bassler (1927) en the Hawaiian 
forms; Smitt (1872), Robertson (1900, 1905, 1908, 1910), O’Donoghue 
(1923, 1925, 1926), Hastings (1930) and Osburn (1950, 1952) on the 
Bryozoa of the Pacific coast of America. 

In the course of our systematic study on the Cheilostomatous Bryo- 
zoa, on one hand, a large number of species were newly found distri-- 
buting in the Japanese waters, and we were rather surprised to find 
hew numerous were the species common to the Malayan region. ‘The 
present paper is the preliminary report on the distribution of the Indo- 
Pacific Bryozoa. 


GEOGRAPHICAL ISOLATION 


According to the recent progress of studies on the evolution, the 
differentiation of species is said to be accelerated by the geographical 
isolation in geological age. ‘The proposition of the distributional prov-. 
inces are, therefore, to be based at first on the palaeogeography of the 
Indo-Pacific Region. ‘The Cheilostomata, that composing the largest 
part of the recent marine Bryozoa, appeared in the Jurassic, and ex- 


panded into so many species in the Upper Cretaceous time. As the 
1 Contributions from the Fisheries Division, Mie Prefectural University. No. 213. 
2 Contributions from the Kesearch Institute for Natural Resources. No. 623. 


3 Dean, Faculty of Fisheries, Mie Prefectural University, Tsu, Japan. 
4 Of the research staff of the Research Institute for Natural Resources, Tokyo, Japan. 


391 


392 EIGHTH PACIFIC SCIENCE CONGRESS 


fossil forms of the Tertiary Period show striking resemblances to the 
recent species, the palaeogeography of the Region will be effectually 
traced back to the ‘Tertiary or the Cretaceous Period. ‘Text-figures pre- 
sent the geological history of the Indo-Pacific Region. 

In the Upper Cretaceous and the Eocene, the northern Pacific 
Ocean was isolated from both the Indian Ocean and the Antarctic Sea, 
and conspicuously narrowed. ‘The southern half of the Pacific was 
made afterwards by the secondary fusion of the northern half and the 
Antarctic. During the Eocene, Oligocene and Miocene epochs, the In- 
dian Ocean was connected with the Mediterranean Sea by one or two 
ways. The Ethiopian Sea was recognized connecting the Mediterra- 
nean and the Indian Ocean along the African coast. 

In the Upper Eocene, the Pacific Ocean found the way to the In- 
dian Ocean by a newly opened passage at the Malayan coast. The 
north Australian coast was formed nearly at the same epoch. ‘The 
above-mentioned history of the Indo-Pacific Region suggests to us the 
possibility of the following areas significant to the specific differentia- 
tion: 1) The northern Pacific. 2) The southern Pacific. 3) The east- 
ern coast of Africa. 4) The northern part of the Indian Ocean. 


OCEANOGRAPHICAL AND ECOLOGICAL FACTORS 


Larvae: So far as we are aware, one of the most characteristic fea- 
tures of the Bryozoan colonies is their sessile habit of growth. The dis- 
tribution of the individual colony is, therefore, accomplished only by 
the dispersion of minute larvae within their short swimming period of 
a day or two. The colony attaches to various sorts of substrata such 
as rocks, stones, sand grains, sea-weeds, sponges, hydrozoon stems, sea- 
urchins, worm tubes, brachiopod shells, bivalves, gastropod shells, other 
bryozoans, lobsters, crabs, and ascidians. ‘The secondary dispersion is 
affected by gastropods or lobsters carrying bryozoans on them. ‘The 
migration along the coast-lines proceeds thus. 

The Cyphonautes, a specialized form of bryozoan larvae, is able to 
continue their swimming life of several weeks, thus extending their 
range with much ease. 

Ocean Current: In addition to migration along the coast-lines, 
there has been a more irregular and sporadic diffusion by the agency 
of currents, floating sea-weeds, drifting woods and by means of ships. 
Wide distributional range of some species which produce Cyphonautes 
larvae or take their residence on sea-weeds, might be caused by the 
action of currents. 

As is well known the Pacific Ocean is divided into two, the northern 
and the southern half, from the oceanographical standpoint. The North 


MARINE BRYOZOA IN THE INDO-PACIFIC REGION 393 


Equatorial Current, together with the Kuro Siwo and the California 
Current, forms the large circulation in the northern half. The South 
Equatorial Current, derived from the Peruvian Current of the South 
American coast, goes westwards to the Papuan coast embracing nume- 
rous islands of Polynesia on its way. ‘The Indian Ocean is also divided 
into two parts. The South Equatorial Current, going westwards, reaches 
the east coast of Africa and bifurcates toward north and south, the 
southern branch descending along the South African coast. The South- 
Western Monsoon Drift, the extended part of the northern branch, goes 
eastwards in July and westwards in January. The Malayan Current is 
derived partly from the North Equatorial Current of the Pacific and 
partly from the Monsoon Drift of the Indian Ocean, and runs along 
the Chinese coast up to Japan. 

These facts suggest the probability of the following subdivision of 
the Region: 1) Pacific coast of America and Hawaii, 2) Polynesia and 
Australia, 3) Indian coast of Africa, 4) Arabian Sea and Bengal Bay, 
5) Malay Archipelago and Japan. 

Navigation: ‘The important role of the navigation and the trans- 
plantation of organisms in the distribution of sessile Bryozoa may be 
easily recognized. ‘The cosmopolitan distribution of Bugula neritina, 
Tricellaria occidentalis, Hippothoa hyalina, Watersipora cucullata are 
adequately explained by their occurrence in fouling organisms. Many 
of the species exhibit great adaptability to different climatic conditions, 
and if transported to distant regions might readily accommodate them- 
selves to their new environment. 

Water temperature: One of the limiting factors to the physio- 
logical functions of Bryozoa is the water temperature. ‘The isothermal 
of 22°C crossing the middle part of Japan fairly agrees to the northern 
limit of the Malayan element of Bryozoa. According to our experi- 
mental study of Watersipora cucullata, the occurrence and settlement 
of larvae are most active at 18-25°C, and the activity of adult suddenly 
falls at a temperature lower than 12°C or higher than 28°C. 


PROVINCES OF THE INDO-PACIFIC REGION 
Taking into consideration the above-mentioned factors that produce 
predominant influences on the distribution and after making compa- 
risons among the bryozoan fauna of various parts of the Region, we 
propose here the following subdivisions of the Indo-Pacific Region on 
the geological, oceanographical and ecological basis: 
A. Indian Subregion. 
1. Ethiopian Province. (East Coast of Africa, Madagascar, Red 
Sea, Gulf of Aden, Gulf of Persia) 


394 EIGHTH PACIFIC SCIENCE CONGRESS 


2. Indian Province. (Coast of India and Burma, Timor Sea) 
B. Western Pacific Subregion. 
3. Malayan Province. (Malay Archipelago, South China Sea, 
Philippine Islands) 
4, Chinese Province. (East China Sea, Yellow Sea, Southern 
Japan) 
5. Papuan Province. (Southern New Guinea, tropical Austra- 
lia, Coral Sea) 
C. Central and Eastern Pacific Subregion. 
6. Hawaiian Province. (Hawaii) 
7. Polynesian Province. (Polynesia) 
8. Mexican Province. (Southern California, Mexico, Panama, 
Peru) 


CONSTITUTION AND INTERRELATIONSHIP OF BRYOZOA FAUNA 
OF EACH SUBDIVISION 


Table I is a sum total of the known genera and species of subdivi- 
sions of the Indo-Pacific Region, revised and enlarged by our recent 
investigations. “(he upper line of each area indicates the total number 
of genera (in Gothic type) and species (in ordinary Roman type), and 
the lower line the number of genera and species that have not been 
found elsewhere. The number of species known only from one prov- 
ince seems to be rather great, but from the present condition of our 
knowledge, it is not easy to say which of them are really endemic. 

Relation between Ethiopian and Indian Provinces: As shown in 
Table IJ the number of common species of these provinces is smaller 
than that of uncommon ones. The Bryozoa of the Ethiopian Province 
is rather closely related to that of the Atlantic, and, on the other hand, 
the bryozoan fauna of the Indian Province somewhat resembles that of 
the Malayan Province. 

Relation between Malayan and Chinese Provinces: “The number of 
genera and species in common between the two provinces is consider- 
ably great, as is clearly seen in Table III, and the boundary line can 
not be drawn anywhere. But it seems to be adequate to separate the 
Chinese Province from the Malayan Province, for the specific differences 
in the same genus are rather great. 

The Pacific coast of middle Japan seems to be the meeting-place of 
northern and southern types. Arctic forms descend to it and in most 
cases go no further south; the tropical forms make their way up to it, 
and generally have not become naturalized in the colder waters beyond it. 

Relation between Malayan and Papuan Provinces: ‘Table IV in- 
dicates the common and uncommon species between these two provinces. 


MARINE BRYOZOA IN THE INDO-PACIFIC REGION 395 


The relationship between the Malayan and Papuan Provinces seems to 
be less intimate than that of the Malayan and Chinese Provinces. 

Interrelationship of the provinces of Central and Eastern Pacific 
Subregion: As Hawaiian and Polynesian faunas have not been thorough- 
ly investigated, it is not easy at present to clear the true nature of their 
relation to that of the Mexican Province. Excluding a large number 
of endemic species, a fairly large part of the Hawaiian Bryozoa occurs 
in Japan or in California. The Polynesian bryozoans present an in- 
timate relation with Papuan forms, but a number of them have not 
been found elsewhere. The Bryozoa of the Pacific coast of tropical 
America have recently been thoroughly investigated by Osburn, and 
Atlantic and Mediterranean elements observed in an eminent degree, 
and the occurrence of a large number of specialized forms seems to prove 
the propriety of the separation of this province. 

The details of the distribution of genera and species are to be re- 
ported in our forthcoming paper. 


EIGHTH PACIFIC SCIENCE CONGRESS 


o96 


azz | 6 0: (ote = 0s cr OF TE. de oe 0 |o a 
oz¢ 67268  &? |08 oy |TSe O&T |er9 TOT ju89 ces |sst 09 jor 48 
oie a 0. |9 O20 = 02 si © 0 We - 0. 12 0. 10 0 
ron CI Oy = ale lire eee clell 28’ i662 — 79 =\0ce— 68, |W = OL |6c— SeGr 
i: = Bo ie 0 |? Oe = 0 ie Oe -\ce- cn 10 0 0 O. 
i MO (ee SE ee ts Oe 
cele Oe Biss = Oe 8. 0 sie 0 = 00 0 
sen = Cl lt Zz ft = ie (ee = at IS a 
Ve ee Olaac 0 |o O 1s Gite = (10 O- 0 0. 
We i OO Oe Re i ie 
i 0 |o 0 0 0 |0 0 19 Toe = =e 0 0 |0 0 
Cie =e) a0 410 ee oie = Gee = 9 i ( T 

OOIXaM ' VISANAI10d IlVMVH VWiidvd VNIHO AVIV VIGNI Vid0OIHLg 

O1lsIOVd NUGLSVA TWutng9 MgIVd NUALSa AA NVIGNJI 


[210.4 


e1oydoosy 
eV BW0YSO[l9yD 


eoseuy 
e7BUl0zSO[LouD 


——————— SSS 


21 eUl0}SOU9}) 
Sgn ee ee 
27210480 PLD 
ise a2 


eyoordoqu gy 


AONIAOUd 


NoOIIgydaAs 


saiogag GNV V¥ENED NMONY 40 UaTWaAN 
I HIAVIL 


MARINE BRYOZOA IN THE INDO-PACIFIC REGION 397 


TABLE II 


NUMBER OF COMMON AND UNCOMMON (SPECIES BETWEEN 
ETHIOPIAN AND INDIAN PROVINCES 


CoMMON UNCOMMON 


GENERA SPECIES GENERA | SPECIES 


Entoprocta 1 
\Cyclostomata 26 
Ctenostomata 26 
sueuostemats Anasca 35 
‘Cheilostomata Ascophora 39 


‘Total ae 127 


TABLE III 


NUMBER OF COMMON AND UNCOMMON SPECIES BETWEEN 
MALAYAN AND CHINESE PROVINCES 


COMMON UNCOMMON 

GENERA SPECIES is GENERA SPECIES 
Entoprocta 5 5 i 21 
Cyclostomata 18 59 | 10 96 
Ctenostomata 10 Ball 4 26 
Cheilostomata Anasca 56 128 51 191 
Cheilostomata Ascophora 60 126 90 PATEL 
Total TOM sad nels oon 

TABLE IV 


NUMBER OF COMMON AND UNCOMMON SPECIES BETWEEN 
MALAYAN AND PAPUAN PROVINCES 


| CoMMON UNCOMMON 
GENERA } SPECIES GENERA SPECIES 


Entoprocta 3 3 4 19 
Cyclostomata 12 30 iy 96 
Ctenostomata 5 9 7 31 
Cheilostomata Anasca 38 67 68 245 
Cheilostomata Ascophora 39 81 64 247 | 
| Total 97 190 152 638 | 


Rat eae & 


pip ae awe 


seaeth ae 5 


nes iy renal 
a 


gh Ae oe et fapetaes icin 


iNet a di are eh ye tala 1 rsh 


a IT ee NR na 


i 
Pry 
Nie CE 
Reet Sas eriebstcroerent me 
aagome nen y 
» 
| 
(Raty Mor wn fet seeps mesic de + Wea eS 
i 
‘\ 1 7 i 
u: 
= { : 
nN ‘ Li 
, 17 ! 
; ? ay i emt 
in im ‘ ' ih a 


MARINE BRYOZOA IN THE INDO-PACIFIC REGION 399 


Cretaceous :1:2.5° 


2R83 


= Upper Cretaceous oe Paes Seren 


306 SOn SIG «tos 


400 EIGHTH PACIFIC SCIENCE CONGRESS 


wer Eocene 


= 


Upper Eocene 


Antarct. 


MARINE BRYOZOA IN THE INDO-PACIFIC REGION 401 


a 38 Miocene 


Antarct. 


402 EIGHTH PACIFIC SCIENCE CONGRESS 


THE DISTRIBUTION OF POLYCHAETES WITHIN THE 
INDO-PACIFIC 


By G. A. Knox 
Biology Department 
Canterbury University College 
Christchurch, New Zealand 


Polychaetes have not generally been regarded as being useful for 
the delimiting of zoogeographical regions. European workers when 
working up the results of collections from other regions were struck 
by the large percentage of European species that occurred among the 
material they studied. The percentage of cosmopolitan species in many 
regions is high when compared with other animal groups. In one of 
the areas involved in this study, 40% of the species can be classed as 
cosmopolitan. If these cosmopolitan species are eliminated from the 
lists a much clearer picture of the faunal relationships is obtained. 

The majority of studies on Polychaete distribution have lumped 
together the shelf, benthal deep-sea, and pelagic faunas when consider- 
ing relationships. In this study as far as possible only the shelf fauna 
has been considered. Difficulties were encountered as a large number 
of Polychaetes are eurybathic and species occurring only in deep water 
in one locality may also occur on the shelf. ‘This is the first attempt 
to assemble distribution records for the polychaete fauna for’an area 
as large as the Indo-Pacific. Wesenburg-Lund (1949) has recently sum- 
marized the distribution records for the Persian Gulf, Arabian Sea and 
Indian Ocean; and the relationships of the faunas of the East Indies, 
Philippines, Japan, Australia and New Zealand have been discussed by 
workers on collections made in these regions. 

In such a survey as this there are so many difficulties that only 
very general conclusions concerning the nature of the distribution can 
be reached. In the first place in many areas there has been relatively 
little collection done. This applies particularly to the Pacific Islands. 
In the second place many of the collections have been selective rather 
than representative. From Table I it will be seen that from many 
areas a large number of Families are unrepresented. ‘This applies par- 
ticularly to small inconspicuous species such as the Syllidae. Some 30 
species of Syllids have been recorded from the eastern temperate shores 
of Australia, while only two have been recorded from the adjacent tro- 


403 


404 EIGHTH PACIFIC SCIENCE CONGRESS 


pical northeastern shores. From central Polynesia (Fiji-Samoa) half of 

the 68 recorded species belong to one family, the Eunicidae. 

For this study it was necessary to assemble the distribution records 
from more than 200 publications dealing with the Indo-Pacific region. 
The distributions of a total of 212 papers and monographs have been 
listed. Unfortunately 32 papers were not available. Most of these dealt 
with the East Indian region and the information for this area is incom- 
plete as is that for northern Japan. ‘There are also minor deficiencies 
for the information from Hawaii and the Philippines. For the other 
areas the information is more or less complete, and it is felt that the 
deficiencies do not detract from the general picture. 

For the purpose of this study the Indo-Pacific has been divided 
into the following 24 areas: 

. The Red Sea. 

. The Arabian Sea. 

. Ceylon. 

. The Bay of Bengal. 

. The Malay Archipelago. The group of islands extending from 
the Malay Peninsula to New Guinea, excluding the Philip- 
pines. 

. The Philippines. 

. The South China Sea. 

. Southern Japan, from Formosa to 36°N. on the oceanic side of 

. Japan. 
9. Northern Japan, including the Sea of Japan. 

10. The Hawaiian Islands. 

11. Micronesia-Melanesia. The tropical Pacific Islands north of 10°S. 

12. Central Polynesia. ‘The Fijian and Samoan Islands. 

13. Eastern Polynesia. The Pacific Islands east of 165°W. 

14. The Kermadec Islands. 

15. Northern New Zealand. The New Zealand shores north of East 

Cape. 

16. Southern New Zealand. 

17. New Caledonia. 

18. Southern Australia, from 37°27’S. on the east coast to Kangaroo 

Island, including Tasmania. 

19. Eastern Australia. The east coast from 26°S. to 37°20/S. 

20. Northeastern Australia, from 26°S. to Torres Strait. 

21. Northwestern Australia, from Torres Strait to 28°47’S. 

22. Southwestern Australia, from 28°47’S. to Kangaroo Island. 

23. The Indian Ocean. 

24. Kerguelen. 


Hi 9 DO 


in 


COs] &D 


DISTRIBUTION OF POLYCHAETES WITHIN THE INDO-PACIFIC 405 


In assembling the records synonymies were eliminated as far as 
possible and doubtful species were omitted. From the records a dis- 
tribution table was prepared. When completed the list contained 1,367 
names. Table I shows the number of species recorded in the more 
important Families from the above areas. 

The majority of the species belong to the families Polynoidae, 
Nereidae, and Eunicidae. The abundance of representatives of the 
Family Eunicidae in tropical waters has often been coramented upon 
and is confirmed by the results of this survey. ‘Thirty-three species are 
recorded from Fiji-Samoa, 20 from Northern New Zealand, 16 from 
Southern New Zealand, while only four have been recorded from the 
Sub-Antarctic Islands. 

From the general distribution table a second table (Table II) was 
prepared to show the number of species common to each two of the 
24 divisions. For the purposes of this table cosmopolitan species have 
been neglected. 

A study of this table shows that areas 1, 2, 3, 4, 5, 6, 7, 8, and 23 
have a large number of species in common, indicating a large Indo-Ma- 
layan element. ‘The Pacific Islands show affinities both with Australia 
and Indo-Malaya. The New Zealand area has many species in common 
with Australia, especially the southern and eastern coasts. ‘The tropical 
coasts of Australia show strong affinity with the Indo-Malayan region as 
well as relationships with the temperate Australian regions. Kerguelen 
has 14 species in common with Southern New Zealand and only three 
that are also found in the Indian Ocean. 

In order to gain a clearer picture of the distribution it was decided 
after an examination of the general distribution table to divide the 
species into a number of groups and plot their occurrence in each area 
(Table III). The groups of species recognized are as follows: 
Cosmopolitan. 

Endemic. 

. Circum-tropical. 

. Indian. Species characteristic of areas 1, 2, 3, 4, and 23. 

Malayan. 

. Indo-Malayan. 

Japanese. 

. Northern Pacific. 

. Indo-Pacific. Species ranging throughout areas 1-23 but not ex- 
tending to tropical America or Antarctica. 

Tropical Pacific. 

. Australasian. 

. New Zealand. 

. Antarctic. 


OOD Te oN S 


| comenlllll oon on’ 
Ne S&S 


_ 
©9 


A406 EIGHTH PACIFIC SCIENCE CONGRESS 


A distribution pattern emerges from a study of Table III. The 
circumtropical group of species comprises a small element (0%—6%) 
scattered fairly evenly throughout all areas. A group of Indian species 
centered in the Bay of Bengal is well marked. ‘This Indian element 
comprises only 2% of the Malayan fauna and a small percentage 
(0% —6%) of the other areas to the west. ‘The Malayan element is 
small comprising 9% of the species of the Malay Archipelago, again 
with scattered representatives to the west and south. An important 
Indo-Malayan element has its centre in the Malay Archipelago where 
it comprises 26% of the fauna. As one moves away from this centre 
the Indo-Malayan element becomes progressively less important, ranging 
from 7% for the Philippines to 0% for Polynesia. 

There is a large group of wide ranging Indo-Pacific species. ‘This 
element comprises 27% of the fauna of Micronesia-Melanesia and 10% 
to 26% of the fauna of all areas except Japan and Hawaii where it 
makes up 6% of the fauna. A well-defined Australasian group of species 
can also be recognized. An Antarctic element is important in the New 
Zealand fauna where it comprises over 20°% and is also well represented 
in the southern parts of Australia. 

The endemic element in Ceylon (1%) and the Indian Ocean (6% 
is very weak. ‘This is conjunction with the very similar percentage com- 
position of the faunal elements of areas 2, 3, 4 and 23 would indicate 
that these areas form an Indian region with a fairly uniform fauna. 
The Arabian Sea could perhaps form a separate region with the Indo- 
Malayan element not as well represented as in other parts of the Indian 
region. 

The Malay Archipelago appears to form a separate region with an 
endemic element of 37 species (16%). This endemic element is cer- 
tainly considerably larger than this as the information for this region 
is incomplete. A Malayan element with scattered representatives to the 
south and west comprises 9% of the fauna. ‘This region is also charac- 
terized particularly by the large number of Indo-Malayan species, 59 
forming 26% of the fauna. 

The Philippines also forms a distinct region with a large endemic 
element of 71 species (36%). Other species components are Circum- 
tropical, 4 (2%), Indian 13 (7%), Malayan 8 (4°), Indo-Malayan 
14 (7%), Japanese 5 (2%), Indo-Pacific 32 (16%) and Tropical Paci- 
fic 8 (4%). The Indo-Malayan element is small when compared with 
the adjacent Malay Archipelago. ‘The species composition of the South 
China Sea area is essentially the same as the Philippines, although the 
Japanese element is larger, 9% compared to 2%. Of the 102 non- 


DISTRIBUTION OF POLYCHAETES WITHIN THE INDO-PACIFIC 407 


cosmopolitan species listed for this area 30 are also found in the Philip- 
pines. 

Southern Japan has a distinctive fauna with 117 endemic species 
(34%), the largest endemic element of any of the areas. Cosmopolitan 
species comprise 24°% of the fauna (71 species), the Japanese element 
11% (36 species) and the Indo-Pacific element 7% (21 species). North- 
ern Japan also has a distinctive fauna with 35 endemic species (29%), 
28 Japanese species (23%) and 12 Northern Pacific species (10%). 
Annenkova (1938, quoted by Hartman, 1948) lists 272 species for the 
northern part of the Japanese Sea. Of these 369% are warm water spe- 
cies, 23% are Artic-boreal, 11% are western Pacific and 11% are Arctic 
species. 

The Hawaiian polychaete fauna is incompletely known and, as Ed- 
mondson (1940) states, the large population of reef dwellers remains 
to be investigated. Of the 66 species listed 28, or 43%, are endemic. 
From what is known it would appear that the relationships are with 
the Northern Pacific, Japan and Indo-Malaya rather than with the 
tropical Pacific. 

The fauna of the tropical Pacific Islands, areas 11, 12 and 13, is 
also very incompletely investigated. Fiji-cSamoa shows a large endemic 
element but most of these belong to one family, the Eunicidae. A 
group of tropical Pacific species is also important in all three areas. 
The endemic element is small (9%) in the Micronesia-Melanesia area 
and in the Indo-Pacific large (27%). When more information is avail- 
able it is probable that this area will form one division of the tropical 
Pacific and Polynesia another. 

Of the 20 non-cosmopolitan species reported from the Kermadec 
Island only 4 have also been recorded from New Zealand. The rela- 
tionships of these islands would appear to be with the tropical Pacific 
and with Indo-Malaya. 

The composition of the two New Zealand areas is so similar that 
separation is not justified. Of the 116 non-cosmopolitan species listed 
for southern New Zealand 67 have also been recorded from the north- 
ern portion. If these two areas were grouped, the endemic element 
would form 31% and the Antarctic element 22% of the fauna. There 
is also an Australasian element of 109% and an Indo-Pacific element of 
AYE. 

New Caledonia closely resembles tropical Northeast and Northwest 
Australia. It resembles Northeast Australia in that in both the Aus- 
tralian element is small, 7% in the former and 9% in the latter, and 
the Indo-Pacific element is large, 26% in the former and 23% in the 
latter. Of the 58 non-cosmopolitan species listed for this area 25 have 


408 EIGHTH PACIFIC SCIENCE CONGRESS 


also been reported from the Malay. Archipelago, 20 from Northeast 
Australia and only 12 from each of Northeast and East Australia. Tro- 
pical Northeast Australia is more closely related to Indo-Malaya than 
to the Australian coasts to the south, having 21 non-cosmopolitan species 
in common with the Malay Archipelago and only 11 with East Australia. 

Northwest Australia also shows close relationships with Indo-Malaya 
but has a larger Australasian element than the northeast coast. The 
temperate coasts of Australia, areas 18, 19 and 22, closely resemble each 
other and have a large number of species in common. ‘They all have 
an important Antarctic element, 12% for South Australia, 11% for East 
Australia, and 17% for Southwest Australia. 

Kerguelen is characterised by the large Antarctic element, 50%. 
Of the 41 non-cosmopolitan species 14 are also found in Southern New 
Zealand and only 3 in the. Indian Ocean. 

Tentatively on the basis of polychaete distribution the Indo-Pacific 
can be divided into the following regions: Indian, with possibly a sep- 
arate Arabian Sea region; Malayan; Philippine, including the South 
China Sea; Southern Japanese; Northern Japanese; Hawaiian; Tropical 
Pacific, with a possible division into two areas by the 10°S. parallel; 
tropical Northeast Australia; tropical Northwest Australia; temperate 
South Australia; New Zealand; Kerguelen. Much more collecting, es- 
pecially in the tropical Pacific, is required before the details can be 
worked out. 


ANNENKOVA, N. 1988. (Polychaeta of the North Japan Sea and their hor- 
izontal and vertical distribution.) Trudy Hydrobiol. Exped., U.R.S.S. in 
1934 to the Japanese Sea. 81-230 (In Russian). 

EDMONDSON, C. H. 1940. The relation of the marine fauna of Hawaii to 
that of other sections of the Pacific area. Proc. 6th Pacific Sci. Congress. 
Vol. III, 293-598. 

HARTMAN, OLGA. 1948. The Polychaetous Annelids of Alaska. Pacific Sci., 
2(1); 3-58. 

WESENBURG-LUND, E. 1949. Polychaetes of the Iranian Gulf. Danish Sci. 
Investigation in Iran, Part IV, 247-400. 


TABLE I 
NUMBER OF SPECIES IN THE More IMPORTANT FAMILIES FOR EACH AREA 


DISTRIBUTION OF POLYCHAETES WITHIN THE INDO-PACIFIC 409 


Naan ow 


NYO 


NVICN[ 


VITVULSOY LSAMHLNOS 


VIIVULSAY LSAaMALYON 


VIIV4YLSOY LSVEHLYON 


VIIVULSAY LSV 


VIIvuLsay wWin0s 


VINOGAIVO AGN 


aNVIvVaZ MAN Hinos 


aNVIVEZ MAN HLUON 


SQNVISJ O4dVNUay 


VISUNK10d 


NUFLSV 


VISANATIOd 1VULNaD 


VISUNV Ta [\[-VISANOWOIPL 


SQGNVIS] NVIIVMVE, 


NvdVf NUGHLYON 


Nvdvfe 


NYgdHLAoS 


vaS WNIHO HiInog 


SANIddITIH gf 


ODVISdIHOUY AVIV 


IVONUG 4O AVG 


NOTAO 


vaS Nvlavay 


vaS aay 


24 


iy/—alfs} alls): 2X0) 


16 


13 


12 


11 


10 


AYMHRONONnANEr nM nN HOH ONnONONN TOA HOO HH 


EANOSnMMFWMHOMMOHnHONNMYANA AHO N00 +H 00 
MH NN 

AOCKHONMNHMWYHONnOONON Nn Ann nMtnhnOotdeo 
Tl An 

ANMnANMOYMOWHORPHOCOOCOOCOMNN FANN OCOONMN MOO 
1 MmHNAN 


SS DO Dials SONCCOMNMNnAYMNONOnWAN 
Co oe roam cN GND CO ral ral CN Gre OOEN 
ANE MOONATH0O 60.09 m4 H 69.69 MO HCD Em rH SHOT C0 ES 
SOtHWOoonoNn mooenocecoenoocoooonrrTr 
DENNING CYS GG ESO ISO SOO DOSS IOS 


DIV SSE ISIE SHED) SNS MNCS) I ah) CONC 


OHHAMOnOMHATRAHAMMHAMNnAMHAMMHARAH WOW 
= re Se TS ri 
ABHBOMHAWDNUMAODONTMVMMANATMMAMHRAOHAOMANS 
oO 4 MmnoinNno - rad ri coON rd 
MOMMHARDOWMDOALEPHWOODHNMHANN MOON SOD HOO 
ise) AN mre 
OMrinHrOMUOONNMMOCOnCOnnFWMOnAUDOOKMMWD 
ise) rc A) rr rr 
OMAHA BWOOMPOAMIAMOIMO AHO NOAHo O10 
N To) te! Nr ri Tl rr 
MAAMANONMOMOARATAOHONANNMAMONAN HOM WO 
rm rr To 
SEN TEND SOE AO MOTION SHON ISS SSH OS aI) apps 
AUOINONOCAAHOONANMOOCHAAMHHR TOMO P AAA AO; 
re Aw Ann 

Bes Oo ® 

VBS Se ® 
) : o 3 YVoOs 
3 SHS @ a SEO gS aoe 
= one Sir acm o + 2 gWVDTD mem boOg 
Bong? ogd SSCS Vg Se Mea Se o's Or BS 
SEESSSES SSUES CEs BES SESE EDES 
SClSDSASA SN Be PHC OF OD Dies 
Pee oRS CPUC SSG SERGE SL eee se, 
mS bE REAPER Se eS Sg Sh gegen Qe 
Bo Woagkor posers ha ecS gk os Sono 
SUnMOAHANADAZOSANOOHOOCRANIENN 


76 77 47 29 142 137 88 94 147 83184 98178 49 


218 128 119 211230 197 142 306 123 65 


Ce te er er ey 


TOTAL 


io ES oc co pc PO ume op on UGS om) 08 Go Souad nce Sim op as aaa Soe w9pen3.10% | 
pe en Ee a ee S500 60 400 ba o8 =a, we99 uerpuy | 
Pp 8 oe oe oe oe . oe oa oe oe oe O-0 se o- oo oe oe oe oe . oe oe oa aa alperjsny 4Semuynog | 
Q GB ey 9? 0¢ 88 82 86 bo os an a og ac oy 8G oe anc os ilteg canoes aRaTOMIOS 
2 hie OU Myke 2 Se Be og 86 Gd ee ao a) be eo 8 ge eh or oe ae comes acmrone 
) OB a Ge 22 6o -ob pene se a a cg oe ee Se Ie Bireysny yseqy | 
PEOTeacr) cceeiege © ee a ee ee ie elfexsny yjnog 
We OR We Wie ae ie Oe Oe oe he ne ee ho | pe eruopareg MON 
one Pl Gr Gl Ge Th Gia Cy ye Oo en ak so Ss ee ey Oey teem 
IZI OL St 93 62 &L Z& Gz 6 Ney 2s ex OS 6 OO oo Sie cine oie 66 wae a0 oe 0 oO GI puvjesz MON ULOY4ION 
0Z ieee Cen es ee Ch Vacs Oh oe en ig ee ea ge a Bie eyes aoe pees (EP SpuvIS] JopeUutoy 
68 Tg tong at ay ee ee ee, ee - 2. lor eIsous og wsraysem 
6 © 6 OQ QO 6 Be ee ee eIssudjog [e11UI9 
rg Oi ites ep esol a0 Gi eGh 20a Gs ay Gre Qe sh ee Bee eS ee eee Se ee | eee OURO Ee ISOUOLODIAT 
og Oe See eG ne ae ew 2G) Gee 10 = Ce GG eee ee 5 : Ree eee OL Spuvel[s] UvIIemeyT 
06 Cee OO GS Ghee eG Ne aP Ge. a Se ee ees ey fe als uedvp useyzI0N 
L&Z Var OCA Ele Cs aCh teri SEL e8e Gee Ge Si PEGE 36 — $CG5 ao Ba ee ge ee ee lig uedepr ureyynog 
Z0T GG Gr tO GCs asl cleo S00 eG <0 = Ge 8G ace =G 7 Te OG sa ei aA ac ary, Bag eUulyD HInes | 
LST Cee) ereOCr Ole Ok Che Ole Ole tl 8 = 6 61 cl Glee 0G 6s ae == 19 sourddrryg 
69T Se. 48) Ol SeaaIG Ok 28a 8S" 28Ts.GT 20-6 Sil acG <p SU eS 68 SOV ea Se es ee lig oSejedipory Aeley 
OST Cz BCh SCG Oe oils oO Gees ehh ee ab 10> RCI. —OUa ECO 106 ee Cbas) Gitomer nn eras oly [esusg jo Avg 
28 Ga SO CRED eC cle Gk Oe sObeG: 286 2 Ga = C2 < =Gh. 29) GGG. Wo) mcee we BGG fee alike uo[s£99 
28 G6 Bs. JN NS Ie WAL Oe = PB SG =e GOR Os OB. GBS 2 ee altc, Bag uBIqely 
| 681 Gi Gl OS A OG SI KS SG EG Ce EG) Pl YS OS IB hy i? Bin TB Tt Bag poy 
salogddS 


NVLITOdOWS9)D | 77 SG 0G 13 02 61 8T LT oT ST Las €1 rai IL 
/-NON 40 ‘ON 


S 
Fl 
a 
ve) 
~ 
oO 
19 
bea) 
of 
nN 
Len | 


SHINddS NVLITIOdOWSOD JO NOILVNIWITQ FHL Svady OM], AO HOVE OL NOWWOD Salogdg 40 waaWAN 
I WiaVvi 


"S¥aI@ SNONUTJUOD 1B SUOISaI oIJoIeJUW puUB pUR[ReZ MoN ‘UBISe[BIZSNY PUue ‘OYlovq UsoYyWON puv osouvder ‘uvAvley-Opuy pues uvrpuy 
‘astoerd 003 Jon, 1 
“SUOIJOI OJOAOSIP oq 0} AIvoddy y 


IF 901 89 96 99 OTT ZL 8 OIT T2t 02 PE 09 FS BG 06 LES GOT LST 69T OST 28 G8 GEL Uexzt[odoutsoD-uoN 


IG ZLT 86 8ST V8 OST 96 78 SFT 8FT OF LY 99 8 LO Tel LO€ THT 86T OG HI Tel Sel 122 [#10,.L 

OG eetear lea Oe SIN eel Gre G On UGE AIS ena e ent a Cpe ge ee ors a a he eee 9384U0010q 

we 0 Mit Oe G De Bt 8 we 6 7 0 0. 0 0.8 8S fe bt oO 0 0-0 x OpLeqUYy 

—- — — — —~ ~—~ — — gt gt —- —- —- KK er rr rr re ee 988} U90.10g 
o OO £0 0 © 0 0 CO CO 0 0 0 0 0 0 0 0 00 0 0 ¢ x PUeTveZ MON 
=~ 6B = 8S 6 Gl Sh 6 Bk Of 6 6 BSH Sa Se Se St SS SS aseyuoo.og 
S Lt oh OL 8 Ge. el © Gt Oe ae See OU Or 0 2 OO Ot 4 URISE[eIISNY 
= Te sk Y)- 8 Cees) Oe eee Ge Oe ruOe Ge iG et Vee a On eee Ne eee 9.8B}U9I.10qT 
< Ot be 8 Pp 8 7 yp 8 © ES Bho 8 8 7 8 7 © ft © -0 | Sotea oon, 
© —= SE Gi OI te AE Sa OE rele tell VANE OE ILS IS WIC SIE SIE SIE NE SIE 9de4U9I.10 F 
Z, OQ 176 BIL SH OE WSS HG IE SG SSG IP NO HS GE YS SH 1S dyloe q-Opuy 
ica] ae treme eens oar bere seg igre a a Gs ee en a O, OS sr a ee ee ee ee ase4{Uuoo1eg 
me Om0 0 0 0 0 QO @- Wo ORS ee eC OR Oe ie ONE ee Oe x» Oloeg ULoy ION 
Cine euemiems ee ee eee 2G ee BL Ge oe ee ase IA.7 
B) jet | O20) 0 se ee ee , sound f 
= B VY Gb & 4 Vv & vw G@ GB 1! Ve gape ore Sera eo. oe Ore nae Oy ey ie eles Oaaee OF 98BU9I.10 gq 
n S Ce GG seme Ge aul: 2 - G8, 3G EO EO -O OF Ol ie AL GS OS is BIEL , uekeley-opuy 
a Flee ae Gee! I -& OPO. Bees Pen ee Sana Gree Aas CS Se ae Ot ate aan eee adequoo1eg 
S 0 O 6G |b EOF 6 © @ © AEG eV en Ce ene) & “uo Ws @O@ © © © 4 uekBle yl 
SS Vee Vee Gel eV Sime ReGen! SVN Game Op eG ul a OM GO Se Resp ac. O Gran OS emo 93% U90.10 
S G6 UY 6 9 Ves Se ES OY 6G 6 Gf - fe Bl 6 Bil i? 8b ee TV x UBIPUT 
Ay Ci ae oe en ee ee Os CEG en pa UC) Oe ey Ga peee aSeyuoo1eg 
a an Oo SB te Se Oe) Oe Oe ee 0 Sie or ao jeordo.rq-wins.a19 
a 66 & lb te NE tell tS SSS iy GSP OS 78 BE OB Or vl EO WE SE 9G RYUII1I 
Ey It 9 3 AE OIL NG 8) I OSGOOD) Oa GS IE OS th AS AS EBL? orwmepuyy 
B us zs wes aie ie 
a) cll Wir Ike Os tH6 Be G> (fe Ce US es SEIS ts OS De Oe ke 08 SE OS Os 9.dB}U90.10g 
es Oo WH ke oY elk Wy 176 DWE BE OG OG Bi G iG jl TS Wh BS 487 1) i GS iy ey weztfodowsop 
5 i 6 ia Ie US Gi = ie a Gi ik a ae mw im 6G 6 m6 @ 28 @ Boom 

A i=} wy va a (el op) Dm 4 f Zs - ne 

a 5 4 4 4 q + | 2 8 =] ce = re) B 4 s Db jes oo 

! _ a e 5 > - 4 a a > Es 5 : 4 rs 

5 ae seein ee A ec ie ce Stee a OS 
pee ee ect bs gk a Si ie ook ae HO 
ee ee OR i ee Ea ee ae 
— Sateen pon Wee sn a 


STAD | eee 
Roe SS Bed) 


oh 
Ma 


ae 


Fa 7 


fs 


fF 
s2 


Zig ra Pesaro cls 


A NEW APPROACH TO THE DISTRIBUTION OF FISHES 
IN THE INDO-WEST PACIFIC AREA 


By LEONARD P. SCHULTZ 


Smithsonian Institution 
United States National Museum, Washington 25, D.C., U.S.A. 


Much has been written on the distribution of marine fishes of the 
Indian and Pacific Oceans. Roughly ichthyologists classify the marine 
ecological habits into three categories, shore, pelagic, and deep-sea. Al- 
though these groupings are useful there is a considerable overlap be- 
tween the zones and their limits vary in different seas. 

Shore fishes are those that occur over the continental shelf or along 
the coastal areas, and around the shores of islands; as adults, normally 
not far out to sea, and usually in depths shallower than 600 feet. Most 
typical deep-sea fishes live in the stratified subsurface layers of the sea 
and because of the uniformity of temperature and salinity in these 
areas, they may have an almost world-wide distribution. 

The marine shore fishes may be divided into two main regions: 
tropical and temperate. ‘The tropical shore fauna extends around the 
world but is definitely restricted by temperature. ‘The temperate fauna 
may be subdivided into: North Pacific, North Atlantic and Temperate 
South Pacific. 

The circumtropical marine shore fauna may be divided into two 
main regions: Indo-West-Pacific and West-Atlantic-East Pacific. 

The richest marine shore fauna of the world is that of the tropical 
Indo-West-Pacific containing, with but few exceptions, representatives 
of all known living tropical shallow-water marine fish families and a 
very high percentage of all the genera occurring in other tropical 
regions. 

The geographical boundaries of the tropical Indo-West-Pacific 
shore fauna are in general the region from the head of the Red Sea 
southward along the African coast to Natal, thence eastward including 
island groups and coastal regions of Southern Asia, northward to the 
Ryukyu Islands and Southern Japan, southward to Northern Australia, 
the Great Barrier Reef and New Caledonia, thence eastward to the Tua- 
motu Islands and Easter Island, northwestward to include the Hawaiian 
Islands. Although the boundaries of this region are ill-defined the fauna 
is mostly restricted to coral reefs. 


413 


414 EIGHTH PACIFIC SCIENCE CONGRESS 


The tropical West-Atlantic-East Pacific shore fauna in the Pacific 
extends from the Gulf of California and Lower California southward 
to Ecuador and the very northern part of Peru, including the adjoining 
offshore Clipperton, Cocos, and Galapagos Islands. 

Statements that the tropical East-Pacific shore fauna is trenchantly 
distinct from the Indo-West Pacific are only partly correct. It is true 
that the West-Atlantic-East Pacific has a very high percentage of distinct 
endemic species, but there is a substantial percentage of species very 
closely related, some the same, others of the subspecies level, common 
to both regions—on the generic level there is a high percentage of genera 
and subgenera common to both regions. ‘This condition of closer re- 
lationship is more pronounced in some families than in others, and in 
a few families the close relationships are lacking. ‘They are closer in 
the Clipperton and Cocos Islands than along the Pacific American shores. 

The statements by Zoogeographers as summarized by Ekman (Zoo- 
geography of the Sea, pp. 15-16, 1953) on the great distinctness of this 
eastern Pacific fish fauna has been based to some extent on misinforma- 
tion. This has resulted from studies by ichthyologists who have con- 
fined their observations to limited faunal areas, resulting in conclusions 
based on local faunistic concepts. There has never been published a 
single paper comparing the genera or species common to these major 
faunal areas. "Too many systematic ichthyologists are individualistic 
and have created numerous generic and specific names based only on 
difterences for the fishes of their local faunas. ‘The result therefore 
is to magnify differences by means of different names on the generic 
and specific level whether important structural differences do or do not 
exist. Zoogeographers base their differences between faunal areas to a 
large extent on the percentage of different generic and specific names 
occurring in faunal check-lists. Too many of these check-lists are pre- 
pared by ichthyologists who know only their local faunas, and have 
never had an opportunity to study widely ranging species and genera. 
This lack of comparison of the wide-ranging species in wide-ranging 
genera, and of genera in wide-ranging families, tends to cause zooge- 
cgraphers to establish barriers that exist to some extent in scientific 
names only. 

For example, conclusions have been made on the basis of the 1928 
“Check-list of North and Central American Fishes” by Jordan, Ever- 
mann and Clark. Ichthyologists are nearly unanimous in their opinion 
that the check-list elevated hundreds of subgenera to generic level and 
numerous genera to sub-family level. Thus when this check-list is com- 
pared with others of a still more local faunal concept the number of 
“distinct genera” by name is greatly multiplied. 


NEW APPROACH TO THE DISTRIBUTION OF FISHES 415 


Since there are practically no careful comparisons of the wide-rang- 
ing species and genera common to these major faunal regions too much 
significance has been given to different scientific names, which show 
neither relationship nor differences. Careful comparisons have not been 
made in a sufficient number of examples. 

I am fully aware of the almost non-existence of coral reefs in the 
eastern tropical Pacific and the Marquesas Islands since perhaps the 
time of the Tethys Sea. Ecological conditions are not wholly suitable 
in the eastern Pacific for a typical coral reefs fauna because of the mas- 
sive upwelling of relatively cold water. In addition there are few 
island “stepping stones’ forming a suitable habitat. 

Within the tropical Indo-West-Pacific region, in spite of the homo- 
geneity of the fauna, occur several subfaunas. Although extensive pro- 
fessional ichthyological collecting and study has been somewhat limited, 
enough has been accomplished during the last 50 years to indicate cer- 
tain island groups and regions as containing distinctive endemic species 
and subspecies. Roughly these regions are: (1) East Africa, Red Sea, 
Madagascar and Mauritius; (2) East Indies to Northern Australia and 
the Great Barrier Reef to the Philippines; (3) Ryukyu Islands and 
southern Japan; (4) Hawaiian Islands and Johnston Islands; (5) Ma- 
rianas, Marshalls, Gilberts, Line Islands, Phoenix and Samoa Islands 
and perhaps others; (6) The Marquesas and Tuamotu Archipelago. 
Other island groups may be distinctive, too, but to prove it more careful 
ichthyological revisional analysis of species will need to be made. 

My comparative studies of wide-ranging genera, species and sub- 
species in the tropical Indo-West-Pacific and Eastern Pacific indicate a 
much closer relationship of these faunas than has been stated by zoo- 
- geographers. As might be expected on the generic level the relation- 
ship is very close, but on the species and subspecies levels there are dis- 
-tinctnesses between Eastern and Western Pacific. Among the Island 
groups of the Indo-West-Pacific the differences show up strongest on the 
subspecies and racial level. This new approach or concept requires 
careful analysis of species and of genera on a world-wide revisionary 
basis. 

Widely ranging species (used on a bread concept, perhaps super- 
species) extending from the Pacific American shores to the east coast 
of Africa, when studied intensively with the use of statistical methods, 
color photographs of living fishes and basic color patterns of preserved 
specimens, reveal that some of these so-called species actually are com- 
posed of two, or more species, subspecies or races each more or less in- 
habiting subfaunal areas. 


A416 EIGHTH PACIFIC SCIENCE CONGRESS 


To illustrate this concept I give herewith a few examples: Family 
Acanthuridae, surgeon fishes; Acanthurus triostegus ranges from Pacific 
American region of Clarion, Clipperton and Cocos Islands to the Afri- 
can east coast. A. triostegus triostegus (Linnaeus) has the color pattern. 
consisting of a single dark spot at base of pectoral and this form occurs 
from the Indian Ocean to the American Pacific with the exception of 
the Central Pacific and the Hawaiian Islands. <A. t. marquesensis occu- 
pies the Marquesas Islands, whereas A. t. sandvicensis occupies the 
Hawaiian Islands. 

The family Labridae has a so-called wide-ranging species known 
in the literature as Thalassoma duperry. My studies of specimens in- 
dicate that T. lucasanum of the American tropical Pacific is closely re- 
lated to T. duperry of the Hawaiian Islands and that T. marnae of the 
central equatorial Pacific differs only statistically from T. lucasanum 
and represents a subspecies. Thus T. duperry and T. lucasanum may 
be recognized by slight difference in coloration of head and median fins. 
T. lucasanum normally averages 13 branched pectoral rays whereas T. 
dupery has 14. Now T. I. lucasanum averages 1 to 2 gillrakers fewer 
than T. J. marnae. 

Another common labrid Halichoeres hortulanus, formerly consid_ 
ered to range throughout the tropical Indo-West Pacific, actually repre- 
sents to subspecies or perhaps full species. H. hortulanus of the tropical 
West Pacific differs from H. centviquadrus of the East African region 
by lacking a small black caudal spot, always present in H. hortulanus. 

The Moray eels have similar color differences, for example, the 
common Echidna nebulosa (Ahl) of the tropical Indo-West-Pacific is 
represented by a subspecies or population at Cocos Island in the Amer- 
ican Pacific by E. cocosa German, which is differentiated by the blackish 
bars meeting more fully on the abdomen than for nebulosa. Another 
eel genus, Uropterygius shows similar close relationships of its numerous 
species between the American tropical Pacific and the tropical Indo- 
Pacific. 

Ichthyologists have scarcely begun the study of the relationships of 
the named genera and species in the vast tropical shore faunas of the 
three oceans. As evidence gradually accumulates, I predict that more 
and more subfaunal areas will be established in the species and sub- 
species level but closer relationships will appear on the generic level, 
if the generic concept continues to include a group of closely related 
species. 


THE ZOOGEOGRAPHICAL DISTRIBUTION OF THE INDO- 
PACIFIC LITTORAL HOLOTHURIOIDEA 


By Jose S. DoMANTAY 
Biological Research Laboratory 
Bureau of Fisheries 
Manila, Philippines 


INTRODUCTION 

Ekman in his Zoogeography of the Sea (1953) used “shelf fauna” 
for “littoral” in its widest sense. ‘The terms “shore fauna” and “coastal 
fauna” according to Ekman are frequently used by both English and 
American authors, but are not fully adequate to convey the lower limits 
of the fauna in question. ‘The littoral holothurioidea referred to in 
this paper do not cover the entire shelf holothurian fauna of a sea-floor 
to a depth of about 200 meters. The present study of the littoral forms 
of Holothurioidea is confined only to the species recorded from a depth 
not exceeding 50 fathoms, approximately half of the depth of Ekman’s 
shelf fauna. 


THE ZOOGEOGRAPHICAL DIVISION OF THE INDO-PACIFIC OCEAN 


Ekman divided the warm-water fauna of the shelf into two main 
regions: the Indo-West-Pacific and the Atlanto East-Pacific-areas. Each 
of the two main regions is subdivided into sub-regions. Although it is 
possible to distinguish several sub-regions, the present incomplete know- 
ledge of faunistic facts does not allow as yet any precise delimitation 
of the various sub-regions. For this reason, we may subdivide the entire 
Indo-Pacific region into ten distinct provinces, namely; the North Pa- 
cific, South Pacific, East Pacific, West Pacific, Northwest Pacific, South- 
west Pacific, Northeast Pacific, Southeast Pacific, Central Pacific and 
the Indian Ocean. The Indo-West-Pacific of Ekman comprises the In- 
dian Ocean, West Pacific (warm waters), Northwest Pacific (warm and 
cold waters), Central Pacific (warm waters), and Southwest Pacific 
(warm and cold waters). The Atlanto-East-Pacific comprises the East 
Pacific (warm waters), Northeast Pacific (cold waters), Southeast Pa- 
cific (cold waters) and the Atlantic Ocean (warm and cold waters). 
The two other provinces, the North Pacific and South Pacific, may be 
regarded as part of the polar areas. 


417 


418 EIGHTH PACIFIC SCIENCE CONGRESS 


THE HoOLOTHURIAN FAUNA OF THE DIFFERENT PROVINCES 
OF THE INDO-PACIFIC OCEAN 


Table I lists many of the known littoral holothurians reported 
from the different provinces of the Indo-Pacific Ocean. The Indo-West- 
Pacific area has related and almost identical species of Holothurioidea. 
The explanation of the close relationship and similarities of the aspi- 
dochirote holothurian fauna of this particular area is the proximity of 
the different provinces with their continental shelves almost connecting 
with one another. The Indo-Malayan region (Indian Ocean, West 
Pacific and Southwest Pacific provinces) has its faunistic centre in the 
Malay Archipelago.’ The Indo-Malay Archipelago is the world’s great- 
est archipelago containing large water areas less than 200 meters in 
depth. ‘There is no other region in the world richer in species than 
this particular area, and it is considered to be the “hotbed” of echino- 
derms including all other marine life. Farther eastward the number 
of known species of Holothurioidea lessens due apparently to the ab- 
sence of more records of species from the place. Various investigators 
report that the marine life toward the east is poor compared with that 
of the westward side of the Pacific, although others believe the contrary 
with regard to fishes. One of the reasons advanced for this finding is 
the direction of the main currents, which are from east to west. 

The Hawaiian echinoderm fauna, according to H. L. Clark and 
_W. K. Fisher, is closely related and identical to those of the isolated 
oceanic islands the farther to the east they are situated. The affinity 
of Hawaii’s fauna with the American shelf fauna, to which the fauna 
of the Galapagos Islands belongs, is the same as with that of the Poly- 
nesian fauna. The fauna of the Galapagos has been grouped with that 
of Hawaii and outer Polynesia as “Eastern Polynesian’ fauna. 

The tropical and partly subtropical faunistic region of Australia 
is contrasted with a temperate one. The number of species is not as 
large in the tropical shelf region of Australia as in the Indo-Malayan 
region but many species are nevertheless common to both. Many spe- 
cies of Holothurioidea are endemic in Australia, but they belong as a 
whole to genera which are also represented in the Indo-Malayan fauna. 

The Atlanto-East-Pacific is the second great warm-water region of 
the warm-water fauna of the shelf. “Table I also lists many species of 
holothurioidea common to both the tropical East Pacific and the West 
Atlantic Ocean. Ekman considered the two fauna as a faunistic unit, 
in spite of the presence of physical barrier, the isthmus of Panama. ‘The 
affinity between the two marine regions is shown not only by the holo- 
thurian fauna but other marine life including the fishes. ‘To explain 
the close faunistic resemblance between the two coastal regions which 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 419 


are separated by land barrier, Ekman postulated a direct connection 
in the past between the two regions. ‘This direct connection of the two 
oceans has been corroborated by paleontological and geological evidences. 
It has been shown that for long periods of the Palaeozoic and Mesozoic 
eras the Pacific had a direct connection with the Atlantic across the 
present Central America. This was changed in the Tertiary period. 
Again in the Eocene, Oligocene and Miocene the two oceans had a di- 
rect connection for considerable period which, according to Schuchert, 
has existed without interruption. ‘This accounts for the many identical 
forms of holothurians and other marine life in the two oceans. 

The holothurians common to both tropical waters of the two oceans 
are said to be circumtropical. Holothurians recorded from the West 
Pacific, Central Pacific, East Pacific, Indian Ocean and the Atlantic 
Ocean are circumtropical in distribution. The occurrence of identical 
species around the tropical warm waters may be understood if the geo- 
logical history of the past is reviewed. It is said that across the greater 
part of our planet an immense sea once stretched, mainly in an easterly 
and westerly direction, dividing the continents into two main groups, 
a southern and a northern group. It connected the East Pacific, the 
Central Atlantic, the Mediterranean, the Indian Ocean and the West 
Pacific with one another. According to Suess this extensive sea in the 
remote past was known as “Tethys”, the name of the wife of the God 
Okeanos. Other names given to this sea are Mediterranic, Mesozoic 
Mediterranean, Numulite Sea, Mesogee, etc. During the whole of the 
Mesozoic era and the early Tertiary Period, the Tethys Sea was of con- 
siderable size. ‘Che Indo-West Pacific, the Mediterranean, the tropical 
Atlantic and East Pacific faunas were, therefore, parts of one major unit, 
the Tethys fauna. ‘To understand the present warm-water fauna there- 
fore, it is of great importance to know the former Tethys fauna thru 
paleontological studies. 

One of the most interesting facts is that the early Tertiary Atlantic 
fauna had a distinct Indo-West-Pacific character similar particularly to 
that of the Mediterranean fauna. Many groups of marine animals now 
found confined to the Indo-West-Pacific have also been found to have 
existed in the East Atlantic Ocean. Although there was no holothurian 
reported among the echinoderms because they do not usually fossilize, 
the present holothurian fauna shows several of them to be circumtrop- 
ical. We may cite a couple of them to illustrate the existence of 
identical species around the tropical waters of both oceans to give light 
to the existence of the Tethys Sea in the remote past. Holothuria imi- 
tuns Ludwig and H. difficilis Semper are among the several circum- 
tropical species listed. Their occurrence, particularly on both sides of 


420 EIGHTH PACIFIC SCIENCE CONGRESS 


the Atlantic around the entrance to the Mediterranean and the Red 
Sea through the Indian Ocean, the West Pacific, Southwest Pacific and 
the Central Pacific, is a good evidence that these particular species were 
already existing in their present habitats long before the formation of 
the land barrier between the two American continents and that of Eu- 
rope and Africa. With the land barriers now existing, it is hard to 
explain their circumtropical distribution through their pelagic auricula- 
rian larvae by way of the northern and southern tips of the different 
continents. It is more logical to believe the former existence of the 
Tethys Sea which connected the Indo-Pacific and the Atlantic oceans 
up to the Miocene of the Tertiary Period. 

The intermigration of similar or identical species of holothurians 
within the Indo-Pacific area through their auricularian larvae is a pos- 
sible explanation of the wide distribution of many of the species listed. 
Mortensen (1925) reported that in his observation on Stichopus cali- 
fornicus (Stimpson), the auricularian larvae after the third week still 
remained for some time without much differentiation. It is safe to 
speculate, therefore, that an auricularian larva may remain pelagic for 
some time before they settle down to start their sedentary life, hence 
it is possible for them to be carried by the current to distant places 
usually in an east to west direction. ‘This also explains why there are 
more species of holothurian listed in the West Pacific, Southwest Paci- 
fic, and the Indian Ocean, which fact confirmed the findings of others 
that the Indo-Malayan region is the richest in marine life species. 

Comparing the holothurian fauna known from the Atlanto-East- 
Pacific region with those of the Indo-West-Pacific, two distinct differences 
may be noted, namely, the entirely different species of the fauna and the 
predominance of the dendrochirote holothurians over the aspidochirotes. 
Although there are few species that are almost bipolar in distribution, 
yet the few known species from the western coast of South America are 
endemic to the place. The distinct differences of the holothurian fauna 
of the Southeast Pacific from that of the oceanic islands of the Central 
Pacific may be explained by the deep ocean barrier between them and 
the upwelling of cold bottom water along the southwestern coast of 
South America. 

Among the few dendrochirotes from the southern tip of South 
America, Fsolus squamatus (Koren) var. segregatus Perrier is also found 
in the Bering Sea of North America. The absence of this species in 
the East Pacific makes it a bipolar form and its bipolar distribution 
may be explained by the Relict Theory of Theel, Pfeiffer and Murray. 
This species apparently was formerly a cosmopolitan warm-water form 
and became extinct in the tropical regions for unknown reasons, or it 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 421 


changed to a new form, thus leaving behind the northern and southern 
parts of this species as a relict. 

The Ambonesian region, named after one of the Mollucca Islands 
of Amboina, has become renowned as the locality of pioneer investiga- 
tions on the Malayan animal world. Although the Philippines is among 
the islands included in this region with the island of Luzon forming 
a triangle with Borneo and New Guinea within which groups of marine 
animals may serve as a zoogeographical indicator, the holothurian fauna 
has not been fully worked out. Carl Semper apparently is the pioneer 
in the study of Philippine Holothurioidea. Semper’s list is not avail- 
able although that of Seale with 66 different species were taken from 
Semper’s Holothurioidea of the Philippine Archipelago. Not all the 
holothurioidea listed by Seale from the Philippines were encountered 
by the writer in his survey of the Echinoderm Fauna of Puerto Galera 
Bay and adjacent waters, the Basilan Channel around Zamboanga, the 
Sitankai Reefs of Sulu, the Taganak Barrier Reefs of the Turtle Islands, 
Coron Bay of Palawan, and the Hundred Islands and vicinity of Linga- 
yen Gulf. Semper’s materials were taken mostly from Bohol and vi- 
cinity. From the 66 species listed by Seale from Semper’s record from 
the Philippines, 17 species were actually encountered by the writer, 
leaving 49 species not met yet. So far recorded by the writer from the 
different localities in the Islands are 48 different species excluding a 
couple of new species, 13 of which were listed in Seale’s check list, 
leaving at least 35 species not included therein. Adding to the 48 spe- 
cies recorded by the writer the 49 species listed in Seale’s list, which were 
not so far encountered, plus two new species, there will be, all in all, 
99 species of littoral holothurians from Philippine waters. Based from 
the collection of the Allan Hancock Foundation which the writer had 
the opportunity of going over and identifying, not much is known about 
the holothurian fauna of the other places of the West Pacific except 
those of Guam and the Mariana Islands. The holothurian fauna of 
these islands, as identified by the writer, together with those from the 
Hawaiian islands of the Central Pacific, are identical in most cases 
with those of the Philippines. ‘This is also what is to be expected from 
the other places of the West Pacific area. 

The Indian Ocean (warm waters) comprises the area between east- 
ern Africa and Western Australia and the East Indies, including the 
Arabian sea and the Bay of Bengal. Fortunately the holothurian fauna 
of the area has been worked out by several scientists. “There are around 
28 species of holothurians reported from South Africa represented in 
10 genera, all but one of which are more or less cosmopolitan or at least 
tropi-cosmopolitan. Of the 28 species, 12 occur on the Australian coast, 


422 EIGHTH PACIFIC SCIENCE CONGRESS 


but all are more or less common. ‘The East African holothurian fauna 
is represented by 32 species of 14 genera. Of the 14 genera, all but 
one (Patinapta) occur in Australia. Of the 32 species, 24 occur in 
Australia. ‘The same genera and most of the species also occur through- 
out the East Indian region. ‘The natural explanation of the similarity 
between the East African and Australian holothurian faunas, according 
to H. L. Clark, is that each is a southern or southwestern extension of 
the East Indian fauna. All the Australian species concerned are found 
on the eastern coast, evidently migrants from the East Indies. The holo- 
thurians of the western coast do not resemble those of East Africa as 
much as those of the northern and northeastern coasts. The holothu- 
rians of the northwestern corner of the Indian Ocean comprising the 
Arabian area, including the Red Sea, the Gulf of Aden, and the Persian 
Gulf, according to H. L. Clark, have 38 species in a dozen genera, all 
of which except 1 or 2 of doubtful validity occur in Australia and 
throughout the East Indies. Around 16 species are endemic to the re- 
gion which confirms the belief that the Arabian region has been more 
or less isolated for a long period. 

Ceylon, which is somewhat nearer to northwestern Australia than 
is Mauritius, has around 51 species in contrast to only 28 from Mauri- 
tius. As far as species are concerned, only 10 of the species listed from 
Ceylon are reported as yet from Mauritius, but comparison with Aus- 
tralia shows 26 species in common. Of the Mauritian holothurians only 
12 are Australian. In other words, 43 per cent of the Mauritian holo- 
thurians and practically 50 per cent of those in Ceylon also occur in 
Australia. 

The East Indian area (Indo-Malay Archipelago) includes the en- 
tire West and Southwest Pacific with the eastern part of Indian Ocean, 
and is considered the “hotbed” of echinoderms, if not of all marine life. 
‘There are over 200 species of holothurians represented in some 40 or 
more genera. ‘The genera of the East Indian and Australian holothu- 
rians are otherwise almost identical, according to the findings of H.L. 
Clark. The two small apodous genera Anapta and Labidoplax have 
not yet been found in Australia, whereas all Australian genera occur 
in the East Indies except the small apodous genus Trochodota. Ac- 
cording to H. L. Clark, an examination of the list of species found in 
the two areas reveals that 83 species of the holothurians found in 
Australia are endemic. Of the remaining 76 species, 67 are East Indian, 
the remaining 9 being New Zealand or Pacific species. “The Australian 
holothurians may then be said wtih certainty to be of East Indian origin. 

From the findings of H. L. Clark and others, it has been pointed 
out that the East Indies is the place of origin of all the tropical Aspi- 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 423 


dochirote holothurians that have spread all over the Indian Ocean and 
the Pacific areas. The over 200 species of holothurians reported from 
the East Indies with some 40 or more genera proved the above assertion. 
An area or province where there is the most number of species of ani- 
mals is usually considered the place of origin of the said animals. 
Basing it from this hypothesis, we may also conclude that the East 
Pacific area, particularly the Gulf of California, is the place of origin 
of the Dendrochirote holothurians. 

The North Pacific and South Pacific provinces, which are not in- 
cluded under the two main regions but which may be regarded closer 
to the polar regions, have the least number of holothurian fauna. The 
writer listed about a dozen species from the North Pacific and almost 
none from the South Pacific. (See chart). All the species recorded 
from the North Pacific are dendrochirotes and one single species of an 
apodous holothurian, whereas the two species from the South Pacific 
are aspidochirotes. None of these cold-water forms is endemic to the 
place. The unequal distribution of the North and South Pacific holo- 
thurian fauna is due to the unequal land masses and the differences in 
the expanses of the ocean. ‘The North Pacific has great continental 
masses with almost continuous connections between the various tem- 
perate and arctic shelf regions, although it runs through climatically 
different regions. The South Pacific is the opposite of the North, with 
wide expanses of ocean separating the great shelf regions, and with 
large tracts of abyssal deep sea. 


BIBLIOGRAPHY 


CuarkK, H. L. 1898. Notes on the Bermuda Echinoderms. Ann. New York 
Acad. Sci. Bd. 11. 

1899. Further notes on the Bermuda Echinoderms. Ann. New 
York Acad. Sci. Bd. 12. 

1907. The Apodous Holothurians; a Monograph of the Syn- 
aptidae and Molpadidae, ete. Wash. D.C. Smith Inst. Cont. to Knowledge 
35. 

1921. The Echinoderm Fauna of Torres Strait; its composition 
and its origin. Papers Dept. Mar. Biol. Carnegie Inst. Wash. Bd. 10. 

1922. The holothurians of the genus Stichopus. Bull. Mus. 
Comp. Zool. Cambr. 65. 

1926. Notes on a collection of echinoderms from the Austral- 
ian Museum, Sydney. Records Austral. Museum Sydney, Bd. 15, No. 2. 

1928. Echinoderms from Australia. Mem. Mus. Comp. Zool. 
vol. 55. 

1946. The Echinoderm Fauna of Australia; Its Composition 
and its origin. Carnegie Institution of Washington Publication 566, 
Washington, D.C. 


424 EIGHTH PACIFIC SCIENCE CONGRESS 


DEICHMANN, E. 1930. The Holothurians of the Western Part of the At- 
lantic Ocean. Bull. Mus. Comp. Zool. vol. 71, No. 3. 

1937. Holothurians from the Gulf of California. The Tem- 
pleton Crocker Expedition, 9. Zoologica, New York Zool. Soe. v. 22. 

1938. Holothurians from the Western Coast of Lower California 
and Central America, and from the Galapagos Islands, Eastern Pacific 
Expeditions of the New York Zoological Society, 16, Zoologica, New 
York Zool. Soc. vol. 28, pt. 4. 

1941. The Holothurioidea Collected by the Velero III during 
the years 1932-1938; pt. I. Dendrochirota. Allan Hancock Pacific E'xpedi- 
tions, vol. 8, No. 38. 

1948. The Holothurian Fauna of South Africa. Anals of the 
Natal Museum, vol. 11, pt. 2. 

DoMANnTAY, J. S. 1938. Littoral Holothurioidea of Port Galera Bay and 
Adjacent Waters. U.P. Nat. & Appl’d. Sci. Bull. vol. 3, No. 1. 

1934. Four Additional Species of Littoral Holothurioidea of 
Port Galera Bay and Adjacent Waters. U. P. Nat. & Appi’d. Sci. Bull. 
vol. 4, No. 1. 

19386. The Ecological Distribution of the Echinoderm Fauna 
of the Puerto Galera Marine Biological Station. U. P. Nat. & Appl’d. 
Sci. Bull. vol. 5, No. 4. 

1953. Littoral Holothurians from Zamboanga and Vicinity. 
Phil. Jour. Sci. vol. 82, No. 2. 

1935. A Brief Summary of the Pacific and Atlantic Holothu- 
rioidea of the Allan Hancock Foundation Collections. Phil. Jour. Sci. 
vols 1825) Now 2% 

19538. Some Littoral Holothurians from Guam and Vicinity. 
U. P. Nat. & Appl’d Sci. Bull. vol. 12, No. 4. 

1958. Some Littoral Holothurians from Florida in the collection 
of the Allan Hancock Foundation. Phil. Jow?. Sci. (under publication). 

— 1954. The Marine Fauna of Taganak Island, largest of the 
Turtle Islands Group with notes on the Ecology cf the animals en- 
countered. Phil. Jour. Sci. vol. 88, No. 2. 

Epwarpbs, CH. L. 1905. A quantitative Study of Holothuria atra Jaeger and 
the reestablishment of Holothuria floridana Pourtales (Holothuria mex- 
iwcana Ludwig.) Science N. S. Bd. 21. 

EKMAN, 8. 1953. Zoogeography of the Sea. Sidgwick and Jackson Limited, 
London. 

FisHer, W. K. 1907. The Holothurians of the Hawaiian Islands. Proc. U. 
S. Nat. Museum, Bd. 382. 

HEDING, S. C. 1929. Contributions to the Knowledge of the Synaptidae—lI. 
Widensk Medd. fra Dansk nature. Foren. Bd. 88. 

——————__ 1932. Echinoderma III: MHolothurioidea 2 (Fam. Synaptidae) 
Beitrage zur Kenntnis der meeresfauna Westafrikus. Bd. 3, No. 7. 
Kent, W. S. 1898. Beche-de-mer Fisheries. The great Barrier Reef of 

Australia; Its Products and Potentialities. W. H. Allan & Co. Calcutta. 

Lupwic, H. 1888. Die von Dr. J. Brook in indischen archipel gesalmelten 
Holothurien. Zool. Jahrb. Bd. 3. 

Lupwic, H. 1894. The Holothurioidea: in: Reports on an exploration off 
the west Coast of Mexico, Central and South America, and off the Gala- 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 425 


pagos Islands, in charge of Alexander Agassiz, by the U. S. Fish Com- 
mission Steamer “Albatros” Nr. 12, Mem. Mus. Harvard Coll. Cambridge, 
Brie NiO. oe 

MitsukurI, K. 1896. A list of Holothurians known to occur in Japan. 
Zool, Mag. Bad. 8. 

1912. Studies on Actinopodous Holothurioidea. Jour. Coll. Sci. 
Imperial Univ. Tokyo, Bd. 29, Teil 2. 

MORTENSEN, TH. 1925. Echinoderms of New Zealand and the Auckland- 
Campbell-Island. III—V, ete. Vidensk. Medd. Dansk Naturn. Foren, 
Bd. 79. 

1938. Contributions to the study of the development and lar- 
val forms of Echinoderm. Mem. Acad. R. Sci. et Lettres de Denmark, 
Copenhagen, Sect. Sci. 9, Ser. 7, 3. 

OusHiMA, H. 1914. The Synaptidae of Japan. Annot. Zool. Jap. V. 8. 

1915. Report on the Holothurians collected by the Albatross, 
etc. Proc. U.S. Nat. Mus. v. 48. 

PANNING, A. 19282. LEchinoderma III. Holothurioidea I (Fam. Holothu- 
ridae): in: Michaelsen, V., Beitrage zur Kenntnis der Meeresfauna West- 
afrikas, Bd. 3, No. 5. 

1928b. Uber das optische Verhalten der Kalkkorper der aspi- 

~ dochiroten Holothurien. Zeit. Wiss. Zool. Bd. 132. 

1929. Zur Kristalloptick der Kalkkorper der aspidochiroten Ho- 
lothurien. Mitt. Zool. Staatsinst. Zool. Mus. Hamburg, Bd. 44. 

1929. Die Gattung Holothuria. Mitt. a.d. Zool. Staat. u. Zoo- 
log. Mus. Hamburg. Bd. 44. (1. Teil). 

1931. Uber die Kristalloptie der Kalkkorper der Seewalzen 
Zool. Jahrb. Bd. 49, No. 2. 

———— 1934. Die Gattung Holothuria. (2. Teil) Mitt. a.d. Zoolog. u. 
Zoolog. Mus. in Hamburg. Bd. 45. 

ne loos ie) Gattung Molothuriay) (3. Leil) Mutt Ja-d. Zoolog. 
Staat. u. Zoolog. Mus. Hamburg. Bd. 45. 

—_—— 1985. Die Gattung Holothuria. (4. Teil) Mitt. a.d. Zoolog. 
Staat. u. Zoolog. Mus. in Hamburg. Bd. 45. 

1935. Die Gattung Holothuria. (5. Teil) Mitt. a.d. Zoolog. 

Staat. u. Zoolog. Mus. in Hamburg. Bd. 46. 

PEARSON, J. 1903. Report on the Holothurioidea collected by Prof. Herd- 
man at Ceylon, 1902; in: Herdman, W. A., Report to the Government 
of Ceylon, on the Pearl Oyster Fisheries of the Gulf of Manaar. Teil 1, 
Suppl. 5. 

———— 1933. Notes on the Holothurioidea of the Indian Ocean. I. 


The Genus Holothuria. Spolia Ceylaniea, Colombo Museum, Ceylon 
Bds) 9: 


1914a. Proposed re-classification of the Genera (Mulleria and 
Holothuria). Spolia Ceylanica, Colombo ‘Museum, Ceylon, Bd. 9. 
————  1914b. Notes on the Holothurioidea. II. The sub-genera Ar- 
giodia and Actinopyga. Spolia Ceylanica, Colombo Museum, Ceylon, 
Bd. 9. 
SAVILLE-KENT, W. 1893. The great barrier Reef of Australia; its products 
and potentialities. London, 


426 EIGHTH PACIFIC SCIENCE CONGRESS 


SEALE, A. 1911. The Fishery Resources of the Philippine Islands. Part IV. 
Miscellaneous Marine Products. Phil. Jour. Sci., D. Gen. Biol. Ethnology 
and Anthropology. vol. VI, No. 6. 

Sivickis, P. B. and Domantay, J. S. 1928. The Morphology of a Holothu- 
rian, Stichopus chloronotus Brandt. Phil. Jour. Sci. vol. 87, No. 8. 
VANzY, C. 1905. Holothuries recueillies sur la Cote Francaise des Somalis. 

Bull. Mus. d’Histoire Nat. Bd. 11. 

VERRILL, A. E. 1902. Additions to the Fauna of the Bermudas from the 
Yale Expeditions of 1901, with notes on the other species. Transact. 
Connecticut Acad. Arts Sci. New Haven. Bd. 11. 

WHITELEGGE, T. 1897. The Echinodermata of Funafuti; in: the Atoll of 
Funafuti, Mem. Austral. Museum Sidney, 3. 


VAdIOINNHLOIOH ALOMIHOOGIdSV 
VddiOlIuNHLOTOH OMIOVd-OGN] ‘IVNOLLIT AHL dO NOILASIULSIG TVOIHdVUDORDO0Z BRL 


I Wlavi 


& z 
oN | | | Se | | H | | x | | Tadweag sisuapyo "Fy 
— 
a | 6 | | | | 2 | | | : SIMpny sisuamoqg “yy 
S | | | | | ieee =| | | suruusg D7D220 
= | | | | | | | | | “19 (DIYaspoyog) —viUNYI010 7 HMNSHL 7999009“ H 
ey | | | | eo | | | | AVI TH Pbojown 7 
= | | | | | | | | (dasovp) 0429 Durapojn pf 
sal | | | | | | | ‘[9euLL 
S | | | | | | | | | SISUAUWIOQUD “I@A DLVD “ET ae 
o % | a | 2s | | | a | x | x | x | | ‘deduleg sisuaurz0qup “7 | IdSoVeP VL7ZD “PT 
q | | | | | | | | | | Ssh BR UO sisuayonpp. “yy 
: ! [PG vzJUspunbuvs vr4nY1010 FY 

4 | | ¢ 
fs a | | eee eee | | Aazove snhin vriyospoyog (tas0vpe) subi “yy 
2) zs 
& | | | | | | x | prenor 
z | | | | | J | | | “OH WUDINO| “TBA Dgoeee “HI 
S) | | | | | | | WROD I ‘H sopadisuap “Hy 
eS | | | | | | | feyUapEg syyuny v140NY20]0 
2 [a ae ese eee al paws 
z 2 | 28 | 2s | | x | | x | x | | snipjnapU (sodjooy) TIdW9aG Mj/odIWALD “TT 
Aa | | | | | | | sndyppsodg SunqyzvL “HT 
5 | | | | | | | | qpuBig vypjnoDm DI4nYI0]0H 
Z | | | | | | | | | AIBYS]T vLafynwun ‘H 
Es | | | | ee | | | | WARIO YT HL sisuawmaqyo -Y 

| | | | es | seal | | iadweg nppanav “Fy 
Z | 
S x | x | | | | x | x | | | Jaduag 42a7Usaarq7p 14nY40)0 7 
5 | 
2 é s 
69 Nvg9Q | NVd0O /91lOVd | O1aloVd | O1aIOVd | OIsIOVd | OlaIOVg [OlaIOVg| olmtovg | o1aIOVd | orsIovg 
pe ay NVIGNJ ie aS ‘HN | “M'S | “M'N | tsaM | asvq@ | Hon0s | HLUON WANONKS AWVN OdILNGIOS 
a 


EIGHTH PACIFIC SCIENCE CONGRESS 


428 


[aces lee | [sc | eect | ac | | SIMpPNT D7PDUGIs D14NY}0]/0H uosse'y szjnpa “FH 
| | [ | | | | | fuossey synpa Gurdasy 
| | | | | : | | | YAV[O LH stsuaworwanba.f yy 
‘suluueg $2720 
| | | | | | | -¥ fy (2pyqosou) 1442010 H 
| | | | | | | | | ‘uueur 
ies |e oye Xtc | 83] | | | prpa spoysyp vbhdoujoy 
| | | | | | | | | | feyoeeyy vynaivd visaynyy 
| | | | | | | | ‘uosIved DNnaspd viporbsy dedwesg syoyfip *H 
| | | | | | SE1BID 
| | | | | | "Tl ‘H Dynasod vihdourjy 
| | | | | | | | | : a BIMpNT MyaILjaIp “pL 
| | | | | | | 25 | | | SUDO H DUC LOO Up EDM e ROME SuIpsyT wMuowoorp - py 
| | | | | | | | | | (exuses) xno1d4sad “HY “xva 
Se oe sl | | | | Feats aaa | | | alah “Ith pvasauro-cosnf “HF 
| | | | | | ; | | | : fIaseep Da1auzo-ousnf *H wepaidad “k8s pso1und “jy 
| | | | | | lees | | | Aujuemog sysuow Avjuemog 
| | | | | | | | = | “ddypyd “LBA Da19UjI-OVsNS *H | ssuauddypyd “ea wsoino «zy 
| | | | | | | 2s | | [°UL 
| | | | | | | | = | DLQNLOISN{ “IBA DsO1UWNd * Fy 
| | | | Sesceet hh se 5] | a3 
| | | | | | | | : | -aBf VaLawra-oosnf Vit2420/0 BIMpNT vso2uns “7y 
| | | | | 2s | | ES | | | ID “TH sxynwno “4 
| | | | | | | eed | SIM i 
8 | IMpNY vuvqno Ty 
| | | | pe | | <5 | | | : AIVIQ "TH vowosa “Hy 
| us | | | | x | | x | | | (todwuieg) 439nj09 Durapo)DH 
| | | | | | [ | SVeyusfeg sixhid M141n7190]/0 1H asdurag 49qnoo FT 
| | | | | | | | | BYUIES Myayaynd M14NY70]0 FT 
x | x | x | | x | | Bx: | | ‘ypueig swaosp.aUu (4pueig) 
| | | | | | | “29 (DpOLIYIOUWD) snloyrr1g SUBDSDLIUID M14NY0]0 FT 
pos ale] eee eee 
SNEBIO) Nva0Q | OIdIOVd | Old1IOV | o1aIovg OIMIOV_ | SldIoVd ! olalovd | OlaloV J | OlaIOV” | olalovg 
ee NVIGN] | ve “1S “aN "M'S "MN | LSM | ISVG@ | HINeg | HLYON WANONAS QWVN OIMILNSIOg 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 429 


ete le i | Leal | | | | : BxUI[S symuny 1 
| | | | (Sexes | | | | MARIO “TH vumnday “Hy 
| | | | | | | | | | uueUYyoledg twnupoly “py 
eel po | S| | | | | ami Mohawsuoy “71 
| ieee ae | | | | | | | TOYS ssuaunuvawy +77 
pe | | | | | | | | | ; UosSdBod DIHUDY “HY 
| | | | | | | | | | Jol 
| | | | | | | | | | -19q snouobnynd (m4nyI0) 

eed eee: = (fees eee Slee |e ree | -OH) sndoyoug ‘muoivynd -y 
| | | | | | | | | fuossa'T DILDIDUOM MLLNYZ0]0 FY BYULEG wafwae jy 
| | | | | | | | | feyuapeg 4af-4hG sucoyoug | 
pats seer | | (aera |eara| | Jeduiwg 19ffavio aodweag taffav.0 - py 
| | | | | lee | | | (mryospoyod) — BiH42010 H 
| as | | | x | : | x | | | todwuag syons6 TZ 
| | | | | | | qadwag 
| i | | | | | anushd “keA snaopurta “fy 

ee eae [eee |paceoceaeel Ee ace a| | ‘xedueg snaopurwa “HY 
| | | | | | | SERRE. eG BYULpES wuyusoqn6 “jy 
| | | | | | | -Laqgn)6 “AVA DILLQN) DLLNYI0}0 
| ee ni | | | | | | | | SuIpoyy peouriupes. YL 
| ieee es | | | | | eee || [POUL Yugns-oasnf “yy 
| | | | | 2s | | | | [ ; dasaepe vppzaUNnd-oosnf Wee 

x x AOYSIE Veavarjo-oasnf “Ty 

| | | | | | | | | 1 

ee leaeer ses | | | sie eee | | Peesas| uuReWydIEeg wossof * yy 
| | | | | | | | x | | Avyuewogd waysy "pT 
| ee sated| | eae | | | | [ [Pe VjNnLa09-o9snf{ 1.1nYI0)0 H Jadulag vznynvyUM-oan)f “TF 
| at | | | | x | | x | | | Jodwag snaonuewa 2.1nY20]0 [I 

: | 

NvG90 | Nva90 | OldIOVd( OIMIOV | OIAIOVA | OMIOVA| OlMIOVd | OlaIOV | oratovd | OIMsOV_| o1aIovg = ; ‘ 

eae, NVICGNJI Aaa as ‘AN “MS | “MN LsaM | LIsva HLNOg | HLYON WANONAS AWVN OIMIZNaIOS 

-N - | | 


EIGHTH PACIFIC SCIENCE CONGRESS 


430 


ByUsleS vppungvhva vi.11Y40]0 


| | | | | | 
coe ewe S| | | = ss | Scar || secre | eee a | pueig »071ds09na) (qpuerg) vzopdsoona, -y 
| Berean | | | | ele | | | | (mpouyvowmnhy) snaoyars 
| | | | | | | ores | AvyuBu0g s2s 
| | | | | | | | | -WIU0ILD)I “IBA DMSOUIH1QUA) *}T 
| ie | | | | | | x | | Ag[[ezuUsIeVpL MsoUrhrqzUa) “Ay 
= | | Feel | | | Ee | | POL sunpuy, pr4ny20j0H eyua[eg suanbuny “1 
| | | | | | { | x | | muses wuraysiLafay sndoyayg CCR IETEAS) wUiaysLafas * FT 
| ss | | | | car =) ell | | IIyIN[G wradwy) viunyyo70 SIMpnN] Yyuny 
| | | | | aes | | | FANS VGnsr “FY 
| | | | He | | | | | ip ADUVA BW AIYooy vibazur -j7 
| | | | | | oes) | | (BEMpN'T) s2wHysup vuLopo}yH BrMpary syhysut “7 
| | | ee | | | | | x | | Jaduag pywusLour "FL 
| | | | ae see | [esac = | | HIRI ByUapeS syeqvyur “H 
i | | | | | | | "Tl ‘H Duwupdhy pi4ny}0j}0 
| | | | | | | | x | | ; AvyueULO”g 
| — | al | | | apiuipny “AeA suatypdur “H 
| | | | | [eaeees | | yeIO “1H 
= | | | | | | | 40]09U00 “LEA suarjvudur °F 
| | | | | | | ‘RO vans -H| 
Ss ee eel | x adie see ga a | sqaedurey saunydv *F 
| | | | | | | BYUZlOG $nj]9}0Q 24NY}0]0H ({BYSIOT) suayndur “HH 
{[eYSIO, suayndwi muvpnysry 
| | | 2 t 
(Pee eee | lie esc le xc | | | qadwag syqowm "TY 
| Pee | | | | | | | BID “LH Dunprio}s “A 
l= x | ec | | j= x= || | SUELO I Ga ET SIMpNT supzvwe “A 
| | | | | | | | | | SISUIWDULLNS =DiLNY}OIO FT 
| | | | | us | | | | | ! yatel[O 
| | | | | | "T ‘H paowoy 11.4nY}0]0 7F 
Nva0Q | Nvad0O | OldIOVd | o1aIovg | O1aIOVd] o1MIOV | OlaIOV_ | O1a1OV_ | O1MI0V_ | O1MI0Vd | O14I0Vd 
ee ee Na W'S ‘aN | “M’S “MN isaqM | Isv@y | HLNOS | HLYON WANONAS aAWVN OILLNSIOS 


UBSUDJLOPL DIIUMIIZOOU * FT 


AVJURULOK, WasSUazZLOW * FT 


a a | | 


| | 


mn 


ee ee | | | | | | 


eyuslpeg 40f1uhh sndoyou4g 
“D) BO vjoLospf “H 
Sy) WO DjMyUNdODsSN{ “HH 
fy 7 OQ vawwovf “H 
fapazuasvyy “ABA D7PLOIOP * FT 
[2A wvajovw -H 

fuOSSaT = D2.t 
-papuou (snjosq) DI4nY20)0H 


SIMpn'T 
WQIOU “AVA DIWAQN) v14NY70)0 


(UOSssa'T) DMiULvaNUOW *;zT 


SIMpNT tqgoow *fy 


SIMpN'T vysapow * 


SIMpU'T wwasjapyonu “yy 


YLPIN “JT “H puosadosovw * yy 


41210 
‘"T °H D24aaqns D1LnY2070 


ypuerg srswajpn D1.LNY70]0 FT 
puelg s2swa? 

-pn (p2041yY90d]0D) sndipnLodg 
{193 

-at DIDLOWLDU §=DLYyospoyog 


tadwag msuagupwm "jy 


(1adoVP) YIMLOWLDUL * FT 


uuewUyoiag 2/2947 


SIMpPN'YT wwayjazuawmu "FY 


x 


‘IVA LLOPJAZUALDW —-DL.LNY.0}0 FT 


SIMPN'T 12qQ90Uu “IBA MI24QN) * FT 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 431 


| 
| 
| 


oralovd 
TVuL 
-NaQ 


OIOVd | o1sIOV 


OMIoVd 
“MN 


| 
| 


PpOIdIOV d 
HLUON 


BuULU 


-ueg pag (9/0470491N) “H 
Toq apwvjordyy 114714 10]0 H 
{19PIN[G M02LQn) Y249/)NT 


BYUI[9G MI.UQN) M1.UNY20}0 Ex 


WANONAS 


QAVN OWMILNaAIOS 


EIGHTH PACIFIC SCIENCE CONGRESS 


432 


uuBeWydieq wossofopnasd yy 


| ae = 
| x | | | | | | | a | | = AQUBA FB Aalysoy, vydwmosd * Fy 
| | | | | | | pal | exudes sdoouisd -A 
| | ll | | | | | | BrMpny 193910 “A 
lease = al | Sear ae | | (pomeerse|| | eeseacaaes| | | ByUapg wxvoinwad “EY 
| aes | | | | | | | (SIMpn'y) xpuz24ad Duiapo)y Zimpny xpuiysod -y 
, | | | | | | | | | | (qaodureq) vawnd vuiapo)py 
| 2S | | | | | | | STEN SPL qiodwuey vasnd * 7] 
| | | | | | | | Dawwnd "LWA DILLgN) ViLNIYIO)GH 
| | xs | as | | | | | | [ ucssayT pupianiad - Fy 
| | | | | | | | | AvpuRWOg 
| | | | | | | | | | sisuanqad “eA suppsvd +p 
| | | | | | | | | (Byus[as) syppand purapo)y y east 
| | | | | | | | feyuaps syqpyur “FH 
[eames aE exc | hae || Nees Sasol cee al | feyuepeg vaijipqns “Hy 
| | | | | | | | ‘SIMpNT vuisfasad “HY eyusleg syppsnd *y 
| | | : | | | | ‘sImpn'y D3neu2) *H 
| | | | | | | ‘SIMpN'T siubhisura m4ny10)0H 
| | | | | | | x | | uuBWydIeg sdaou1ldDsod “j] 
[ease | eee] | [ecm] | eereaceers| | | (eyuafes) veoppind - Fy 
| | | | x | Aequewog sis 
| | | | | -uasobvdy) v6 “les DIDypadva “YH 
ee sca | | | | | pos | ead PIDADa “HT 
(a | | fe ee | | | | AIyINIG vdoLinxo “Fy 
| exci | [Parscas| | | | | IadaVepe V702]900 vLyospoyog (ta3oep) 077000 *H 
eee | | pemeel | | | | Bapny vovano “1 
| | | | | | | | quod 
| | | eax | | | | “we T wabmzuny viunyzojoH| Brapury syrqnzow pp.L07/70}0 FT 
| | | | | | | | | 
Nva0QO | NvGOO {olMlovg | oraiovg | ola1ovd | olaIovd | omiovd [saa AIOV I | 
OIL NVIGNT TVaL “aS “ON “MS "MN Isa MA ISva WANONAS QWVN OIMILNgINS 
-NVILV | -NaQ 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 433 


| | | x | | | | qytodwmey vzpnoun., “Ay 
| | | | | | uaBMYseg 2004) “7 
| | | in| (eee | : dadwag pumissinua) *H 
oe || | | | | : x | SIMpN'T s2swawmpurns "Ey 
| | ea | | | : = YIVIO “TH vpwaaqns “Ay 
| es | eae =| Ree sadwag pvlafuunnbs “1 
| | | | nee x H 88. AtBID "1 H 701000 “A aL pLafneds °F 
| | | | | Brwpuy wopms “7 
| | | | | | : ee Aasevpe VLqnos wunrepolvy 
[Paso oe le ee Sioee well cya x fuosivag sisuayjvh *H LasoVpe MLqnas * py 
| | | | | | led M/apP9 “HH 
i | | | | | seyuapeg 82.4027 “H 
| | | | | x | Xx BYyUZlIG wUuawiaspf 1.0N790]0 FT aeVlyO a[ep woyauys +7] 
| | x | | | i SIMpN'T vwaowns ‘H 
| | | | | Eee AeueWO 
| | | | | | YDYSLOL “LBA SLLD}NIADS * ET 
x | | | | x | | x i a led stenjnaans * FT 
| 2s | us | | x | | x A9YINIS eae DuUVOIOn ers png wsebnt “Ty 
| | | | | | | | fayoeeyy sndiinajd sndshp (eyuafes) oprb24 “TT 
| | | | | | | ByUapS supro14 sndoyos 
x qtodwueyT swaasajyjowa.s °F 
| [ | | | | | ape T Mh H 
| | | | | | | suluueg vpynd “yy 
a eX | | [pees i 88 | *SE6L 
| | | | | | | AVYURWOG DVLZD VIUNYI0I0 LT Byusag vynd “PT 
| | | | | | | . ‘ypueig sdovy2an ajay .OLOUY 
x xe | 5K | | | 5x | | ee | | Vyuslag vpyayana vr00Y30)0 7 
| | | | | | | | | : 
NVd9O | NVG9O | OIMINV_ | o1gIovd | o1aIoVd] d1aIOVd| OIaIOV | o1m1oV_| Olalovd | olaIovg) olmiovd 
OL NVIGNJ | Ivag “aS ‘TN “MS “MN LsaM | LSVo nanos | HLUON WANONAG @NVN OMnLNaIog 
“NWILV -NaD 


EIGHTH PACIFIC SCIENCE CONGRESS 


A434 


| | IPA aveuvjoidoy * Hy 


| | STOSIVEP $aZwUIyso DiLazIN AT 


| 
| ‘TaIny 
x x ce | | x x | x | -nSq Ar DILGN) “LA DIUGN) “HL (1a}yIN[g) vI2.1gGn) “VW 
| | | ‘eyueteg palsgn) pruny7010 7 | 
| al Serle f9qINIS wogny “WW ) 
x | x | aK: sg IIZIVP VLOUNIA) DIAN (daseef) vicwp9a) “Vy 
| | x | xe | 7 Byus[eg wsowmsof Disaz]nNY (Byus;es) DSOWLOL “V7 
| | K | seyueur 
| | | i | -OG 221740Q “AVA saqUMyaa “V7 
| SuIuUuUeg saz : 
32 | fe x x -1yaa (pGAdour9y) vrunyzojoy| (tose) saquuyoo vifidoujoy 


| | | | AIO LH wpun + 


| | | Jadweg spunun sndoyoyg 
| x | x ! =f aX 5 pueig spw (1os9ef~) sHUunUuD Y10UW9]0YT, 
| { | | =DUD (D70Ud/0Y TT) VILNY1010 FT 
| | ‘ieseve spupun Huvdary, 
| 
| 
| 


| | x x ByUalasg WUNUDLLIM WAS “9. 


! Saree uuewyoieg 
| | WNUDILLIWD SDUMapOpigD'T 


[eset uuemMysieg aponz * py 


x | (IPA) roepwzym ajayzos0174 9 topwzryo + ET 


| Tedweg sys “Fy 
x H x x | x ‘SIMpny suoulaps *y tadwuag sisuai1a “ET 
| | TodWagG DwissInus? H14NYIO}O 
sUOSIBIg siswarz1ea HMiyIspoyog 


x x Tedweg sijqowu? 14% Yy}0)0 H BYUZjIG MsOINLLOA * fT 
| | (8 
| | | -UZ]aG) Bpungvihva nwuiapo)vy | eyusleg 
52 3 sc se x x i x ‘ypuvig vJO/ds09Na) DPUNQVHDA DIANYIO]O 


| | | | | (DjJOLLYIOUWAY) sndoyarys | 
| | | | | | 


Nva0Q | NVd9O | O1dIOVd | o1aloVd | o1a1ovd oaIovd jomovd |oiovd | oaiovd | oIovd e 
O1L NVIGN[I IVUL “aS “TN “MN LSa MA. LIsvay HINOS HLUON WANONAS GWVN OIIINGINOS 
-NVWILW -Nqa9 ! | 


II Vd 
“AS 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 435 


) 


“g | 
S| 
Ss 


240gnip BUtoy snrqnUoLpDg 
‘UlId[IeH 4yoqnip 

TSA sytwassp 

‘Joaty snzopnanUM “g 

‘SIMpNT suptsa “¢ 

1adWeag wqow “CS 

‘tedwag sisuarfiny sndoysrg 


/ByUsleG snzDUoIpHG 


sndoyaug 


“ 


uoSIBag sUuazja0xa pMipoib1y 
!SIMpN'Y swazjea0xe M1L9)INJY 


UOSIBIgG swWaprzDL 
-4as (vbfidowijopy) vi1n42010 7 


(StImMpny) suazjaox9 ajayqosorpy 


UOSIBIT SWaplzDLIas “VW 


x 


‘ULIG[IayY «Y7PNIAaLgQQD “H 
<SIMpNT v02,d09 "FT 
S(8yUs[eG) DynaLsvd M14nY20]0 
‘ByUsleg vINALDd “Pl 


xx 


(eByue[ag) Ds 
-2q0 (vbfidourjop) nienyz0j0 HR 
feyUs[ag Msaqo v24a7)NhT 


Avyuewmog 
S14612 “AVA DADINIDU DYYPOLHLY | 


x 


{ 


ypueig vzDjnNIaDW M24NY70]0 
fByUsTeS szzqow V2.La7)/N PT 
{(qpueig) vvynovu viporibuy 


(exyuses) Driciwnd “W 


(eByUsjaG) wMsaqo “V7 


Avquewog 
SIUH1, “IBA si7rqou “PW 


(Byuefeg) syqow “vy 


Rss 


‘D B OD VpDJOIUL) VI4NY70]0 
puelg swmipw wMLa))N 


| 
| 
| 
| 
| 
| 
| 
| 


NVa00 
OIL 
-NVILW 


NvadoO 
NVIGNJI 


oldIoVd 
TWaL 
-Na9 


o1s1ovVe, 
as 


olloV 
“AN 


| 
| 
| 


| 
| 
| 
| 
| 
| 
| 
| 


DD) BD OD sityypwU 114NYW4070 


BYUsPG sunruvAa “PY 
SSIMPNT DUDIzINDW D1La)) NT 
72) 


y 'O vupnizinyvum wMuNY20]0 PT 


olalovd 
“MS 


NIMIVd | 14love 
“ACN | LSaM 


o1alovd 
LSVq 


| OIMIOV 


olaIovd 
HINOS | HLU0N 


WANONAS 


Gora 0) 


SIwDIUL "WT 


GOES=0) 


DUMIPLNDUM ~YPAdOUIQIV 


GWVN OldILNaIog 


EIGHTH PACIFIC SCIENCE CONGRESS 


on) 
— 


| | | | ae radueg 

| | | | | i IL ole | WUYUsLAY “LBA SNnzDHaIDA “Gg 

| reese agen iene iors eine Sole ee all, Jadwieg snzpGaiva “sy 

| | res eee gil emery | eae vee : ile = Bmp] sesuanyons -g 

| | | cae eel GeI0 “I H) «| wAeIO "1 CH sswouneund -g 

| | | | | SISUIWMIALDE =SNACYI4SDLDG 

| : [ | ; (exe Seis a E plodwey snxopyind *g 

ees | | : a} x | x 4 _ Jadweg ospu “9 

| | | | aMIQ sunynuis sndoyoug 

| | | (ox | | | ‘o[PULH (uoyNH) siyjow “sg 

| | | | | | 3 Apueq sunjnuis sndoyoug 

| | | | \ sU0FINFT $2770m "FT 

| | | = | | | amig UubURepny “g 

| | | | | | | ulsnsny snasor “gs 

| | | | | ‘uysn3ny snzow.n “¢ 

erases | esata hoes | Kellie xt ea| H | ‘peau sno BYUIlEg snoiwodnl +g 

| | | | | | | -1dh} “AVA snowodnl sndoyoug 

| : ik. | | | < , | fVyUslag DzPDWAD DILNYI010 FT 3 5 

| | | | | | | | Joys sypordouy ‘g 

| x eee | x Seal ‘redweg BYUapog suaszsoy “¢ 
| | Z | snapubid “i®@A Uosffapob *g 

| | | | ‘dedueg jouffapoB -g | 

| | x 4 ea SIMpN'T snasnf +o 

| | eee ea i | : eae ee AIVIQ “I "H sedyyo *g 

| | qpueag 

| x Sd al x Stee | ie | x xe SNJOUDLO[YI (siapilag) -g qpueig snzoucL10jya -¢g 
| | fayoeeyE snoipuyha sndoyoug 

| | | | | | (uosdumg) (uosdwiyg) 

| | [ | | | snouLofypa sndoyousp.vg snamLofyna srdoyorg 

| | | oe | | F es 

| | | | | | | | | AWS snajuLofyvs me41nY42010 

Nvg9Q | Nwa90 | olatovd | orslovd| o1arovg [olaIOVg [oraIoVg /oraovd {Olalovg |oraiovd, olaIovg 
ee NVIGN] eS | ‘aS “AUN “MS “M’N | tSaM | Lsvq [Enos LION WANONAS GWYN OMILNGIOS 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 437 


(tmenseT) snain.4g aUohyy, 
ALE OMELET CH OEEaTY auohky [, 


Tea 4919920) 59 


ABY 


~WEULOG IVL0U0S “IBA sIPDUD *O 


YWIRIO “TH vjapy mucwnong 


(uuew 
Yypassv)b awohyry 


~yo1ed) 


—|—|—— |--|—— | — 


AvpUBULOG anuunUYrAD “Fr 


qtodurey snzpoudnp snjpahonia 
saduag 


sisuapiyo (snjor7g) auokyy, 


eyus[eg vupniad auohy 
mS) {eypsory, snunniad snsadvuy 

‘dadeepe punianiad HuvdasLy 
f‘uossayT vuniansad Mr1.4nY2070 


(13d 
-W9S) sisuapnyo wnpudchyry 
“) YD vsowids vzav,Uuadpy 


uueuUlysieg vida? vLawoquady 


(uossay) vumanwad “vy 


SIMpNT snoidhiz “pv 


| qayMIg su 
| -DINHWonbuinb srwunanoopnasq 


(A9pINIG) srnnHunnbuimb -w 


MIRIO "YT “He sapadifiwo) -yv 


IPA poy fp suunonoounoy 


(7224.1) 
2WaHUaoOYD snsvyoojoay 


| | | x | i | | uysnsny snssaudap sndoyoug)| (uysnany ) SNIDIIUNAILHU 
| | | | x | | | | cea ee | | [POUL wuwosuyol sndoyousvsng 
NvVa0O Nvag0O | O1dI0Vd ocateee sh OMIOV, | OMIOVd! o1wtoVg | o1a1ovg OIMIOVE | OlMIOV - a 
OIL NVIGN[ | ‘IvuL "MS | “MN | LSaM. LSVQL | Hinog | uLI0N | WANONAS QWVN OILNgIog 
-NVILV -NgO \ 


Jadwag DVpD]NIDW *7— 


PAA) TA IEC EE) Fo) 
Jadueg vpadipbuo] -p 


WIeVO YT ‘HH vanjdossy “9 


A 


eullysyQ w44adwmn) *D 


aadueg wa1u0dvl *9 


qedweg whosffapob “9 


AeyUBULOGg 


pawusLofypa “eA NzDGHUu0}a “7D 


usloy w ueqng vznhUoja ~ 


BIMpPNY vu2zU0d) DiLDUnIND 


e) 
qadweg vsoiqnp “DO 
a 


SoTMOD D2DLNI * 


(Aaue A ) 
“IBA DIOL 


sap10a20L9 +0) 


Avyuewog apjop “AeA “DLO * 


e) 
uUBUIysIEg LDLI “OD 


aadwag suahunluoa “OD 


EIGHTH PACIFIC SCIENCE CONGRESS 


pou ruuyjalyuorya - 


SIMpNT sisuajvyo * 


Tadwuag swaaseudd 


re) 
re) 
readweg pa1}19 “OD 
ro) 
ra) 


qedwseg nams0fipa * 


Avyueui0g 
SisUaUyYyn? “IBA MLah19]VI “D 


uosdwilyS viahr9)p2 DvjOnQUAaT 


(uos 
dwg) 9.19610)09 DMiunwumnang 


438 


WANONXG 


GWVN OLLNGIOS 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 439 


SIMpPNYT DUDIU[D “Sq 
SSIMpN'] Wyaay2 siwunonvopnasq 
HedwWag DUDIIL{D DILDWRIND 


(dod 


-W2g) DUHdILIfY DidDuNoNIsig 


294L avGaa *p 


LIVING 10700242 “9 


ud} 
“HAG DUDIIU{D “IBA DUU0a) "DO 
‘POUL, suwajosur “pO 
PUL wow hs vrieounoang 
‘qwoduey wows piaduvg 


NVa0O 
NVIGNI 


aIOVE 
TVaL 
-NaD 


' 


OLIV 
as 


OldISVg 
‘WN 


| 


OlMIOV 
“MS 


“MN 


OAINVg | OlaIoVd 
LSaM. | ISv@ 


o1dIovd 
HiLN0S 


pet 3 
enysoe nzynwnnbs wmupwunong 


YLVEQ TH panjpdhiyons, -pD 


(Faoduey) wows “D 


pot) 2 BnYysOE v2MI4Is “OD 


SIMpN'YT wwanr7s 


YleIQ “YT “HH sapioznwunnbs 


“i9) 


12d toedwmas +9 


uosdwung viafyndod pionquag 


uosdwijg vzyniadid DiovJUag 


Uos}1aqoy Wy Aperg wjovaens +p 


uueUydlag vnLnI0pnasd 


1) 
(uosdunyg) vniafyndod -p 


(uosdwyg) nynLadid *—D 


A9uvA W AVYOY wowwsow a 


qlodwuey pvowodvl *p 

:BYUs[aG Yp1q7D HDIiLDUNIND 
qpurig vznrU 

“WU (sopnpahjog) vjfiJanpopniD 


o1aloVd 
HLUON 


WANONAS 


(ypuetg) nym “29 


POUL syrqviiu Miwnunong 


QAWVN OMILNGIDS 


EIGHTH PACIFIC SCIENCE CONGRESS 


=) 
wt 
~s 


| | | Ee | | | x uuewMyoseg DiouU "T 
a ee = wuvmyoieg PUNK “7 
| | | | | | Seo ABjURULOG ADYIO/NIIDWUW *T 
| | | | | xs | YAR 
| | | = | | : P49 [ ESSE Bese nyopyuedojdaT 
| | | | | | aS uuRrWwydIa(yT 
eee | [ | DNHILIUD DVLIWDZUSHOI NT 
| | = | | z | = el (eyuses) sryaaps “Ny 
| | | | | | st | AvjuBWOg IPNOPMIILe “N 
| | = i x | rs | oe | | % ; | (SImMpnT) sisuaunund *N 
| | | % | | | x | uueuUyoIeg vsoqqib “N 
| | | | | | | | | BuapnyT syruas “YL 
| | | | | aes ‘zadwmeg 49qq16 euohys | (eyue[eg) 12qq28 auohyj0aN 
| = | | | | | | feyueleg 4aqqiG snjo1g 
| a | | | [ | | Suipey svumsofisn{ pMwuoss0y T 
| | | | | 3S { Tadwmag 
| | eee | | | DILDSLIVPD sriUNnINcOULYa | 
| | | | | esha, Aeyueu0g 
| | | : | [ ’DI “ABA DIVUASANDUINDG$ “FF 
| 
| u | | Weel | | a | : (ByUs[ES) Dp wWasanbuimb “sy 
| | | | | | 2 Aeyuewog aIrsos 
| | \ “IBA DZUASAaNDUINbopnasd “FT 
| | 3 
| | | 2S ; | | Sd uUeWYoIeg Dz2Ww 
= | | | | | -asanbuinbopnasd pjavzuadngy 
| | | | | | = | = UUBWIYIIOG s7wo019jzaT~ “7 
| | | | | | | | uueUyleg wnnao auohyT (By 
| | x | | | | | xX | SBYUSTES wWNINLO 8N]OIS |-uajag) wmjnao wnipmuUokhyIng 
Nva00 | Nva0Q |orsovd oratovd | arava ATaTD Van OTaID Val | OMmIa Vali OTIS [DIO WET OLaIOW A 2 z ee 
Nee, NVIGNT Na TCLS ch “M’S “MIN | IsaM | LSVM | HInOS| HLu0oN WANONAS AWVN OIMLN@IOS 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 44] 


| 
} 


| | | | | - | | | | | YI “I 
| | | | | | | | | | ‘H snumansad = snioydopiyd 
| | | | | | | | | | {[IaA vupnsad enjv770g 
| | {\- be | | | | | | {[M4oA Duvnsad sniadouy BYUSIIG syjow snjvzvgQ 
| | | | | | | | | | trodwag oyjou 
| | | | | | | | | | “ied 
| | | | | | | | | | weg wnudniad wnipluohyT 
| | | | | | | | : | ‘eyuapeg syjow snjDr9rd | : 
| | | = |= x lee 2S oe iil Soi a et eee J : —8AVIQ. TH magn auoniL (YI TH) Pegnd “a 
| | | | | | | a se Si | UUBUDIOG sIqnOnjopnasd “ef 
| | | | | { faa Fae | uueUlyoIeg sqnbin) awohiy,T, (uueur 
ee eek = | | =|; | ore | | “41ed) sruqnon awohyrhyovg 
| | | | | | | | | | w9stioy 
| | | | [pe teooe | | | | ow qUOSmoY? stUNnondOpnas_ (uo}ANET) wwoesmoy, “py 
| | | | | | | | fenysoe supynw 9 
| | | | | | | | | fu0jynF_ wwuoswoyz viununang 
| [ | | | x | | | | | WABCO "YT “HH snyauyshina *q (qtoduBey) suwapassaqur “py 
les | | | | | | | | | ‘qrodwiery swopaosoqur “d : & 
| | | | | x | | | Pun »F Apued (a1puE  Spueq) 
S| eee | ; | | | ios a | | sngouUmnjorg spunonoopnosd DIDUUWNIOIIQ DPLLDULDS UA IT 
| | | | x | | | = | | Hee enyso GEO ‘d (enysof) swaizsaa *7 
| _ | = | = | = | = | . | | | al 5 Reet) zy Bnysor sadiszwada *q} (pee19 wy enysor) sacyuquan “T 
| | x | | | ‘ejpUIHR Bw AP (9[PUrH YF Ap 
{ | | | : | -u9q +snyouivop snsoydo)fiyd|-usq) snzowsvap vzadn.jzodyy 
ees | | | | : | I. | x | | — 3 ee ae Pees TIMWIIG spMIILIQuir *() 
| | | _ ee Te a | | x i | a Seer ee eee ae eecnigs SNADWORU snwoo 
| bee | = | | =| | x I | ae : eee UEXUS LNA! gf 
| | | | AvpURBMOG NUVLQULo] 
| | x -09 ‘IRA MALOU MzID}JUAdOVdAY 
ae | 
Nvg0Q | NvgoO | OlvIOVd| Ollovd | oIMov_ | o1alovd | o1aloVd |OMIOVA! OLMIOVd | O1M1IDVd | O1aIOVd ‘paw mada, ie = in 
tain NVIGNJ es ‘a's “ON “MS “ACN LSaM LSva HLNOG | HLYON WANONAS GWVN O1MILNGIOS 


EIGHTH PACIFIC SCIENCE CONGRESS 


442 


=| | | | ese = | | | | | IMIG snzDwonbs “OD uerS1048Q D7SNGoL “q 
| al | | | | | - | | | {uaIZ194sQ sNJENQoL sN11Y490/0D 
| | | | si Seoul Eee ee oes _ AABID TH Dydsownsa “a 
| | | | | | | | | | 4AvI9 | 
| | | | | | | | | "I ‘HE snsojnosaqny vyonquag 
| | | | | | | | | ‘redmeg sdaoun “QD 
| | | | |x | | | | fied “y) RB ‘OD vsojnaLaqny “J 
| | | | | | | | | -wag snsojna1aqnz sm11yoo]0Q 
| | | | | | | | | | a) 
| | | | | al | | | | RB ‘O vsomosaqny vLLNnY10]0 : 
| | | | | | | | YIRIO “IH vaynwa00 vyovqUag 
| | | | | | | | | suossaT 
| | | | | x | | | | | SLDINGUDLPOND D14NY20]0 FT| ([PYPSOL],) sLLoynHuvsponb * J 
| | | | | | | | ‘raduieg snajn1909 “OD 
| | | | | | | | qeyosory, suppniuvipend “OQ 
| | x | | | | x { | dJaduieas snuvniad “9 (feduieg) pupiriad *{ 
ie | | | ls | | | | BIMpNT snznurw “OD (SIMpny) oynuw “g 
| | | (aon | | | | seduag wsobnl sn12y20]09 (toduiag) wsobnl “gy 
| | | | | | [P24L, 40j0981p PwUNnIND : 
= - | - | | {19]]Oz (seed) wnpoyop -g 
| | | -UdIv “A wnjorop sn1y90109 
| | | | | ‘SUV wnjoyop piurjoy 
| | | evee | | | | qioduey spdsyp -9 qaodweq svdsyp -g 
| | | | | x | | | Iaduleg siw7sand “OD Teadwueg s2unand “gg 
| | | | eax | | | UVWH Vssv.9 sN.t11490]0D UBWUyY vssvi9 *y 
| = | | | | 3 | | | PeUL iwabuajpya mana (J2°uL) 2tabuaz]}0Yyo “dd 
: | eee [ete he ee | | | : el UBUIAG 89p1078"909 “Gf 
| | | | eMIq wrjorvo09p Al (SIMpN]) s1jp44q8nD DI9D}UaT 
| | | x | ‘SIMPY 8270L78ND $42Y490]0D 
| | | 
Nvg0Q | Nvg00 |[olsIovd | ormovd | oMtovg | oaovd | o1aiovg | O1410Vd | O1sIOVd | OMIDVq| IMIOVd cs aa 
Ott eg NVIGNT IvaL | as ‘UN “M’S | CAN | GSam | isvar | HLnog | HLYON WANONAS AWVN OMILNaIOS 
-NaO 


“NVILYV 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 443 


| 


| | | | (eel | | | ByMpn'T 2449049 “d 
| | | | | ey | BIM 
| | | | | | | one -pny sngvojnop snsoydoyhyg 
ie ie | | | | | | | IONS vusnqoou viupwnono sup 
| | | | | | | | | -a}T DUuownaudy srwnonoyosg 
[- | = (i | ex | | x | i | ABYUBWIOG] WDLOL *—T 
ee | . | | | | x | | | | | WIBIO “LH sryaushina -q 
= “|. : x i= x = | BIMpNT 2a0y7 suuwnonoopnasq (qadwseg) snuvarwfo “gq 
| | | | | | Tad aS puoi fo MADUWNING, 
| | aes | | | SIM (tod 
| | x x -pny ona1an srunono0pnes J “W9G) snynolad srULNnondIOpNasT 
| | | | | fqadwag YynI1I0D DIUDUWRIND 
ae | x | | =| BIO yIVIO “I 
| | | | Tbh snBojoiwp sn41yaoj0D “HL snbo0jo1wp SLY OO] ODO pNae cr 
| | | | | ae | ees | | ae : uUuBWMYyoeg 9D0Dz “fT 
| x | | | x I | uuewmyoteg viafyndodopnasd * 
| ‘| | | x | | = [- | x { | uueUypoleag DLabiajpa0opnasd * 
| | | | | | | | at | | Il49 A sisuaunuvd snuocQ (USO A) Syeuamound ‘d 
| | 2 x | | | x i IIIT “yY vilafyngvz *O (Stmpny) siswa0pyo “gy 
| | | | | Bele {SIMpN'T siswaopnyo MIsvwUunong 
| | | — ; E | =e | >t eee |e (BIMpny) wryo1ary9 “AT 
| E | Ss ea Sa ager SS 
= | al | x | | | | x | | x : UUBWIYIOG 9P270)DYO “I 
| | | | | | | | x | | uusuyored 909229 DLOWDIUI J 
x 3 | HABIO 
| hie "T “HH vrpodpiow auUohyygrO 
| : | . | i ; = UBUINH D7D})0ILID DILDWNIND (31M 
| x = {ZIMpNT syigniuu aUuohyT, -pnyq) sypqniy oUuohyz0UoT 
| ——-— ——— 
Nvd90 | Nvga0O o1aiove O1atoVe | omatovd DIV | lov omatova | oratova | OAIIV_ | OMIOVg | O1a1I0V a 
OL NVIGN[I | TVuUL ‘a's “oN “MS “M'N | IsaM Isvy St rao Oe WANONAS AWVN- OMILNAINS 
-NVILV -NaQ a = 


EIGHTH PACIFIC SCIENCE CONGRESS 


444 


| 
| 
| 
| 
| 
| 
| 


SIM 


“PNY Uuzyowyos wnipwohyy 


UBUY snawmobyznd - 


YRO “TH snqnurw - 


UsIZ19}SQ snowmodvl 


SIMpny appamorp 
daduesg snznuvjdmoa - 


YIRID “I “H sapiouoziya 


Avyueuog wouwnyong 


taaduiag 
sisuauDpUDd sisuajoyog 


‘Sq 
Tadweg siswajoyog ‘sy 


Iddyiyg 8na24.02un 821087 


uueUlysieg aponz -q 


MIRO “TH suzodnu -y 


MIVID "I “H saplowohyy +a 


(SIMpny) uzqawyos +4 


TPA srazoid -y 


ByUspES winjpardsiad -q 


HIVIO "LT “H sapadiasnd -g7 
Aejyuewmog wuuuvd gq 


SIMpN]T snubvw +7 


SIMpNT sopro1nyzoj0y *g 


NVd90O 
OIL 
“-NVILYW 


NVva00 
NVIGNJ 


OID V I 
TVuUL 
| -NqaO 


OMIOV 
aC Ge) 


orslovd 
“WN 


OaIovg 


“A'S “ACN 


OAV 
ISa MA 


olulovd 
Isvg 


o1alovd 
HIN0g 


| 

| 

| 

| 

| 

| 

| 

| 
So 

| 

| 

| 

ee 

| 

| 


radwiag asuangaa wripwo0fhy 7, 


Olav 
HiLYON 


WANONAG 


| 
| 
| 


SUIpsyT snusoa + 


(aedurag ) 
sisuangad sntoydornhy.T 


GAVN OMILNGIOSg 


445 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 


ABYUBWIOG 818UW9779U/09 "YT, 


AMI snzjvovs auohy Ty 
TQ osinu vwlapoese7s 
sdodweg vpibi. auohy 
eyUs[ag snrzyaoaps snj075 


ae Be 

= | [rece =| | | | | ee ee Seo | 

| | | | | \ | | | 

| , | | [eae | | | | 

| | | | | | | | 

ee ee Sl ee ee eee 

ese | | | | | | | Fess! | 

| | | | | | = x i | 

| | | | | | | | 

| ere | Sagat) ee ae | eee |S seed | 

[E | | | | | esl (ax | 

ems 

ee | | | lard | | | | 

| | | ee] | { | |e mes | 

: | | | | [Fax | | | | | 

| | ease eae | | ieckas| | 

Sa =a Se ees es 

2 ee eS ee ee 

| 

Pa ee 

| | [ee | [ | ages came | 

5 | oe as ee es ee 
ope a Le eee 

| | | | | | | | | 
Pe ee 

(easel peat | | e eeepen ls | 

aaa l 

ea ee 
NVA00 | Nva900 OMOV | 1sOVd | O1s19VE oMovd | 1siovd | otstovd | o1ilovd o1stOVd | O1aIOVd 
gate jNvIONI val 1S aN MS | MAN | asam. | isvq | Hin0g HLUON 


AVUBA BF AI[YooY vinp auohyT 


Se 


Bnysor swassaauod visvUnonD 


Bimpny sadnvd °s J 
‘yzreIO 
"Tl “H 8nzouonbs snjosq 


————_—_—— 


WANONAS 


ABYUBWULOG 92/1009 “YT, 


uosdwiyg s2p90ng “YT 


UUBUAyIEg vzDJUapLG “YL 


uuswyoleg 
apope “ABA 22U9Q “YL 


uUBWIydIeg 27u2q “YL 


SIMPN'T 27199 “UL 


ABO "IH Pbojowp “YT 


MIVIO “I “H 2gip ouohyy 


uuBsUYdleg wnund ‘sq 


YIBIO “TL “H suaosaubwu ‘sg 


YBN "TH wnsafynuvs6 sq 


uuBUyoisg Wn}DIINGNI °s 


uuBWyoIeg wowya ‘sq 


Ae UBUL 
-OG W4a1ppG “AeA sadisLop "sq 


Simpny{ sadissop “sq 


Iola 
lag “Yo suaBsaau0a wnrpyosq 


UdsIB19}SO snzvAzva “sq 


IIIT 
snzoGaLbas “IBA snynuLonbs “sf 


YIBIO “T ‘HW snwafynuids “sq 


[POUL 189)p7.n0d snjosq 


@ANVN OILNaIOS 


EIGHTH PACIFIC SCIENCE CONGRESS 


446 


IsdwWag vpibiw ‘if 7, 


BYUI[PG snjjaavs #Nnj}079 


yAodwuleyT tiapnjs ‘YJ, 


(BYUZIES) spoons “YT, 


WI2VIO “YT HH vssisad ys 


WleVIO “YT ‘HH vyps0fsad 


qaoduiey vaunjsvo BuOhi 5 


‘eau 
“IBA snenf aU0hyy, 


srsuandnd 


(P2GL) szsuandnd yz 


uuBwMydieqg susn{rind 


| 
| 
| 
| 
| 
| 
ae 


IPL uoyo “Yd, 
petp BY enysoe vLhiw “YT 


uugulyoieg susnfoau 


BIMPNT syiqnirme “45 


IO TH Pynuyw “YL 


ABO “TH vioyw “UL 


UUBUIYIIEG sitqnin) “YT 


qreduey 140j;490) “YL 


AvjueUIOg 
SIBUIUWOLOD “ABA SIWL2UL “YT, 


aie 
a0 
ae 

‘a 

es 
| 

| 

| 

eeee 

| 

| 

| 


HIV “TH posi yy 


aquvulgoleg wyassnjh ‘YT, 


qaoduiey apyaznh sn1iy90j0p 


(Vledueyz) 9n)70z06 -y 7 


SIMPNT szpiwmis aUohy T 
BYUZTES END 8njors 


(Byue[eg) 49qq20 “YT, 


SOUB A 
QD do[yey wvuryzsaf auohy TF 


NVa00 
OIL 
-NVILW 


Nva00 
NVIGNJ © 


o1MIoV 
1VUL 
-NaQ 


O1dtovea | 
3. 


O1aIoVd 
“AWN 


OMIOVE 


“MS 


OlaIovd 
LSa AA 


o1alovd 


| o1alovg 
LSVOl 


j AN 


O1dIovd 
HLAOS 


WANONAG 


ANWVN OldILNaIog 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HGLOTHURIOIDEA 447 


| SIMPNY] wzeqauryos wimpruochys 


eyusleas sdaowp enayy90109 


(SIMpnT) weqaWYyos °*9 


| Ua Aa eS pe rere 
| I9INIG snyouoy snsoydorhyg 


| AMI wILQDINQuD DYyAaYJ, 
| Ted 
| | LOZDINqup (snjosodAyy) snjosg 


poe1g B enysor 109400 aU0hYy T 


IPA VNadsuoswur meownong 


d 


BYUsfEg wnppIIas4ad * fy 


LMG wnjyouvy spwmaporgQ 


BYU2Z[EG snzovLydnjpa snuUrj071g 


(peatg a unysor) 


200400 *¢ 


(IPA) vnardswoour +g 


| 
| 
| 
| 
| 
| 
! 
| 
| 
ie 


| 
| 
| 
| SIMPNT suarignw wnipyosd 
| 
| 
| 


HARI 


"Tl ‘H Djaursip auofyzoinnzg9 


IOYSiY asupupany YF, 


TIAdWeG asUuangad “YT 


oust 1apuneayD wnewpruohy, 


uUUBUIYIIDG siwo1ajaa “YY 


WARIO "TT “I suargnw -y7, 


uUuBUIYpIag 2/9001DY 


“UL 


uuBul 


SnjOsdaUony, F, 


“yoreq — 424294 


uuBuL 


Dupaizau  vnUohy,F 


“rd 


Todures Ds0]/0 “Yu 


| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 
| 


| 
| 


Nvao0 
OIL 
“NVILW 


NVa00 
NVIGN] 


OlaIOVe 


‘IVUL 
-NaQ 


oLMoVg 
as 


AN 


OIaIOV 


olIovd 
“MS 


| 
| 
3 
ae 
= 
2 
le 


ree ce | 


OlMtoveg 
LSaM 


sve 
Isva 


O1alOVg 
winog 


OWIOVg 


HLU0N WANONAS 


(uosdwyg) D2 wasn “LE 


ABLUBILOT 
“IBA DIVINE “YT 


ansap4no) 


uuewMyieg twabuvsys aUohyy, 


GAVN OILNGIOg 


EIGHTH PACIFIC SCIENCE CONGRESS 


448 


oes 


HBO 
‘Tl ‘H sisuawmpjonpo.d py 


Ossi snynosnu * 


S| 


[R2UL wns14107,UD DM0ZSOYIOLT, 


(SImMpn'y) vipawsazus 


ATID “I “H siyyuissip * 
(uosduiys) Djoo2UWarD 


((2e4L) vox40zwo 


yIeIQ 
“I “H sisuowsyn vypodjopy 


Bulpay pup. Djhzonpojaydy 


VadIOIVNHLOTOH snodody 


x 


Byuz] 
-2g vplanyead sapioippdjow - 


NVg00 
OIL 
-NWILV 


Nvga00 
NVIGNT 


olMtovd 
Val 
-NqO 


‘a's 


avd 


OMaIoVg 


x 


x 


aaduiasg 
saploippdjowm vjifizappoj}dv AW 


dsduiseg s2piie °D 


yd snsojmno1aqny 29) 


uossey s2upjnbupippndb *D 


Surpey, wiyzuaddo? “OD 


aedwesg snaipuyfia "9D 


Jeduiag swunona -2 


surp 
qT snjzlwaship “ABA sussvLo “D 


ee 
ESS 
Sees 
Sass 
ae 
ee 

es eee 
eee 
oe 
Pee 


| 
| x 


Olav 
HLYON 


OMMOV_ | OsIOVg 
oN “A'S “MIN 


oMMtovd 
IST M 


olMovd 
LSV 


OV 
HLNOG 


qradwmag sNajn1900 sn.t2Y90]09 


WANONAS 


ANVN OMILNdIOS 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 449 


pie ie | | | | | | eee | rats Aequewoqg pso1ajaa +H 
| | | | [ | | g | | souenA 
a | = | | | 1 | | : I[Y2oy 2y900)0 mrunyzoshydey 
| | | | | | | esses | | AvjUeUL 
| | | : | | ieee | | -0G wouunyong vunjoajdvsag 
| | | | : | | | | | | ALLO WO "TH vLodn.ja2 *q 
| li | ae "T ‘H vsodp.ya2 vurpnop 
= | =e | i | | | I S| | = AByuUBWOg 2449“ 
| | | | | | | sup 
| | | \ | -OET  Wyouuosuvs vuipnnopivg 
| | | sup 
< x 5} | -aH Ujouuosuns vurpnvoopnasg| wWiaUUosUDY “XA sIsUapYa “¢Y 
x x MIN “f sisuanyo -9 
| | $19] [9z 
| | -UdIB]. “A WzQUUOSUDL DULPNDD 
| x he) ee x ei (721MM “£) sisuepyo vurprog (m1 “f) sesuapyo “a 
| | | | | SHIT[NJ srsuapyo pmeppodjopy 
| | BUIpET 8yv1ysnv DULpNDIOpNISg 
x | | ‘tadweg sypviysny vippdjopy|aadweg sypuysnd vurpnvovivg 
a ee as : 
| x WARIO “'T HIBIO I ‘H vj00.1doona? “yw 
| ‘HL 02004d00na) ~ vjhijonpojaydy 
| | 8810 
| |e 5s "Tl ‘H vpnoyap pvphjzovpojaydy | yaeQ “TH vypoyep nurpnooy 
| | | le Rat! 
Nva0Q | | NV9D0 | /NVaIO | O1dIOVd fe pay oratovg jorrovd | o1atovd | olaiovgd | olaiovd | o1aiovd| olalovd 
OL vial I val “a's “aN “MS "MN isaM | Isvq | HINOg | HLYON WANONAS GQWVN OMILNaIOS 
“NWILY “NGO | < 


EIGHTH PACIFIC SCIENCE CONGRESS 


450 


| | | | | | | | | Bulpsy prwosyol 77 
| | | | | | | | | | :duIp (uosdwyys) 
| | =e | | | x | : | | | -ay] vurzodowna vidoufhisojdaT DlafLiqnjop vicnuhsojday 
| | | ‘uos 
; le el | | | | | eee es “dug véafuqnjop vzrdnuhig 
ete | | lipsrses' (is | ees [peers Sese | sous syyeqne “y 
= | | | Seetlins Je | | | | eH Wyapny “vy 
i eee : = 1 | | | | | tex if ae TOYS susaur “VY 
sits eres |e eel |. | | | | | | quoduery apyof -y 
os | | 5 i | | | x | | | raduag sipovih pydvuhg (fedwmeg) s2p0016 “y 
| | = | 4 | | a | ee | a | UdsiIIg sisuasnump vidouy 
ee ee ees | | sa le See eel | | Jedues 07004 midvulig (taduieg) 77904 "9 
| | | BS eax YIVIQ “I ‘H Dbz vynjdvuks (tedwag) ssw 9 
| | tqedursg vif vidoulig 
[ | | | | = | iF | | | : | = 28, WARIO “TI ‘YH viopum “9 
| | | x | | x | | | deduiag vsiipur vidvulg (tad 
| E _|rweg) psrarpuy va0j904puo"p 
| Sa | | | x | | | Aequewog apiazp6 
oe ee | | | Dlge! -oj4and “eA syignjaads *O 
x | Eo) | | ; | eee ys x | TOYS szrqnyoads *O 
| | | | 
| 2s | es | iL x | | as | | Jadweg vasi1s vidvulig (tedwesg) nas216 ‘CO 
| | xs | | | x | | x | dadwag v1iqn)6 vidnufig (todweg) v1qn)5 ‘oO 
= | x ! | | | | | Suipsy, vuvnoi4f[o °O 
| | | | x x | D SuIp Suipoy 
al | i | | -3]] Dinoidsiwp4 Duosapoaydgo Siena ELIS SOONG) 
x | x lees i x x x | deduig Wouffepoh vidoufig | (todwas) osffapobh pidong 
clea core eet 
NVa9Q j Nvd0O0 o1utoved oMaIovd o1atoVe o1d1IoVg {| TaOV | olaIovg | o1aloV | O1aIOvE O1sloVd o1aloved ; . 
ae |sviont Naa “a's “ON “M’S “M’N | CTSaM IsvVq@ | HINOS | HLYON WANONAS GWVN OLILNaIOg 
*N - | ! 


AVGILGVNAS 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 451. 


ie = ale a deal Wail i eles | dat eesiaae 2 r ee SuIpeH pnovdsyun “of 
| oaks ick hi ; wae lee | yest se ees ss BUpOH avowns <e 
3 x | | x | | x | x x BYyUslIg Wwuraystafay vzidnuhg (exuey 
| | l | | ia Seto Aine ie 25) Hutogsia fae TORR Let 
RS | = [ a | | i | eee paUL Nyon AOI (jeeuL ) YM Lar id 
sree = . Cee <a pale _ Ese | —__ oduiag syruys n7dnulis (aadunag ) syrmes “I 
Ser er | ahs ol Ce a ae ee a aurpoyT annunyruBnue gq 
z Sees | | eee | i cal a ewIy sO SISUAUWLYSODDY “eT 
iF | : | | | | POUL suajosu vednulig ([2°4L) swajosue 7 
| | x | | a ee i a coy 
= | | l @ i Jjolweg 2 (atte g 
| | | | | | | PABMPOOM DMIOJUapIg DidDUNS| 7 pPaBMpooM) D7DJUEPLQ “d 
| | | fe, | i eee ale ; ‘i _FOUST 1890490910 “ef 
| | | | | eee see | | | woyjo2 | (aoqpozuareyy “a) wperdoynn “a 
| | | | | | | -UdITL “A DZsidojny vyednuhg 
| | | | | : | 2:5 | | 1 whe 2 IE ee UrdnuUns (2 24L) DypeTnoD DARYUDIOL T 
| | x i | x | | i pce oe Tada mignp ) ppd vuhs (taduiag ) que xpidoprqny] 
| | | x HAI “T 
"HT vurzodiasvd pydnufisoyda 
: | z| | | E i ae th Gees af 
x | | x [ | | x i x | | | Aayjezuerey, ‘A xopdoo vydvulg (daT[ezuereyy °aA) wjdoo 4 
| | F | | | x | Fee || x | | ~— i AES Tt 3H OER di 
x | es [- x | PrP eins TIT 
| | | | A ‘O suasapyur DLLNYI0JIOFT| (AINA “A °Q) suosapyur 77 
ee eee ee ae eer 
as il | (ee eee | | Reece Serres SUL EIO lna g ree 
Tete | | x ALBID) TL 
| | ‘H pUurnwdoruo vidvulisojday 
NVS90 ) Nvso0 OldIOV oratovd | o1sIovg | odlove OIIOV I | o1alovg jolovg| o1aiova | omatovd | ontovd is 2 cn eae : 
OL NVIGN[ | ‘Ivan | ‘aS ‘AN “MS “MN usaM | Isvg | HLOAOG | HLUON WANONAG GUVN OWILNAIDS 
-NVILY, -NqaO 


EIGHTH PACIFIC SCIENCE CONGRESS 


452 


| | [poe ee | | [-sene-lersetlermek |} aIPUIH B Apueq 8700 “yD 
= 3 | Se | | | | qpuelg asuanyazis DwosoVT syjoyosyosm 107098Ip “Y;) 
- 3 a all | See ee | | = geduieg mqnp “1D 
; i" Sa | | [Pesce | | | | ee SPIEMPH 19801909) DIOpLA1D 
AVGILOGIYIHO 
iS | x | | = | | a | | | | SuipeH Mpiluieeolo. DIG UAT DAT 
| =| x | eae ake ae ee Oe =| os qsyIN[G vivsd “¢ 
eS — ame EN 6 
Se ee x | | | x | E | x | [ Jedweg njva1 pidpufig (tedweg) vyoaL *S 
| x | x =a | aa | | | | | | . BuIpo_{ wasuayiom ‘“g 
SE | 2s | 2 | | xe vie | aes | | aedulag nisi vydnuhig (tedueg) vsGiu vynydoufig 
eet le Sd lecas | | x | | | Jadweg 970)n91704 SG 
| 2s | | | | | | x | | | (gedweg) dadweg 07031fip-opnasd “¢§ 
ES | sal | | : DIvpLHYp-opnasd DLAyUvzOLY 
| | | | | | 806L HIBID DIDjnopw “sg 
| xe | x | | | | ileadeepe DaIUDeI0 vIdDURS (uosseT) po1ne09 °S 
= i | | | 2 | SuUOSSO'T DIIUWN2I0 HLLNY1070 JT 
| TS | | ae | tae | ae al = 28 | | jadweg vysapow °S 
oe ee oe 
s | S | : -2]{ spaupup “IBA DzDINODW “SF 
ao oe eae | ae 7 
= | | | = | | | le "GO DyDInoODUW —‘DL4NYI01I0H (Shy YO) DywynavW “sg 
| | | | | | | x | | = BIMPN'T YyVUZWOUUL “S 
| | F | = | | 2s | | | qadueg mignp °S 
| | | | | | | us | | | Sol (j22eqL) 27982q DIdDURS 
Nvao Nvg9Q_ | ola1ov. ; es = 
oe [Svat nwa as : CN MS crocs "isa wane marie eo WANONAS @WVN O1dILNSIOg 


DISTRIBUTION OF INDO-PACIFIC LITTORAL HOLOTHURIOIDEA 453 


AGE) povtona vuopoxoy, 


a 


surpeH 29042 sidnysoyoog 


(Ta]]ezue.t 


“BIL A) varw0dne D1OpOLO0Ig 


BUIYysyQ wasos “7, 


BNYsoe wyonNqGa04 ~ 7, 


WO LH vnjynonw +7 


SNYsof 1Uun]]Y vzopoyso.x, 


BUIPSH sniwArso1ojay “7, 


BUUIYSYO sipl4npr9 +7, 


(uosdurrys ) 
SNUDYDAISND sn..hBovuan J, 


(qpuetg) suassafns vuoyohjog 


TINT UYOr naanjo1a “yy 
; TaduUag s21qmuna oie) 
ABYUBULOG sIsway 

-Wawa]d “ABA suypasIUN “YO 
ABYSI]T 81)V1Las7UN "49 

tadueg sisuanund “yD 
wodueg: pprlint *Y/) 

MIVIO "TH synhas ‘yp 
YIVIO. TT pubnun “YD 
enysor swahur “yO 

ladwusag vnuhuoowr Seip 


oe | ie [= oer eS te Tig i ae 
| | | | Were le eee hs ee le ee BUIpEH 19942 BIOpoYoos 
Sao = SS SS ee es so1102 
| | | | | | 2 ; : je | «fuer “A PorwodDs Dpopr4219 
Bele =| | | Se | Ee ie 
oo Se rane Ge 
Sa es ee Ed ee Pe as Se 
| i | | (peer keer | | : BNYysope WHY snshGorwany, 
eS es eee bee : : 
a IE | | (pees | ss eee eee é 
| | | | fF | oe | | coe 
| | | | | | | “CWS Pupyp4gsny DIOpIAIYD 
| ee (eo | | | x | 5c. oe a 7 | : qpuLig, susosafn4 DvjopL4nip 
alee eal | | ee ee 2 = 
=| “| [eee ie 2 see ae 2 
| | | | | | x | 
feet ie does i= | | | | : 
oleae | | fees oe { i ‘ 
( 22 aaa 2 aS : 
[pees es | ete |e lee (eee : 
[Peer | | | | | | ee iGeas 
| erm ese | | | lsdeee Ce el [oS : 
ea eee Eos = 
| Ce ee ieee - 
See) | ee 
NV80Q_ | NvgOO | olatovd | oratovd | o1sIovd | o1atovg |owiovd |otatovd |ortovg | o1stovd | olatova 
oth |NVINT avis, [as | van | “M's: | carn | aesm | asva | tunog mone Gia 


LOYSt SUSUDUDMDY DIOPIL 
ust f uh het, 


AWVN OldILNaIOSg 


DISTRIBUTION OF INDO-PACIFIC 


88190dG jO sanwAN 


1eQwnN 


serreds 40 


BOID2dS 4O 18QWAN 


wPoS.P ER WR MWR SMP MER SEP CP. 1.0. AO 
Distributional areas 


Fig.FAspidochirote Holothurioideo 


HPO SP EP WP RWRSWRPREP SEP CP 10. AO 
Distributional oreos 
Fig. 2-Dendrochirote Holothurioidea 


WP SP EP WR NWR SWPMEP EER CR 1.0 AO 
Oletridutional areas 
Fig. 3- Apedous Holothurioices 


LITTORAL HOLOTHURIOIDEA 455 


Zoogeographical 
Distribution of the 
Indo -Pacific Littoral 


Holothurioidea 


Legend 


N.P. = North Pacific 
S.P. = South Pacific 
E.P = East Pacific 
W.P = West Pacific 
NW.P.=Northwes? Pacific 
SW.P =Southwest Pacific 
N.E.P=Northeast Pacific 
S.E.P=Southeasi Pacific 
C.P = Central Pacific 
1.0.= Indian Ocean 
A.0.= Atlantic Oceane 


® Species recorded from both Atlantic 
ond Indo-Pacific Ocecns 


avin 


i 


ba 


f 


a 


We 
rie 


Dues 


A 
nie 


ry 
ti 


K 
Vike i 
Ah 


Op, 
EN 
vt 
i 
ign 
Yay iy 
My 


wo 
gel ny) 


2 iy 
rie 


ANNI by 
ea meet) nae Hinge My 
Ay) J) OMe 

iy Poel PASAT 

PEE Met 


‘i 


Gays 


DISTRIBUTION OF MARINE FISHES IN SOUTH EAST 
ASIAN WATERS 


By J. D. F. HarpENBERG 


Organization for Scientific Research 
Djakarta, Indonesia 


The tropical marine fishfauna of South East Asian seas has in 
general a range from the East coast of Africa and the Red Sea in the 
West to far in the Pacific in the East, whereby the fishfauna as a whole 
gets poorer in species the farther away we are from the mainland of 
Asia. 

This fauna does not reach the West coast of tropical America. It 
is essentially an Asian fishfauna. 

There are circumtropic genera and even a few circumtropic species, 
but the greater part of this fauna is restricted to these waters. 

Within this area several subareas can be distinguished. 

The pattern is a very complex one, regulated by several coordinat- 
ing and correlating or sometimes contrasting factors into which we still 
have not sufficient insight. Often it is stated in a handbook that a 
certain species of fish is found from India to Australia, but this does 
not always mean that it is found everywhere in the area mentioned. 
The occurrence may be continuous but also it may be that the species: 
is found only in isolated patches of water of greater or lesser extent. 
As a rule we can take it that fishes as well as land animals are all adapted 
to their specific biotope. Many species are specialised in their food, 
they are more or less adapted to a certain salinity, to the kind of bot- 
tom and to other circumstances unknown thus far. Penetration of light 
may be a factor too, either directly or indirectly. In this latter case it 
is the food which is influenced directly by light. 

Copepods sink deeper in clear water at daytime and fishes living 
on these copepods must follow them. So it happens that Decapterus 
_ species in the eastern part of the Java Sea where we have clear water, 
are living in deeper water than in the western Java Sea where the water 
is less clear. There the schools of Decapterus are found in the upper 
layers, sometimes even breaking surface. I know regions where Decap- 
terus is living so deep that they are out of reach for the fishermen. 

Thus one has to be careful when stating that a certain species is 
absent or at any rate rare in a given area. Whereupon depends our 
knowledge of the occurrence of a given species? The answer is just 


457 


458 EIGHTH PACIFIC SCIENCE CONGRESS 


this, in the majority of cases: “On the catches of the fisherman.” And 
it is a well-known fact, that almost any kind of fishing method is more 
or less selective. By introducing a new kind of gear or even an altera- 
tion in size of a certain gear type or fishing in virgin water, we may 
have surprising results. Fish rare or unknown thus far appears now in 
great quantities on the fish-market. We have had at Djakarta a very 
good example as such in the sudden appearance of boat loads of Paras- 
iromateus niger, the Black Pomfret, whereas formerly this species was 
very rare. Not more than two or three specimens a week perhaps were 
seen before that time. 

As far as our knowledge goes, we can divide the South East Asian 
seas into the following regions: 

1. Coastal waters; 

2. Shallow seas on shelf; 
3. Oceanic waters; 

4. Coral-reef waters. 

Coastal waters can be divided into smaller units. We can divide 
them of course in waters bordering a sandy, muddy or rocky coast. 
These coast-forms have its influence on the fishes specially adapted to 
the shores, like Blennius, Salarias, Periophthalmus and others. But 
these faunas are of less importance for a general review as they are so 
strictly bound to their environment that several different communities 
may be found along a stretch of a few hundred meters. 

More of importance are the midwater species. “They are less bound 
to the formation of the shore as such. Generally, they are bound in a 
minor degree to the formation of the bottom. ‘There are species how- 
ever, being true midwater forms, which seem to prefer a muddy bottom 
like Sardinella species. Others like Caranx crumenopthalmus, for in- 
stance, like to swim above a sandy bottom. ‘This is not a hard-and-fast 
rule of course, but in general it is what the fishermen reckon with when 
they go out for these species. At least this is so in Indonesian waters. 

The composition of the seawater itself is of more importance to 
the midwater-fauna. Wherever there is a mixing with river water there 
is a special fishfauna which I shall call an aestuarine fishfauna. This 
fauna is living under aestuarine conditions in some cases tens of miles 
from land. According to my definition, aestuarine waters are therefore 
not especially found in an aestuary as such, but are also to be met much 
farther away. Guide species are, for instance, Setipinna, Coilra, some 
Polynemids, Kurtus indicus, Harpodon nehereus, Trypauchen, Gobto- 
ides and others. These species may be found in an aestuary proper like 
in some Sumatra aestuaries, but near rivers which have no aestuary and 
where tidal influence is small, these species are found in the rivermouth 


MARINE FISHES IN SOUTH EAST ASIAN WATERS 459 


proper and upstreams only to a very limited extent; whereas, they too 
occur far out at sea. The existence of this fauna is probably condi- 
tioned in the first place by a lowered salinity, though one should not 
think in too low percentages. A salinity of about 30 °/,, is probably the 
upper limit, almost true seawater therefore. Further the amount of silt 
seems to have an influence. At least according to my experience the 
muddier the river water is, the farther the aestuarine conditions reach. 
There is a coordination between the somewhat lowered salinity and the 
amount of silt resulting maybe in a high fertility of the water as shown 
by a rich diatom plankton. Such aestuarine fauna we find in front of 
the Indus and on the other side of the Indian Peninsula in front of the 
Ganges and Brahmaputra mouths. From there eastwards, there is a 
gap where the Burmese mountains reach the coast. Again such an area 
appears before the Salween and Irawaddy. The narrow part of the 
Straits of Malacca may be considered as one large aestuary. An aestua- 
rine fauna fringes the whole coast of Borneo and the whole East coast 
of Sumatra. Farther North on the Asian mainland, we find isolated 
stretches of aestuarine waters of a great extent in the Gulf of Thailand 
and in front of the Mekhong and the big Chinese rivers. This aestua- 
rine fauna is petering out to the North as far as the Yellow Sea. 

Subject to this, it is to be noted that on the South coast of Java 
we have a rather large aestuary where the aestuarine fauna as such is 
lacking except Gobioides and Eleutheronema tetradactylus. It seems 
that elements of this fauna have not been able to cross the coastal 
stretches of the Indian Ocean from East Sumatra. The more remark- 
able is it, therefore, that on the south coast of New Guinea, where a 
system of big rivers empty into the sea, a similar aestuarine fishfauna 
appears again, partly composed of the same species like Eleutheronema 
tetradactylus and Setipinna, partly, composed of other new local species. 
A great field of investigation is still waiting for the ichthyologist. ‘This 
isolated aestuarine fauna of New Guinea is separated by hundreds of 
miles of open deep sea from Borneo, the nearest coast where aestuarine 
conditions are found. Here a local aestuarine fauna, partly composed 
of other elements like another Herpodon species as on the Asian main- 
land, has come into being. 

Stretches of coast along the open ocean often show no coastal zone 
in the water. The open sea, the oceanic conditions, come up to the 
shore itself. ‘Thus it is possible that tuna’s and related forms are caught 
there in traps, a few meters out from land, whereas these fishes are true 
open sea forms often even avoiding narrow -channels between islands. 

Seas on continental shelves are often influenced by the nearby land. 
Here, as for instance, in the Java Sea we may distinguish between a 
narrow stretch along the coast and the waters farther away. It is in- 


460 EIGHTH PACIFIC SCIENCE CONGRESS 


teresting to observe that in a stretch, often not more than a few miles 
wide, species occur which are replaced farther out at sea by related forms. 
Stolephorus zollingeri and heterolobus are the more neritic, whereas 
Stolephorus commersont is the more open sea form. Rastrelliger neg- 
lectus is the coastal, R. kanagurta the replacing open sea species, Scom- 
beromorus guttatus the coastal, Sc. commersoni the more remote form. 
To these examples may be added various other ones like Sardinella fim- 
briata and Sardinella perforata. 

A narrow or wider shelf is developed along the whole continent of 
Asia, but it reaches its greatest extension in the East in the so-called 
Sunda shelf covered by the Java Sea and part of the South China Sea, 
and in the East in the Sahul shelf covered by the Arafura Sea. Though 
these seas are very far apart their fishfauna is the same. 

Fishes of true oceanic waters generally avoid the shelf-seas, e.g. 
tuna, some flying fishes, some sharks, which seldom venture far over 
the hundred fathom line, though they are not afraid of the vicinity of 
the coast, provided that this coast is bordered by deep water. Only the 
dwarf bonito and the dwarf tuna, Euthynnus alletteratus and Thunnus 
tonggol respectively, come into the shelf seas regularly. 

Fishes of the coral reefs have a very restricted habitat. Many of 
them pass their whole life on one and the same reef and mingling of 
the total stock happens probably only by way of planktonic eggs and 
larvae. Others like parrot-fishes and probably species of Caesio seem 
to spawn in open water, miles away, whereafter they return to the reefs. 
Whether this is always the same one is still an open question. 

So we can divide the South East Asian waters into the following 
four divisions, judging from an ecological point of view: 

1. Coastal waters. 

A broader or narrower band of water along the shores, influenced 
by steepness or configuration of the bottom, direction and strengths of 
currents, contamination by river water, windstrength and maybe other 
factors. 

2. Shallow seas on a shelf. 

Shelf waters coincide with the coastal waters wherever the shelf is 
narrow. In places where the shelf seas cover a wide area, they can have 
their own fauna. 

3. Oceanic waters. 

These waters cover the greater part of our area and may extend to 

the shore in places where we have a clear steep rocky coast and no rivers. 
4. Coral-reef waters. 

Coral-reef waters are very limited in extent. They are above the 

coral reefs. 


.AN ANALYSIS OF THE PELAGIC BIRD FAUNAS OF THE 
INDO-PACIFIC OCEANS 


By D. L. SERVENTY 
Wildlife Survey Section, CSIRO, Perth, Western Australia 


I. INTRODUCTION 


An analysis of the pelagic sea-bird faunas of any one of the three 
ereat oceans—the Atlantic, the Pacific and the Indian—cannot be dis- 
sociated from similar studies of the other two, and so though this es- 
say is primarily concerned with the Indo-Pacific basins, the bird fauna 
of the Atlantic is constantly referred to. “The method of inquiry pur- 
sued is that of a study of fawnas and not faunal regions, and so necessi- 
tates a consideration of distribution patterns in the neighboring oceans. 

This paper is a re-statement and an interpretation of known tax- 
onomic and zoo-geographical facts and depends on the fulness and ac- 
curacy of these basic data. Where they were scanty or lacking, the 
author has made some bold speculations which may or may not be 
upheld by later investigation. 

At this stage of knowledge of the subject, it seems debatable whether 
one is justified in giving more than a sketchy outline of the events 
which may have taken place. More detailed treatment of a subject, 
in which lack of adequate data forbids much precision, is bound to 
arouse unfortunate reactions. Workers outside of our particular field 
are not slow to point out the unsatisfying nature of such hypotheses, 
when they race too far ahead of the basic factual studies on which 
they depend. ‘Thus in a review of a work on the fauna of Britain, 
T.T. Macan (1953, p. 172) likens the various components of faunas 
mixed up by the retreats and advances of the Ice Age as “an omelette, 
attempts to unscramble which are a source of continual fascination to- 
day. To a ringside observer, such as the reviewer, . . . the number of 
unknown factors seems to justify a sceptical attitude towards all attempts 
at unscrambling.” Ultra-caution such as this might deter investigators 
from attempting to unscramble any type of biological omelette, and 
I am making bold to attempt something of the sort for a kindred prob- 
lem in the Indo-Pacific. The unscrambling attempt is offered as a ten- 
tative proposal to other unscramblers for their comments and assistance. 

The preparation of the paper has more than ever impressed on 
the author the indebtedness of all students of pelagic birds to the work 


461 


462 EIGHTH PACIFIC SCIENCE CONGRESS 


of Dr. Robert Cushman Murphy. It is an inspiration to others to re- 
intensify the ornithological exploration of other islands in the Indo- 
Pacific and the collection of birds at sea to build up our store of facts 
on the nesting and the foraging ranges of the pelagic birds. During 
the course of the work, S. Ekman’s “Zoogeography of the Sea,’ the re- 
vised English translation of his stimulating synthesis, ““Tiergeographie 
des Meeres,” was published, and it also has been laid under contribution. 


II. FAcrors IN THE PROBLEM 


Though the three major oceans, the Pacific, Indian and Atlantic, 
contain many faunal elements in common, the Pacific is notable for the 
following characteristics: 1. A rich development of petrel forms un- 
surpassed by either the Indian or Atlantic Oceans, and approaching 
that of the Southern Ocean in number of species and races. 2. A strong 
development of terns. 3. An entire lack of gulls in the island archi- 
pelagoes, they being confined to the peripheral fringes. 

Environmentally a significant characteristic of the Pacific Ocean, 
as compared with the others, from the standpoint of sea-bird colonisa- 
tion, is the wealth of islands over a large part of its area and in most 
of its hydrologic zones, as compared with the more peripheral distribu- 
tion of islands in the main basins of the Indian and Atlantic Oceans. 
In this respect much of the Pacific Ocean resembles the circumpolar 
Southern Ocean. The eastern portion of the Pacific, however, is sin- 
gularly lacking in islands, this abyssal region constituting an important 
barrier in the continuity of faunas which depend on shallow shelves 
and banks, and Ekman (1953, p. 73) considers it as causing “the most 
pronounced break in the circumtropical warm-water fauna of the 
shelf.” The main effect on the pelagic sea-birds has been the depriva- 
tion of nesting sites in this area, and the geographical isolation thus 
contributed to has permitted some subspeciation to have gone on. 

During the Tertiary and Pleistocene one hydrological barrier in 
particular and three physical or geographical barriers have been of 
paramount importance in controlling the spreads and dispersals of 
pelagic sea-birds within and between the three major oceans. They 
have served as lock-gates, as it were, in regulating the ebb and flow of 
species’ movements. ‘They are: | 

1. The barrier of tropical, equatorial, waters was breached re- 
peatedly during the Pleistocene glaciations, enabling the transgression 
through them of northern and southern elements, giving rise to the 
phenomenon of anti-tropicality or bipolarity (for a modern discussion 
see Hubbs, 1952, p. 324). Ekman (1953, p. 257) postulates such pene- 
trations during the greater part of the Tertiary, and indeed pre-Glacia! 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 463 


transgressions are demanded for some of the hypothetical species-his- 
tories in the present paper. 

2. The availability of the following four water gaps: 

(a) The Panama gap between North and South America, en- 
abling a passage between the Pacific and Atlantic Oceans 
in the equatorial zone. This has been mapped, from var- 
ious geological authorities, by Mayr (1946, Fig. 1), who 
states that it was functional from the lower Eocene to the 
upper Pliocene. 

(b) The Bering water gap establishing a passage between the 
same two oceans in the northern cool water zone. This 
gap would tend to be closed during glacial periods and 
open in the warm inter-glacial intervals, through eustatic 
lowering and raising of sea-level. Thus its existence would 
be associated with all the conditions favouring free move- 
ment between the seabirds of the North Atlantic and 
North Pacific. 

(c) The Indo-Malayan water gap between the Indian and 
Pacific Oceans in the equatorial zone. 

(d) The Mediterranean-Indian Ocean Gap served as a means 
of communication between the two basins until the late 
Tertiary period. 

Several periods of major global cooling occurred during the Pleis- 
tocene Ice Ages, thus providing the opportunity—even if not all suc- 
ceeded—for repeated transgressions of cool-water species across the 
equatorial belt. ‘The first to propound this explanation for the so-called 
“bipolar” distribution of marine fauna was Charles Darwin. Regan 
(1916, p. 16), though without specifically mentioning the Ice Ages, 
postulated a past cooling of the tropical waters to explain the present 
distribution of the pilchards (Sardina). L. S. Berg (1933) fully elabo- 
rated the thesis in respect to Ice Age coolings and K. H. Voous (1949) 
invoked it for his theory of the evolution of Fulmarus glacialis from 
the Antarctic F. glacialoides. Hubb’s review (1952, but originally put 
forward in 1949) re-states and extends the general thesis, which ap- 
pears essential for a rational explanation of sea-bird relations to the 
major ocean basins. 

Ekman (1953, p. 244 et seq., in a most useful summary of the “bi- 
polarity” problem) advances cogent arguments for these processes hav- 
ing taken place even prior to the period of the Pleistocene Ice Ages, 
namely during the greater part of the Tertiary. He states (p. 257): 
“During the Tertiary Period we cannot assume glacial periods as a 
cause, but perhaps geographical changes influenced the course of the 


464 EIGHTH PACIFIC SCIENCE CONGRESS 


cold ocean currents or there may have been other causes. And the 
more millions of years have been available for development, the greater 
is the chance for exceptional and favourable combinations of factors 
to occur; this may possibly also have played its part.” 

It would appear (as will be seen later from the distribution of the 
skuas, Pacific albatrosses, the fulmars, and the petrels of the Cape 
Verde and Madeira group of islands) that the main highway for these 
faunal transgressions was alongside the western coasts of the adjacent 
continents, in other words in the eastern Pacific and in the eastern 
Atlantic (cf. Murphy and Penneyer, 1952, p. 35). Ekman (1953, p. 
248) presents similar arguments for the invertebrate and fish faunas 
of the shelf, stating that “of the two main longitudinal routes for the 
benthal fauna, the West African and the West American, the latter is 
by far the more important.” The surface temperature charts provided 
by Schott (1926, 1935) demonstrate the latitudinal narrowness, even 
at the present time, of the warm-water tropical belt in the eastern 
Atlantic and the eastern Pacific. 

No evidence of a transgression exists in the Indian Ocean; if it 
occurred no southern elements could have survived in the absence of 
cool-water refuges in the geographically limited northern Indian Ocean 
(cf. also Ekman, ibid. p. 72, who believes that no climatic change of 
importance took place in the Indo-Malayan region either in the Ter- 
tiary or Quaternary Periods and “the tropical fauna of the Cretaceous 
and Eocene could maintain itself in all its tropical abundance and 
developed until our own time.”) 

The possible existence of other, mid-oceanic, routes for the passage 
of the cool-water faunas across the tropics in Glacial Periods and in 
the later Tertiary is suggested by the occurrence of islands in the equa- 
torial Pacific and Indian Oceans with immense stores of ancient 
guanos accumulated in the Pleistocene, and quite unassociated at the 
present time with any bird colonies capable of producing them. Hut- 
chinson (1950) has done a lasting service in marshalling all known 
facts on the subject. He assumes considerable climatic and hydrological 
changes in the central Pacific to account for the accumulation of these 
deposits, the like of which is now known only from the Humboldt 
Current region of South America. As C. A. Fleming has pointed out 
to me (in litt.) these equatorial guano islands may be significant as 
pointers to the existence of flourishing bird haunts in the Pleistocene, 
when the equatorial upwelling divergence belts were more intensive 
than they are now. As Hutchinson has shown for the Peru and Chile 
coasts such areas are very sensitive to changes in world climate and the 
post-Pleistocene period has seen radically altered conditions in the 
equatorial Pacific and Indian Oceans. ‘This subject will provide re- 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 465 


warding results if further studied conjointly by the ornithologist and 
oceanographer, but it is clear from Hutchinson’s treatise that more data 
are required. 

As has been mentioned when dealing with the Bering gap, the 
Pleistocene Ice Ages would affect the magnitudes of the various water 
gaps. The Indo-Malayan gap, with its considerable areas of shallow 
shelves, would have been most affected by the eustatic rise and lower- 
ing of sea-level; Mayr has stated (1944, p. 113) that during the height 
of the last glaciation the width of the Timor Strait, now more than 
300 miles, was reduced to 45-75 miles. ‘The waterways were never com- 
pletely closed, however, during the Pleistocene and the Australian and 
Asiatic land masses have been separated since the early Eocene. Never- 
theless, this area of shallow seas and innumerable barrier islands, would 
to some extent impede pelagic sea-birds and is still unoccupied by some 
species common in the oceans on either side. 

‘The water gaps in the Panama zone ceased to exist by the time 
of the Pleistocene glaciations. Hence species which made _ passages 
through them, and which had earlier in their history made trans-equa- 
torial transgressions, must have made such tropical crossings before 
the Ice Ages. 


Til. FAUNAL ELEMENTS IN THE INDO-PACIFIG OCEANS 


1, INTRODUCTION. 

From the standpoint of their proximate origins, the pelagic sea- 
birds may be divided into three categories: 1, a Northern, or Boreal, 
group; 2, a Pan-Tropical group, and, 3, a Southern group (cf. Mayr, 
1946, p. 13; Ekman, 1953, pp. 186, 329, has an essentially similar primary 
division of the invertebrate and fish faunas). 

I am not concerned here with the ultimate origin of particular 
groups, but of the more immediate relationships of species and genera. 
Thus, though all petrels might be considered, from the standpoint of 
ultimate origins, to be ranked as part of a southern fauna, the existing 
species of some groups, such as the storm-petrels of the genus Oceano- 
droma and the Puffinus puffinus complex, have certainly undergone 
secondary differentiation in the northern temperate regions, and are 
considered in this review as northern elements. Similarly the group 
of races of Puffinus lherminiert, though they are clearly derived from 
a southern ancestor (P. assimilis) have undergone a cycle of secondary 
evolution in the tropical seas of two oceans and may conveniently be 
considered as members of the pan-tropical fauna. Ekman (1953, 
p. 200, footnote) was faced with a similar problem in dealing with the 
marine invertebrates and fishes. 


466 EIGHTH PACIFIC SCIENCE CONGRESS 


The main categories should be divided into primary and secondary 
elements, where they can be clearly recognised as such. In this paper 
I have attempted this only for the Pan-Tropical Fauna. In the cases 
of the other two faunas the ranking of most of the species or species 
groups is evident from the context. 

The principal pelagic bird faunas in the Indo-Pacific region may, 
accordingly, be classified into the following categories on the basis of 
distributional and probable evolutionary patterns: 


2. SOUTHERN ELEMENTS. 

Ekman (1953, p. 229) holds that the antarctic shelf has been a 
centre of development for marine animals for a long period of time: 
“a cold climate has continued without disturbance from the transition 
between the Cretaceous and the Tertiary Periods into recent times,” 
thus accounting for its richness of species. Proceeding northwards from 
the antarctic various faunal sub-divisions are recognisable to the sub- 
tropics and Ekman, on the basis mainly of invertebrate studies, re- 
cognises the following: Antarctic, Antiboreal (cold temperate), and 
Warm ‘Temperate. 

Murphy (1936, p. 71) has shown how different species of pelagic 
sea-birds characterise the different hydrological zones of surface water. 
His work has demonstrated how various elements of the southern fauna 
have adapted themselves to varying degrees of coldness, and one can 
conveniently speak of the birds of the Antarctic Zone, those of the Sub- 
Antarctic Zone and those of the Sub-Tropical Zone. Some are not so 
restricted but in several cases the convergences between these water 
masses represent real boundaries between breeding ranges. Closely 
allied species and sub-species are representative of different zones. 


PENGUINS 

No Penguin has penetrated into the temperate waters of the 
Northern Hemisphere, but Spheniscus mendiculus of the Galapagos 
region, has reached the Equator as a breeding species and actually ranges 
north of it. 


ALBATROSSES 

These birds are another highly characteristic southern group. The 
few species in the North Pacific are the descendants of trans-equatorial 
colonists and will be considered as secondary elements of the Tropical 
Fauna. 


PETRELS 
Fulmarus glacialis and F. glacialoides 


The northern Fulmar breeds in the Pacific in the Kurile Islands, 
Bering Sea and Aleutian Islands, and in the Atlantic in Baffin Land, 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 467 


Greenland, Spitzbergen and northern Europe. ‘The closely related 
southern Fulmar, F. glacialoides, nests wholly within the Antarctic Con- 
vergence, but migrates to beyond the Sub-tropical Convergence, par- 
ticularly in the Atlantic Ocean and the eastern Pacific. 

Voous (1949) has shown that glacialoides resembles more the north 
Pacific race (rodgersi) than the north Atlantic faces of the F. glacialis, 
and explains the present distribution by glacialoides invading the north 
Pacific in a period of glacial cooling. Entry to the north Atlantic was 
made through the Bering water gap. This theory is accepted by Fisher 
C952 pe 17). 

Puffinus assimilis 

Puffinus assimilis is an almost circumpolar Sub-antarctic species 
which has invaded the Sub-tropical region in Australia and New Zea- 
land, where it has differentiated into a number of races (Fleming and 
Serventy, 1943). In the eastern Atlantic it is one of three petrels which 
has transgressed the tropics and established itself in the Azores, Madeira 
and Canary Islands group. The race which survives here, barolz, is so 
far different from the southern assimilis and with so many points of 
resemblance to the tropical Jherminier: assemblage, that the situation 
strongly suggests that lherminiert is a warm-water derivative from a 
northward transgressing assimilis stock which probably made the passage 
in pre-Pleistocene times. 


The migratory dark Shearwaters of the genus Puffinus 

Three species of large all-dark Puffinus breed in the southern por- 
tions of the Indo-Pacific and migrate across the equator to the northern 
hemisphere. The widest ranging is Puffinus griseus, which breeds from 
sub-antarctic to warm-temperate waters in the Australian and New 
Zealand region and off South America. The closely related P. tenut- 
rostris is a warm-temperate derivative in southeastern Australia. 

P. carneipes now breeds wholly in warm-temperate waters in south- 
western Australia, the Tasman Sea and in New Zealand. 

Probable allies of this group are the more or less sedentary P. paczfi- 
cus and P. nativitatis, now entirely of tropical and sub-tropical distri- 
bution. 

Pterodroma mollis and its allies 

Pterodroma mollis is a breeding species of the southern Indian 
and Atlantic Oceans, mainly occupying islands in the sub-antarctic 
zone of surface water. It is of considerable interest in having nesting 
colonies also in the North Atlantic, at Madeira and the Cape Verde 
Islands—a distribution pattern paralleling in certain respects that of 
Puffinus assimilis and Pelagodroma marina, and an example of a trans- 
equatorial transgression along the eastern Atlantic route. 


468 EIGHTH PACIFIC SCIENCE CONGRESS 


Near allies of this species appear to be Pterodroma brevirostris, ot 
the sub-antarctic islands of the southern Indian Ocean sector, and P. 
inex pectata, of temperate and sub-antarctic islands of the New Zealand 
area, and a trans-equatorial migrant to the north Pacific. 

Murphy and Mowbray (1951, p. 277) place P. mollis as a member 
of a series of tropical petrels which they call the hasitata super-species, 
and which is referred to in a later section. 


STORM-PETRELS 
Pelagodroma marina 

A temperate and subtropical species, which has transgressed the 
equatorial belt only in the Atlantic. It is the third member of a series 
of southern petrels—Puffinus assimilis and Pterodroma mollis being the 
others—which has established itself at the Canary and Cape Verde group 
of islands. In the Pacific Ocean it has penetrated as a breeder only as 
far north as the Kermadecs, but as a foraging wanderer it has been col- 
lected southwest of Cocos Is. (Lat. 4° 31’ N.) and off Ecuador. 

In the Indian Ocean it nests as far north as the Abrolhos Islands 
in southwest Australia. 

Fregetta grallaria 

Apparently not found in the Indian Ocean but widely ranging in 

the southern Pacific and Atlantic Oceans, north to the tropics. 


GULLS 
Southern gulls have only a peripheral distribution along the South 


American continent and in the Australian and New Zealand region. 
There has been virtually no colonisation of insular habitats. Creagrus 
furcatus, of the Galapagos, is a strongly marked exception and is pre- 
sumably an old species. 

All gulls probably have an ultimate origin as members of the 
northern fauna and southern forms are the results of a series of equa- 
torial transgressions. Murphy (1936, p. 1041) has indicated in regard 
to South American species that “the connection between the coastal 
gulls of the northern and southern hemispheres is much closer in the 
Pacific than in the Atlantic,” and it is inferred that the colonising route 
lay along the eastern Pacific. 

Larus dominicanus is interesting in being the only representative 
of the large gulls in the southern hemisphere and in possessing (in 
conjunction with its Australian derivative, pacificus) a circumpolar 
distribution in sub-antarctic and warm-temperate seas. Opinion differs 
as to whether it is derived from the northern L. marinus (Wetmore) or 
L. fuscus (Dwight). Murphy and Falla are of the opinion, based on 
voice and behaviour, that dominicanus is a black-backed argentatus 
(pers. comm.) 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 469 


In the southwest Pacific Larus novae-hollandiae is a common species 
in southern Australia and New Zealand, and though found in northern 
Australia it is sparse and locally absent from considerable stretches of 
that coastline between the Lacepedes Islands in the west and central 
Queensland in the east. It has, however, colonised New Caledonia and 
the Chatham Islands. 


Q 


3. PAN-TROPICAL ELEMENTS. 


The present pan-tropical fauna of the three oceans—Atlantic, In- 
dian and Pacific—is the product of a development of considerable anti- 
quity in a comparatively uniform environment, and is now presented 
in richest profusion in the Indo-Malayan region. Ekman (1953, pp. 
77-79) shows that this is not due to the Indo-Malayan region being 
the cradle of this fauna, which is basically pan-tropical and descended 
from a more or less homogeneous Tethys fauna. Climatic and geo- 
graphic changes in the Miocene and Pliocene dismembered the Tethys 
fauna and it survived with least drastic change in the present Indo- 
Malayan area. Ekman in a succinct summary (ibid., p. 79) states: 
“The present paucity of the Atlantic fauna is not caused by its position 
on the periphery of an Indo-Pacific centre from which it received only 
a small part of faunal elements radiating from there. ‘The truth is 
really that it suffered a deterioration of climate. The faunal richness 
of the Indo-Malayan region cannot be explained by the assumption 
that this region became a developmental centre for whole classes and 
orders of the animal kingdom to a greater degree than, for instance, 
the Atlantic Ocean. The explanation is rather that in contrast to the 
Atlantic the Indo-Malayan region has been able to preserve this in- 
herited richness until the present time, and that in addition new forms 
have been able to develop continuously.” 

Ekman was dealing primarily with the marine invertebrates and 
fishes of the coastal shelves, but his conclusions can well be applied 
to the pelagic sea-birds. The present pan-tropical bird fauna contains, 
in addition to the primary elements just referred to, a number of im- 
migrants from, mainly, the southern cool-water fauna and which have 
in several instances undergone secondary differentiation in tropical and 
sub-tropical waters. 

It is convenient, therefore, to consider the Pan-tropical Fauna in 
two groups: (a) the descendants of forms which have always apparently 
been tropical in distribution, and (b) forms which are secondarily 
tropical and which show evidence of descent from southern colonists 
from the later Tertiary onwards. 


470 EIGHTH PACIFIC SCIENCE CONGRESS 


(a) The Primary Tropical Fauna 


BOOBIES 
Sula piscatrix, dactylatra and leucogaster 

‘These three tropical boobies are found throughout the three oceans, 
where they have sympatric relations. The Panama and Indo-Malayan 
water gaps have obviously contributed to the distribution pattern ob- 
taining at the present day. However, though all three species nest 
close to the outer islands of the Indo-Malayan region none actually 
breed on the islands in the shallow seas within it except on Goenoeng 
Api in the South Banda Sea. Of the three species, S. lewcogaster pene- 
trates furthest in this area and, it forages throughout the entire extent 
of the northern Australian coast. ‘Iwo species of the Booby group, S. 
nebouxi and S. variegata, have differentiated on the west coast of South 
America, where they have circumscribed ranges. 


TROPIC-BIRDS 
Phaethon spp. 

_ P. rubricauda and P. lepturus have similar relations in the Indo- 
Pacific as the three Boobies just referred to. P. rubricaudus is, however, 
unrepresented in the Atlantic Ocean. 

P. aethereus occurs in the Atlantic and has penetrated to the central 
eastern Pacific by means of the Panama gap but has not extended widely 
in this Ocean. Probably through the Tertiary water way between the 
Mediterranean and Indian Oceans it has obtained entry into the north- 
west of the Indian Ocean and established nesting stations in the Per- 
sian Gulf. It does not occur elsewhere in this ocean. In general, the 
distributions of P. rubricauda and P. aethereus are allopatric. 


FRIGATE-BIRDS 
Fregata spp. 

Fregata ariel and F. minor have sympatric relations in the tropical 
zones of all three oceans, the Panama and Indo-Malayan water gaps 
having facilitated their colonisation of appropriate habitats. F. mag- 
nificens of the central Atlantic crosses the isthmus of Panama with com- 
plete freedom (Murphy, 1936, pp. 859, 920) and has reached a western 
outpost in the Galapagos. 


TERNS 
Sterna fuscata and S. anaetheta 
These two similar species occur widely in the Indo-Pacific Oceans 
and through the Panama water gap have peopled the western Atlantic. 
The distribution suggests the Indo-Pacific basin as the origin of the 
group. S. lunata is a derivative of S. anaetheta in the southern central 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 471 


Pacific. S. fuscata and S. anaetheta are sympatric and S. anaetheta and 
S. lunata are probably allopatric; the records of their breeding together 
should be re-examined. | 
Anous spp. 

The Noddy Terns (Anous stolidus) have a closely similar geo- 
graphical pattern to the Sterna fuscata-anaetheta group just discussed. 

The species group, minutus-tenuirostris, are now widely separated, 
one (minutus) extensively distributed in the Pacific and Atlantic, the 
other (tenwirostris) confined to two breeding centres in the Indian 
Ocean. Recent reviewers have tended to consider them as races of one 
species, but the plumage differences are rather distinct, and it would, 
perhaps, be better to rank them as having attained specific differentia- 
tion, although considering them as semi-species for purposes of zoo- 
geographical discussion. 


Gygis alba 

Widely distributed in the tropics of the three oceans. It is absent, 
however, from the Indo-Malayan and northern Australian area, the 
two nearest breeding colonies being at North Keeling in the Indian 
Ocean and Palau Island in the Pacific. 

Procelsterna spp. 

The Grey Noddies, P. cerulea and P. cinerea, occur only in the 
tropical Pacific, where the two species have an allopatric breeding dis- 
tribution, P. cinerea being the more southern form. 

Sterna sumairana 

An Indo-Pacific form, but in the latter ocean restricted to the west- 
central group of islands. It is found in the Malayan region, but has 
net been reported in northern Australia, west of Torres Strait, or in the 
Timor and Banda seas. 

Sterna bergit and S. bengalensis 

These two related terns appear to be dominant in the Indian 
Ocean region. S. bergii has the more extensive distribution, and has 
spread into the cooler waters of southern Africa and southern Australia. 
It has colonised the central southern Pacific, as a breeding species, east 
to the Marquesas, but has not crossed the Equator to the north or gone 
south beyond the Kermadecs. 

S. bengalensis has barely entered the western Pacific by occupying 
the northern part of the Great Barrier Reefs, in Queensland. 

Neither species has reached the Atlantic. 


A472 EIGHTH PACIFIC SCIENCE CONGRESS 


(b) Secondary Elements of Ultimate Southern Origin 

ALBATROSSES 

It is only in the north Pacific that Albatrosses are found outside 
of the circumpolar Southern Ocean as breeding species. Murphy (1936, 
p- 633) considers Diomedea albatrus, D. immutabilis and D. nigripes 
a related group and linked, through D. irrorata of the Galapagos, 
with D. exulans and D. epomophora of the southern albatrosses. The 
present distribution of the breeding ranges of the Pacific species points 
to the eastern Pacific being the colonising path but the transgression 
of the tropics may have been accomplished when a mid-Pacific upwelling 
zone existed. 


PETRELS 
Puffinus lherminiert 

Mention has been made of the probable derivation of Puffinus 
lherminiert from a P. assimilis stock which made a _ pre-Pleistocene 
transgression of the tropics. The subsequent evolution of the lhermin- 
iert group has been essentially as a tropical form and by means of the 
Panama and Indo-Malayan water gaps it has now populated the Pacific 
and Indian Oceans. In the Pacific it nests on a multitude of islands 
in the tropical and sub-tropical areas. Some of these colonies now 
approach, through secondary contact, very closely to the northernmost 
resting colonies of the presumed ancestral species, P. assimilis. 


Puffinus pacificus 

Puffinus pacificus belongs to a cluster of species of wholly dark 
shearwaters of southern waters, but itself is wholly sub-tropical and 
tropical in distribution. It occurs only in the Indian and Pacific Oceans, 
but is not found, as a breeding species, in the southeastern portion 
of the latter ocean. There are two discrete populations, separated by 
the Indo-Malayan islands and Australia (Fig. 3). These two popula- 
tions do not, however, coincide with the two sub-species which can be 
recognised (see later). 

In Western Australia the species breeds from Carnac Island near 
Fremantle in the south to Sable Island in the Forestier group, in north- 
western Australia. The species is then absent, even as a forager, along 
the whole of northern Australia, until we pass Torres Straits, when the 
first breeding colonies occur on numerous islands to Montague Island in 
southern New South Wales. 

Puffinus bulleri, of New Zealand, is a close ally of this species, but 
which is nearer the ancestral form is uncertain. 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 473 


Puffinus nativitatis 

The breeding range forms an extensive area in the central Pacific, 
both north and south of the equator, and the species is sympatric with 
P. pacificus. 

Bulweria spp. 

The origins of Bulweria bulweri and B. macgillivrayi are obscure. 
They occupy the subtropical parts of the North Atlantic and North 
Pacific and extend into the tropical zone of the Pacific. The genus is 
unknown as yet in the Indian Ocean. The present distribution suggests 
that it is a reduced remnant of a former widespread group. 


The Pterodroma hasitata complex 

Murphy and Mowbray (1951, p. 277) offer some very suggestive 
comments on the relationships of a group of petrels they refer to as 
the hasitata super-species and which includes the following allopatric 
forms: hasitata, cahow, phaeopygia, sandwichensis, externa, cervicalis 
and mollis. 

The parent form of the hasttata series appears to be P. mollis of 
the southern oceans. It has made a tropical transgression in the eastern 
Atlantic, and relatively unaltered populations now exist at Tristan da 
Cunha, the Cape Verde Islands and Madeira. From the centres in the 
north Atlantic there has been further differentiation and on the op- 
posite side of this ocean there have developed the races hasitata and 
cahow. ‘The Pacific may have been peopled through the Panama water 
gap leading to the evolution of the form phaeopygia (at the Galapagos) 
and sandwichensis (Hawaii). This hypothesis would require the orig- 
inal tropical transgression of the ancestral mollis in the pre-Pleistocene 
and the general pattern of speciation would resemble that of the Puf- 
finus assimilis-lherminiert group. 

If the north Atlantic and north Pacific forms are the result of 
independent evolutions from a southern ancestor, not involving use of 
the Panama water gap, the equatorial transgressions may have occurred 
as late as the Pleistocene glaciations. In this case the southern Pacific 
sub-tropical forms, cervicalis (Juan Fernandez) and externa (Kerma- 
decs), might be off-choots of this line of development. Solution of the 
problem awaits more refined taxonomic analysis of the whole group, 
which is promised us by Murphy and Mowbray (:bzd., p. 278). 

The Pterodroma arminjoniana complex 

Murphy and Pennoyer (1952, p. 35) consider the four species 
arminjoniana (including heraldica, alba, neglecta, and ultima), to be 
closely related. Pterodroma arminjoniana alone occurs in all three 
oceans, in subtropical waters, and in the Pacific Ocean the four species 
have a sympatric breeding distribution, which does not extend far into 


A474 EIGHTH PACIFIC SCIENCE CONGRESS 


the north Pacific. It is possible that the four species are the result of 
successive invasions from the south, the richness of forms in the Pacific 
being possibly due to the greater availability of nesting islands as com- 
pared with that in the Indian and Atlantic Oceans. 


Pterodroma rostrata 
Pterodroma neglecta 
These two petrels, which are not closely related, occupy various 
islands in the south Pacific. It is impossible to say more about them at 
this stage, or to indicate their affinities. Like other members of the 
genus they appear to be derivatives of southern ancestors. 


Pterodroma solandri 
A species confined, as a breeder, to the Tasman Sea. It may pos- 
sibly be a derivative of Pt. macroptera. 


The sub-genus Cookilaria of Pterodroma 

This difficult group, following its earlier clarification by Murphy 
(1929), has been recently reinvestigated by Falla (1942, p. 111), Flem- 
ing (1941, p. 69), and Austin (1952, p. 392). As a result it appears 
that four species are represented, each with a number of races differ- 
entiated in isolated island groups: Pt. longirostris (with pycrofit), 
Pt. leucoptera (with brevipes), Pt. cookii (with defilippiana) and, Pt. 
hypoleuca (with nigripennis and axillaris). The group is entirely re- 
stricted to the Pacific, which may mean that the Panama isthmus may 
have already closed when the equatorial transgressions took place; thus 
these invasions could have taken place during the periods of global 
cooling in the Pleistocene Ice Ages. 

The interesting straggler of brevipes (breeding only in the South- 
west Pacific) which was recorded in Great Britain in 1889 (Witherby, 
1941, p. 66) can only be accounted for as a bird which had become 
hopelessly lost. A similar record of Pterodroma neglecta (ibid., p. 62 
must be explained likewise. Such birds which are found far from their 
ordinary beats have probably become attached to wandering and mi- 
eratory parties of other species (cf. Loomis, 1918, p. 138). 


STORM-PETRELS 
Nesofregetta albigularis 
A sub-tropical species, confined to the Pacific Ocean, and which 
has just crossed northward over the Equator to breed at Christmas 
Island. 


4. NORTHERN ELEMENTS. 
Ekman (1953, p. 186) recognises for the northern hemisphere two 
marine faunas, a tropical-subtropical and a northern. He points out 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS AN5 


(p. 157) that the northern cold-water fauna is considerably richer in 
the North Pacific than in the North Atlantic, and the explanation is 
seen in differential climatic conditions, that “during the whole of the 
Tertiary Period the North Pacific offered much more favourable con- 
ditions for the development of a fauna adapted to a cold-temperate 
climate than the North Atlantic” (ibid., p. 164). Mulder climatic con- 
ditions in the pre- and inter-glacial periods provided communications 
between the two oceans. 


AUKS 
Family Alcidae 

The headquarters of the Auks are the circumpolar northern seas, 
and various species penetrate some distance down both coasts of the 
north Pacific and north Atlantic Oceans. The north Pacific is par- 
ticularly rich in species, but only one of them has succeeded in extend- 
ing any considerable distance south. None, however, has paralleled 
the performance of many of the southern petrels in transgressing the 
equatorial belt into the cooler waters of the opposite hemisphere. 

The Pacific Auks have colonised the American coast southwards 
more successfully than they have managed the Asiatic shoreline. Along 
the American coast 5 or 6 species have penetrated as breeding species 
to California. These are: Lunda cirrhata, Uria aalge, Cepphus colum- 
ba, Aethia aleutica, and Brachyramphus hypoleucus. Vhe last-men- 
tioned has differentiated a form, B. craveri, breeding in the Gulf of 
California, which is the only Auk to reach the Tropics. 

This distribution pattern of the auks, with a restricted southward 
penetration on the west side of the Pacific in comparison with the 
eastern side, is related to the hydrological pattern of the ocean. This 
is, approximately, a mirror-image of the hydrobiological situation in the 
South Pacific. 


PETRELS 
The Puffinus puffinus complex 

Whatever its ultimate origin from a southern ancestry, the spread 
of this species group in the immediate past has been as a member of the 
northern fauna. The stimulating analysis by Murphy (1952) would 
suggest that the centre of dispersal was the eastern Atlantic. A double 
invasion through the Panama water gap appears to have taken place, 
first by black-backed forms whose Pacific derivatives are P. p. auricularis 
(breeding off western Mexico) and P. p. newelli (breeding in Hawaii). 
The second invasion was by brown-backed birds, whose Pacific off- 
shoot is P. p. opisthomelas. 


A76 EIGHTH PACIFIC SCIENCE CONGRESS 


The place of the New Zealand gavia in this geographical pattern is 
by no means clear. It is a brown-backed ally of P. puffinus and Murphy 
explains its origin (7bid., p. 7) by postulating a spread from the eastern 
Mediterranean by way of the Mediterranean-Indian Ocean water gap. 
If this is so the species group has invaded the Pacific basin from the 
North Atlantic by two routes. 


The Puffinus kuhlu group 

Alexander (1928, p. 61) and Murphy (1930, p. 11) refer to the 
close affinity of kuhlit (syn. diomedea) and creatopus, and Murphy in 
addition associates lewcomelas in this assemblage. 

These forms are only secondarily units of the northern fauna, hav- 
ing probably a southern ancestry, akin to the case of the preceding 
species. 

The secondary cycle of dispersal of the north Atlantic kuhlit was 
probably by way of the Panama water gap into the Pacific, where 
creatopus (breeding in the Juan Fernandez Island) and leucomelas 
(breeding at the Bonins and Pescadores) were differentiated. 


STORM-PETRELS 
Oceanodroma spp. 

The members of this genus are essentially northern lorms, which 
have differentiated into a series of species and races in whose dissemina- 
tion through the north Atlantic and Pacific, the Bering and Panama 
water gaps have played essential roles, hence the colonising processes 
must have begun in the pre-Pleistocene. ‘The taxonomy of the group 
has proved difficult, the latest revisor being Austin (1952, p. 394) who 
has made certain parts of the geographical picture much clearer. 

O. leucorhoa is a widespread breeding species on both coasts of the 
North Atlantic and North Pacific, the connection between the two 
oceans being probably through the Bering water gap. 

O. castro is also a breeding form of both oceans, but of more 
southern distribution, and it would appear that the Panama water gap 
has contributed to the existing distribution pattern. The Pacific breed- 
ing stations are at the Hawaiian, Cocos and Galapagos Islands. ‘This 
is the only Oceanodroma which is certainly known to have transgressed 
the equatorial belt as a breeder, St. Helena in the south Atlantic being 
a nesting station. 

The north Pacific is inhabited by a complex of related forms which 
Austin considers all to have reached specific status, two of them being 
now sympatric. These are O. melania (breeding in lower California), 
O. matsudaivae (breeding in the Bonins), O. tristrami (breeding in 
the Bonins and Hawaiian Islands) and O. markhami, whose breeding 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS ATT 


place is unknown. A bird containing an unlaid egg was shot off central 
Peru and if the breeding station is adjacent this would be a parallel 
case in the Pacific to O. castro in the Atlantic of a transgression of the 
breeding range through the equatorial belt. This cluster of forms is 
suggestive of a multiple invasion, via the Bering Gap at each inter- 
glacial period, with a southward extension of speciation in the following 
glacial, the post-glacial form lewcorhoa not being differentiated. 


TERNS 
Sterna albifrons and S. nereis 

Sterna albifrons appears to be plainly a northern element, with a 
breeding distribution from the British Isles and the Baltic coasts, south- 
wards, its habitat including rivers as well as marine shorelines. It has 
disseminated into the Indian Ocean through the Mediterranean-Indian 
Ocean water ways and the river systems of Asia, reaching the periphery 
of the western Pacific partly through the Malayan water gap. It now 
breeds in New Guinea, the Philippines, and neighbouring islands and 
coasts. In the Australian region it has produced a derivative, S. nereis, 
which is still strictly allopatric with it, and which has spread some 
distance further into the Pacific—to New Zealand and New Caledonia. 


Sterna dougallir 
This species is probably a member of the northern element, with 
its origin perhaps in the North Atlantic. It has failed to pass into the 
Pacific by the Panama water gap but has penetrated into the Indian 
Ocean by the Mediterranean-Indian Ocean Gap, and into fringes of 
the western central Pacific through the Indo-Malayan gap. 


Sterna hirundo and S. macrura 

Sierna hivundo migrates a considerable distance south along the 
western Pacific shoreline from its northern breeding grounds, regularly 
visiting eastern Australian waters, S$. macrura has a much more extensive 
migration in the Atlantic sector; in the southern hemisphere it deploys 
into the southern Indian Ocean. 

Other northern terns have limited movements along the Pacific 
coasts, and cannot strictly be considered pelagic birds. 


GULLS 

Many northern gulls occupy the coasts of the north Pacific, but 
none of them has established breeding stations on the numerous islands 
in mid-ocean or included them in their migrations. Larus glaucescens 
is an occasional wanderer to the Hawaiian Islands. 

The relationship of the northern gulls to the southern hemisphere 
forms was briefly mentioned in the earlier section on Southern Faunas. 


478 EIGHTH PACIFIC SCIENCE CONGRESS 


Reference was also made to the widespread southern Larus dominicanus 
as a trans-equatorial transgressor of either L. marinus or L. fuscus-ar- 
gentatus ancestry. 


SKUAS 
Catharacta skua 

Hamilton (1934, p. 163) has placed the northern cold-water and 
southern cold-water great skuas as members of one species, a taxonomic 
treatment supported by Murphy (1936, p. 1006). Though the breeding 
ranges of the two groups are now widely separated geographically, the 
Chilean Skua (C. s. chilensis) migrates along the western American 
shoreline to Alaskan waters. ‘The group is probably of northern origin 
and the southern seas may have been occupied by a colonisation along 
the east Pacific sea-board, though the northern form, S. c. skua, does 
not now occur in the north Pacific. 


GANNETS 


The Sula bassana complex 

The true classification of the ancestor of the three related temperate- 
water Gannets, Sula bassana, S. serrator and S. capensis, is uncertain. 
It may be a secondary immigrant into the north from the Pan-tropical 
Fauna. 

On the assumption that the group has had its proximate origin 
in the northern Atlantic the present geographical pattern may have 
developed as follows: 

Sula bassana transgressed through the tropical belt of the Atlantic 
during a period of global cooling and established itself in southern 
Africa, where capensis became differentiated and colonised eastwards 
to southern Australia and New Zealand, evolving there into the similar 
race, serrator. This colonisation pattern has also been postulated by 
Balla (1953) ap tac) e 


5. SUMMARY REVIEW. 

The general picture presented by the pelagic bird faunas of the 
Indo-Pacific basins is that in the whole of the Indian Ocean and the 
western and central part of the Pacific we are dealing with one rather 
homogeneous fauna which consists of the long-established descendants 
of the Tethyan fauna of the Tertiary. Into this fauna have been in- 
jected, from the later Tertiary onward, immigrants from the cool-water 
faunas of the north and south, but predominantly from the south. 
These immigrants occur in the Indian Ocean to a much less degree than 
in the Pacific, in which ocean they are also much more numerous in 
the south Pacific than they are north of the Equator. 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 479 


Can one map out well-marked “faunal zones” on the bases of these 
pelagic bird distributions, demarcating the zones, to use the definition 
of Ekman (1953, p. 80), “where the most clearly defined change in 
fauna occurs’? 

Such breaks in distribution are readily discernible. Murphy (1936, 
pp- 65-80) has recapitulated his former well-known thesis that the con- 
vergences between water masses of different temperatures are powerful 
barriers in pelagic bird distributions. His recognition of Tropical, 
Sub-tropical, Sub-antarctic (Antiboreal) and Antarctic Zones is abund- 
antly demonstrated by the facts. These temperature-determined zones 
agree in a broad sense with the boundaries of the three main faunas 
as dealt with in this paper. In the southern hemisphere the sub-tropical 
convergence is the absolute southern boundary of the Pan-Tropical 
Fauna, and the northern boundary of the Southern Fauna (cf. the 
illuminating map of complementary distributions of type birds of these 
faunas in Murphy, 1936, p. 165). In southern Australia there are 
anomalies in correspondence between birds and hydrological factors 
which are referred to in part by Fleming (1941 a). 

However, on a broad canvas the picture drawn is a real one. Such 
concordance between faunas and physical factors emphasises the ancient 
character of the relationship. Changes in climate which have led to 
oscillations north and south of the convergences would have resulted 
in a corresponding ebb and flow of faunal boundaries, and in particular 
a waxing and waning of the Pan-Tropical Fauna belt. Subdivisions 
within the areas of main occurrence of the three faunas (such as that 
between the tropics and subtropics and between the antarctic and sub- 
antarctic) would have tended to split the faunas into corresponding 
units, but these appear never to be as important as the greater break 
between the Pan-Tropical and the two cool-water faunas north and south 
of it. 

Past oscillations of the convergences have cut off portions of faunas 
into areas not lived in by their ancestors, or provided temporary bridge- 
heads across unfavourable stretches of water, over which transgressions 
were possible. Later when times changed probably most such ad- 
venturers failed to survive but those that did now form the immigrant 
fauna to which reference has been repeatedly made in this paper. 


IV. SoME SPECIAL PROBLEMS 


]. THE INDO-MALAYAN BARRIER BETWEEN THE INDIAN AND PACIFIC OCEANS. 

Though there are continuous waterways through the maze of islands 
in the east Indian archipelagoes, between the Indian and Pacific Oceans, 
a significantly large number of species, characteristic of the tropical 
zones of both oceans, are absent from them. 


480 EIGHTH PACIFIC SCIENCE CONGRESS 


No petrel breeds in these waters, not even Puffinus pacificus and 
P. lherminieri. The absence of the former is of some moment as the 
distribution pattern certainly suggests that the Indian Ocean popula- 
tions must have formerly been connected with those of the Pacific 
Ocean through this area. At present the nearest breeding colonies, 
east and west, are separated by some 1,500 nautical miles of sea way. 
Furthermore, the Indian Ocean birds are sub-specifically inseparable 
from the bulk of the Pacific Ocean birds. In the Pacific Ocean a dis- 
tinctive race is recognisable from the region of the Kermadecs (Murphy, 
1951, p. 15) though it exists in close proximity, relatively speaking, 
to other Pacific populations. 

The absence of resident pan-tropical petrels in this area is rendered 
even more curious by the presence in it, as a wintering migrant, of the 
storm-petrel, Oceanittes oceanicus, breeding in the Antarctic Region of 
the far south (Serventy, 1952a, p. 107). 

In the shallow seas of this water gap there appear to be no re- 
ports of breeding stations of Boobies, Tropic-birds, Frigate-birds, and 
such terns as Sterna fuscata, Anous stolidus, Anous minutus and Gygis 
alba. Goenoeng Api in the Banda Sea (Van Bemmel and Hoogerwerf, 
1940, p. 421) is a singular exception. Foraging and wandering indi- 
viduals and flocks of some of these species, however, do occur, par- 
ticularly of Sula leucogaster. 

Along the northern Australian shoreline, from Torres Strait to the 
Buccaneer Archipelago in northwestern Australia, there is an inex- 
plicable scarcity of Larus novae-hollandiae, so plentiful on the remain- 
ing parts of the Australian coastline. 

It seems that factors are now in control of the situation, account- 
ing for these distributional breaks, which might not have been operat- 
ing in the immediate or sub-recent past. A superficial search for pos- 
sible causes suggests that the surface water temperatures might be, at 
least in part, responsible. According to the data in Schott (1935, pl. 
20-23), an extensive band of high water-temperatures exists around 
New Guinea, northern Australia and out into the Indian Ocean. This 
is maintained above 28°C. from about November to February and the 
position of the band correlates very closely with that section of the north 
Australian area in which Puffinus pacificus is absent as a breeding 
species. According to Dr. J. Gentilli, of the School of Geography of the 
University of Western Australia, the waters of northern Australia, in- 
cluding the Gulf of Carpentaria, are among the warmest open sea sur- 
faces in the world, approaching that of the Red Sea. 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 481 


The rich breeding station of Goenoeng Api, a volcanic cone rising 
directly from the ocean floor in the Banda Sea (Van Bemmel and Hoo- 
gerwerf, 1940) suggests that possibly safe nesting sites may be a con- 
tributing factor (see Gibson-Hill, 1949, p. 232, and Serventy, 1952 for 
data on human interference with sea-birds in these seas). 


2. ON A SUB-SPECIATION CENTRE IN THE SOUTHWEST PACIFIC. 

A study of the distribution of the sea-bird species in the Pacific, 
particularly of the petrels, indicates various island groups, isolated from 
each other, where differentiation has gone on to produce fairly distinc- 
tive forms. It is not my purpose to make an exhaustive analysis of all 
of these, but to draw attention, very briefly to one such area in the 
Southwest Pacific. The idea is put forward with a view to stimulating 
discussion on the subject and to find out whether the thesis has a wider 
application than among sea-birds. 

Its existence has been emphasised by the recent taxonomic work 
of Murphy (1951) and Murphy and Irving (1951), on Puffinus pacificus 
and Pelagodroma marina, respectively. 

The widespread P. pacificus, though it has geographically separated 
populations in the Indian and Pacific Oceans, has not differentiated 
subspecifically in strict correspondence with these geographical di- 
visions. But there has, however, developed a distinctive race breeding 
in the Kermadec Islands. 

Pelagodroma marina in the Southwest Pacific occurs in the 
southern Australian and New Zealand regions and in the Kermadecs. 
The Kermadecs area is occupied by the most strongly marked sub- 
species though it “is isolated by only short distances from populations 
characterized by what might be called the world-wide pattern” (Murphy 
and Irving). 

The Kermadecs region has evidently provided conditions which 
have isolated populations of sea-birds both of more northern and more 
southern distribution to produce demonstrably different forms. What 
these isolating mechanisms were is unknown to me, but must un- 
doubtedly be related to the hydrology of the area. 

In this general area, though not at the Kermadecs themselves, 
other local forms have developed. They may possibly be the result of 
the same set of isolating factors. ‘The present distribution of parent 
and daughter forms need not necessarily be the same for each species, 
and the biological fronts between them may have shifted fairly con- 


482 EIGHTH PACIFIC SCIENCE CONGRESS 


siderably. ‘The cases that have suggested themselves to me are as 
follows: 


Parent Form Southwest Pacific race 
Puffinus pacificus chlororynchus  P. p. pacificus 
Puffinus assimilis haurakiensis P. p. kermadecensis 
Pelagodroma marina maoriana P. m. albiclunis 


It is possible that the same isolating mechanisms may have been 
responsible for the break which led to the differentiation of the two 
Grey Noddies, Procelsterna cerulea in the north and P. cinerea in the 
south. After its evolution P. cinerea embarked on an explosive colo- 
nisation through the South Pacific. 

Speculating even more daringly one might attribute the evolution 
of Sterna lunata from the presumed ancestral S$. anetheta to the same 
factors. The two forms may have now overlapped each other in the 
Southwest Pacific through secondary invasion. 

Attention may be directed here to a further subspeciation centre, 
in New Zealand, and south of the tropical-subtropical area just re- 
ferred to. In the New Zealand region, including its southern islands, 
active speciation is shown by the Crested Penguins (Eudyptes chryso- 
chome and allies), albatrosses (Diomedea bulleri and cauta), Puffinus 
bullert (an ally of P. pacificus) and two subspecies of the Cookilaria 
group of Pterodroma. If one includes southeastern Australia Puffinus 
tenutrostris enters into the picture as a very close ally of P. griseus. 

It would appear that in this general area, with its rich develop- 
ment of local species and subspecies outstanding in the Indo-Pacific— 
a complex system of isolating mechanisms has been at work. The only 
worker who has attempted an analysis is Fleming (194la, pp. 146, 152) 
who has sought the explanation in a “movement of the hydrological 
convergences due to past climatic cycles and perhaps paleogeographic 
changes,” the suggested causative factors being ‘“‘changes in the intensity 
of Antarctic glaciation during the late Tertiary and Pleistocene.” ‘The 
field warrants further prospecting, in particular a deeper study of local 
modifications of the ocean current system which Fleming regards as 
responsible for some present-day anomalous distributions in the Aus- 
tralian and New Zealand region. 


V. LITERATURE REFERRED TO IN THE TEXT 


ALEXANDER, W. B., 1928. Birds of the Ocean, New York. 
AUSTIN, O. L., 1952. Notes on some petrels of the North Pacific. Bull. Mus. 
Comp. Zool., vol. 107, No. 7, pp. 891-407. 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 483 


BerG, L. S., 1933. Die bipolare Verbreitung der Organismen und die Hiszeit. 
Zoogeographica, I, pp. 444-484. 

EKMAN, S., 1953. Zoogeography of the Sea, London. 

Fauua, R. A., 1942. Review of the smaller Pacific forms of Pterodroma and 
Cookilaria. The Emu, vol. 42, pp. 111-118. 

FALua, R. A., 1953. The Australian Element in the Avifauna of New Zealand. 
The Emu, vol. 53, pp. 36-46. 

FISHER, J., 1942. The Fulmar, London. 

FLEMING, C. A., 1941. Notes on Neozelanic forms of the Subgenus Cookilaria. 
The Emu, vol. 41, pp. 69-80. 

FLEMING, C. A., 1941a. The phylogeny of the Prions. The Emu, vol. 41, 
pp. 134-155. 

FLEMING, C. A., and D. L. SERVENTY, 1943. The races of Puffutus assimilis 
in Australia and New Zealand. The Emu, vol. 43, pp. 113-125. 

Gipson-Hit, C. A., 1949. The Birds of the Cocos-Keeling Islands. The Ibis, 
vol. 91, pp. 221-243. 

HAMILTON, J. E., 1934. The sub-antarctic forms of the great skua (Cathar- 
acta skua). Discovery Reports, vol. 9, pp. 161-174. 

Hupss, C. L., 1952. Antitropical distribution of fishes and other organisms. 
Proc. 7th Pacific Sc. Congress, vol. 3, pp. 324-330. 

JESPERSEN, P., 1933. Observations on the oceanic birds of the Pacific and 
adjacent waters. Vidensk. Medd. fra Dansk naturh. Foren., vol. 94, pp. 
187-221. 

Loomis, L. M., 1918. A Review of the Albatrosses, Petrels, and Diving 
Petrels. Proc. Calij. Acad. Sciences, (ser. 4), vol. 2, pp. 1-187. 

Macan, T. T., 1953. Reviews: The Fauna of Britain. Journ. Animal Ecol., 
vol. 22, pp. 172-173. 5 

Mayr, E., 1944. Timor and the colonization of Australia by birds. The Emu, 
vol. 44, pp. 1138-1380. 

Mayr, E., 1946. History of the North American Bird Fauna. The Wilson 
Bull., vol. 58, no. 1, pp. 3-41. 

Murpuy, R. C., 1927. On certain forms of Puffinus assimilis and its allies. 
Amer. Mus. Nov., no. 276, pp. 1-15. ‘ 

Murpuy, R. C., 1929. On Pterodroma cooki and its allies. Amer. Mus. Nov., 
No. 370, pp. 1-17. 

MurpnHy, R. C., 1930. Birds collected during the Whitney South Sea Expedi- 
tion, XI. Amer. Mus. Nov., no. 419, pp. 1-15. 

Murpuy, R. C., 1936. Oceanic Birds of South America, New York. 

Murpuy, R. C., 1951. The populations of the Wedge-tailed Shearwater 
(Puffinus pacificus). Amer. Mus. Nov. no. 1512, pp. 1-21. 

Murpuy, R. C., and S. Irvine, 1951. A review of the Frigate-Petrels (Pela- 
godroma). Amer. Mus. Nov., no. 1506, pp. 1-17. 

MurpHy, R. C., and L. S. Mowsray, 1951. New light on the Cahow, Pterodro- 
ma cahow. The Auk, vol. 68, pp. 266-280. 

MurpHy, R. C., and J. M. PENNOYER, 1952. Larger petrels of the genus 
Pterodroma. Amer. Mus. Nov., no. 1580, pp. 1-43. 

Mureuy, R. C., 1952. The Manx Shearwater, Puffinus puffinus, as a species 
of world-wide distribution. Amer. Mus. Nov., No. 1586, pp.1-21. 

REGAN, C. T., 1916. “The British Fishes of the Subfamily Clupeinae. . .” 
Ann. Mag. Nat. Hist. (ser. 8), vol. 18, pp. 1-19. 


A84 EIGHTH PACIFIC SCIENCE CONGRESS 


ScuHoTT, G., 1926. Geographie des atlantischen Ozeans, Hamburg. 

ScHoTt, G., 1985. Geographie des indischen und stillen Ozeans, Hamburg. 

SERVENTY, D. L., 1952. The Bird Islands of the Sahul Shelf: with Remarks 
on the Nesting Seasons of Western Australian Sea-birds. The Emu, 
vol. 52, pp. 33-59. 

SERVENTY, D. L., 1952a. Movements of the Wilson Storm-Petrel in Australian 
Seas. The Emu, vol. 52, pp. 105-116. 

VAN BEMMEL, A. C. V., and A. HooGERWERF, 1940. The Birds of Goenoeng 
Api. Treubia, vol. 17, pp. 421-472. 

Voous, K. H., 1949. The morphological, anatomical and distributional rela- 
tionship of the Arctic and Antarctic Fulmars. Ardea, vol. 37, pp. 113-122. 

WITHERBY, H. C., et al., 1941. The Handbook of British Birds, vol. 2, London. 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 


x 
aS, 
nn 
ie} 
S 
=) 
& 
ep) 
Bis 


* Sula piscatrix 
© §. dactylatra 


485 


FIGURE 1 


EIGHTH PACIFIC SCIENCE CONGRESS 


486 


Z quad 


487 


PELAGIC BIRD FAUNAS OF THE INDO-PACIFIC OCEANS 


(a) 
G 


aM 


ees) 
5) 


fellin 


ie 


¥ 
sian 


Wp 


Toes 
ie rena 


Ria 
* 


1 te 
Hl 
On 
Le 
Ky" 


My 


SOME DISTRIBUTION PATTERNS REPRESENTED BY THE 
MARINE ALGAE OF NHATRANG BAY, VIETNAM? 


By E. YALE DAwson 


Allan Hancock Foundation, University of Southern California 
Los Angeles 7, California, U.S.A. 


It was close to a century ago that Martens, writing for the German 
East Asiatic Expedition, summarized for the first and for the last time 
up to the present, the marine algal flora of Indo-China. ‘Twelve species 
were listed! 

The Indo-China coast extending for over a thousand miles along 
virtually the entire west side of the South China Sea has remained one 
of the least known coasts of the world. Upon invitation of the Pacific 
Science Board and with the support of the U. S. Office of Naval Re- 
search,? I was privileged to spend three months there during early 1953 
in marine algal exploration in the vicinity of the Institut Oceanogra- 
phique de Nhatrang, Viet-Nam. 

The vicinity of the Institut within a radius of five miles offers a 
remarkable diversity of marine environments including mangrove la- 
goons, mud flats, sand flats, rocky shores of both coral and intrusive 
rock, calm lagoons, wave-dashed rocks and sea walls, surge-swept off- 
shore rocks, and varied benthic habitats to depths of over 100 feet. 
Sampling from each of these environments during the months of January 
through March resulted in the collection of 224 species of marine plants 
of which 2% were phanerogams, 8% Myxophyta, 22% Chlorophyta, 
12% Paeophyta, and 56% Rhodophyta. Of these, only six species of 
Rhodophyta occurred exclusively in depths of greater than three meters. 

Inasmuch as this investigation represented the first of its kind for 
the South China Sea region, it was not possible to rely heavily upon 
any particular work for aid in identifying the plants. Indeed, it was 
necessary to search virtually the entire literature dealing with tropical 
marine algae in an attempt to determine the specimens. 

This search pointed up sharply the great dearth of information 
en the marine plants of the vast, tropical areas of the world. In the 
tropical Indo-Pacific region, for instance, the only reasonably complete 
marine floras are those of Weber van Bosse for Indonesia, Brgesen’s 
account of the algae of Mauritius, and Taylor's account of the rather 


1 Contribution number 116 from the Allan Hancock Foundation. 
2 These studies were aided by a contract between the Office of Naval Research, Department 
‘af the Navy and the National Academy of Sciences (NR 160 175). 


489 


490 EIGHTH PACIFIC SCIENCE CONGRESS 


poor flora of the Marshall Islands. Besides these, only scattered papers 
or fragmentary floristic accounts exist, even for such scientifically ad- 
vanced regions as the Philippines and the Hawaiian Islands. 

Not only are these floristic accounts few and incomplete, but many 
of them lack any consideration of ecological data. Furthermore, nu- 
merous problems of nomenclature remain, as well as errors in identi- 
fication, such that many species are recorded under different names in 
different areas while unlike species are often incorrectly identified under 
a single name. 

Thus, it must be admitted that our present knowledge of the ma- 
rine algae of the Indo-Pacific region is hardly sufficient to permit us 
to attempt to deduce many conclusions regarding distribution, either 
specific or general. 

Despite these difficulties and shortcomings the present study of the 
marine flora of Nhatrang Bay has revealed some interesting facts re- 
garding distribution which may aid in the thinking in this symposium. 

_ Firstly, of the 224 species known at Nhatrang, about 40% are com- 
mon ones which are cosmopolitan, pan-tropical or known to be of wide- 
spread occurrence in warm seas. From this group of species of broad 
tolerances little can be deduced as to the affinities of the Nhatrang 
flora with floras of other regions. 

Secondly, our general lack of knowledge of tropical algae is de- 
monstrated in the rather large proportion of new or little known spe- 
cies at Nhatrang (25%). About 7% represent undescribed plants or 
species referred with doubt to described ones, while about 40 species, 
or 18%, are hitherto recorded from only one or two other localities. 
It is particularly noteworthy that of these latter localities a number are 
very remote from Vietnam, as for example, Easter Island, Juan Fer- 
nandez Islands, Tahiti, South India, The Virgin Islands, The Gulf of 
California, Mauritius, The Canary Islands, Hawaii, New Caledonia, 
and even Senegal. 

It is from among the remaining 35% of the species, whose distri- 
butions are somewhat better known and apparently more restricted, 
that the more interesting correlations may be sought. 

In the immediate vicinity of the Institut Oceanographique the most 
prevalent marine environments are sheltered ones in which the off-shore 
islands serve as protection from surf-engendering sea-swell. “These quiet 
waters are subject to intense isolation, which accounts for relatively high 
temperatures, and for diurnal warming of up to 3°C. It is in these 
quiet lagoon and bay-shore habitats that the greatest proportion of pan- 
tropical species occurs. It is also there that nearly all of the species 
which are of occurrence in Indonesia or in the tropical Indian Ocean 


MARINE ALGAE OF NHATRANG BAY, VIETNAM 491 


are found. Conversely, except for a few cosmopolitan species, very few 
occur whose ranges extend into temperate climates. 

In contrast, only three miles from the Institut is an intertidal lo- 
cality of markedly divergent ecology and distinctive flora. A short sea 
wall and associated small area of rough rocks is exposed to the open 
South China Sea through the broad entrance to Nhatrang Bay, and is 
subject to heavy surf. This violently agitated locality is densely vege- 
tated with about 25 species of green and red algae. (Phaeophyta were 
essentially absent). Of these, all but four species, of which three are 
cosmopolitan, were not found elsewhere in the Nhatrang area. Fur- 
thermore, most of the dominant species are of special distributional 
interest. Of the four most abundant and luxuriant species, all of the 
genera Gymnogongrus and Grateloupia, three are characteristic of south- 
ern Japan. Also present and of northern distribution centering in 
southern Japan are Porphyra crispata and Gymnogongrus japonicus. 
Another dominant species was Cladophora perpusilla which is hitherto 
known only from equally high southern latitudes at the Juan Fernandez 
Islands. 

The occurrence of this assemblage of species characteristically in- 
habiting the cooler waters of latitudes higher than 30° seems clearly to 
reflect the importance of violent agitation in counteracting the lati- 
tudinal effects of warming. ‘Thus, the effect of the surf in increasing the 
amounts of carbon dioxide and oxygen available to the plants appears 
to compensate for the lower solubilities due to warming. 

Another locality of more than ordinary interest in Nhatrang Bay 
is an exposed ryolite rock about 25 yards in extent lying in the entrance 
to the bay. It is awash at high tide and subject to constant surge. Its 
algal flora consists of about 17 species of which all but three were found 
in no other place in the Nhatrang region. The dominant plants were 
Chnoospora pacifica, Dermonema frappiert, Chaetomorpha antennina 
and Ectocarpus breviarticulatus, all of which are of more or less wide, 
but discontinuous tropical distribution, being characteristic of just such 
exposed, surge-swept habitats as obtain on this rock. Such species as 
Gigartina intermedia and Laurencia tenera represent a northern com- 
ponent in this flora, while Ceramium taylorit of Pacific Mexico and 
Mesothamnion caribaeum of the Caribbean add an interesting but un- 
explained exotic element. 

At this point it should be made clear that the collections at hand 
represent only the winter flora occuring from January to mid-March. 
During this season the surface temperatures in Nhatrang Bay range 
relatively low, from 24° to 26°, compared to the average surface tem- 
perature for this north latitude in the Pacific and Indian Oceans which 


492, EIGHTH PACIFIC SCIENCE CONGRESS 


lies between 26° and 27°. This relative coolness is due to a southward 
moving current along the west side of the South China Sea and contri- 
butes to the extension of northern algal species into such favorable 
southern localities as the Nhatrang sea wall. During the summer this 
cooling influence from the north is not felt, and the protected nature 
of the region allows for appreciable advances in temperature, the 
maxima of 29-30° being reached in late May and again in mid-Septem- 
ber. Unfortunately, data are totally lacking as to seasonal variations 
and fluctuations in the marine flora. 

In summary, two generalities are clear: 1. We are still outstandingly 
deficient in information about the algae not only of the South China 
Sea but of the whole Indo-Pacific region. 2. Local variations in ecology 
account for such extreme diversity between the algal associations of ad- 
joining localities that it is meaningless to suggest affinities for the 
Nhatrang Bay flora as a whole. 

Among these local variations one may recognize at least four dis- 
tinctive habitats in each of which the dominant algal components re- 
present a different pattern of distribution. 

In the upper intertidal zone, above the level of higher low water, 
and in which the inhabitants are exposed regularly at each ebb tide, an 
assemblage of species occurs in which the majority are cosmopolitan 
throughout the temperate as well as the tropical regions of the world. 

In the quiet waters of the sheltered bay shores on either side of 
the Institut most of the dominant algae are not cosmopolitan, but pan- 
tropical, having wide, more or less continuous distributions in such 
commonplace intertidal habitats, but only within tropical or warm seas, 
particularly in the Indo-Pacific region. 

The dominant algae of the surge-swept rocks mentioned above are 
similarly pan-tropical, but of a markedly more discontinuous pattern 
of distribution due to their narrower ecological tolerances and con- 
sequent restriction to a type of habitat of relatively infrequent occur- 
rence. 

Finally, the dominant species of the surf-dashed sea wall at Nha- 
trang represent a group of algae of restricted distribution in which they 
are the southernmost outposts of a range centering in temperate 
southern Japan. 

The presence of such a varied flora as has been found at Nhatrang 
Bay, and of such distinctive habitats with their dissimilar algal inhab- 
itants, all within an area of scarcely five square miles, demonstrates 
the complexity of the problems of algal distributions in the vast Indo- 
Pacific region, the more so when it is realized that this five square miles 
represents only a solitary spot of knowledge surrounded by tens of 
thousands of miles of unexplored coasts. 


SOME PROBLEMS ON MARINE BIOGEOGRAPHICAL MICRO- 
PROVINCES SURROUNDING JAPAN 


By Tapasice Hase, Tokuser Kuropa and DENzABURO MIyADI 
Zoological Institute, Science College 
Kyoto University, Kyoto, Japan 


‘Three characteristic aspects of marine littoral fauna, which have 
bearings on biogeographical segmentation of Japanese seas, are discussed 
in this paper. 

1) We recognize the continental coastal elements in Japanese bay 
fauna. ‘These elements have their chief distribution area on the Asiatic 
coast and, unlike the littoral fauna of open sea coast, their distribution 
is scarcely influenced by oceanic currents. 

2) A large part of the continental coastal fauna has recently de- 
clined or become extinct in Japan, and its relics have important meaning 
on the establishment of biogeographical micro-provinces of the Japanese 
coast. 

3) The benthic communities of bays show regionally different dis- 
tribution types on the Pacific and Japan Sea sides. We think that typo- 
logical biogeography is no less important than taxonomic biogeography. 


BiOGEOGRAPHICAL SIGNIFICANCE OF THE BAY FAUNA AS COMPARED 
WITH THE LITTORAL FAUNA OF THE OPEN SEA 


It is generally accepted that the oceanic current with its own tem- 
perature range is the chief factor to determine the biogeographical 
provinces of the sea. In Japan, the warm Kuroshio Current and the cold 
Oyashio Current define the biogeographical micro-provinces both hor- 
izontally and vertically. The influence of oceanic current is more prom- 
inent on the littoral fauna than on the deep sea fauna. Although a 
distinct boundary between southern and northern faunas is recognized 
near Inubo-saki, not far from Tokyo, where the Kuroshio Current turns. 
its coastal course to off-shore course, the faunal provinces of the deep 
sea are less distinct and have wider extent. 

The influence of oceanic current on the faunal distribution, how- 
ever, seems more or less limited to open sea coast, and the bay fauna is 
quite independent from it in the biogeographical sense. The mollus- 
can species characteristic of Japanese bays have much wider ranges in 
comparison with those of open sea coast, and Inubo-saki has little mean- 
ing as a barrier for their distribution. In this respect the bay fauna 


493 


A94 EIGHTH PACIFIC SCIENCE CONGRESS 


makes an exception of the general rule that shallow water fauna has 
narrower distribution ranges than deep water fauna. 

Most of the molluscs of Japanese bays have their chief distribution 
area in the Asiatic continent, and they may properly be said to belong 
to the fauna of continental coast. ‘The ranges of their distribution 
often cover the coast of south eastern Asia, the China seas including the 
west coast of Formosa, the Japanese Islands including Hokkaido, and 
the Russian Maritime Province. 

These continental elements are historically the descendants of the 
fauna of Pleistocene, when the Japanese Islands were more closely con- 
nected with the Asiatic continent than at present. The physiological 
basis for the wide range of distribution may have been acquired through 
the life in the euryhaline and eurythermal habitat of the bay. 

As members of this fauna may be mentioned the following species, 
most of which being dominant members of benthic molluscan com- 
munities of Japanese bays. 

Raeta pulchella: Japan incl. Hokkaido, Siam, Borneo, Russian 

Maritime Province. 
Brachidontes sennousia: Japan incl. Hokkaido, Central China, 
Korea, Russian Maritime Province. 

Theora lubrica: Japan incl. Hokkaido; represented by a closely 

related species in Southeastern Asia. 

Paphia undulata: Japan, Siam, China; represented also by a closely 

allied species P. textrix in the continent. 

Anomia cytaeum (A. lischket): Japan incl. Hokkaido, China, west 

coast of Formosa. 

Venerupis japonica (formerly misidentified as V. philippinarum): 

Japan incl. Hokkaido, China, Formosa, Korea; represented by 
V. indica in southeastern Asia. 

Caecella chinensis: Japan incl. Hokkaido, China. 

Zirfaea japonica: Japan incl. Hokkaido, China; represented by a 

closely allied species Z. dilatata in the continent. 

Mactra sulcataria: Japan incl. Hokkaido, China coast. 

Laternula limicola: Japan incl. Hokkaido, China, Saghalien. 

Ostea gigas: Japan incl. Hokkaido, China, west coast of Formosa, 

Russian Maritime Province. 
Littorina brevicula: Japan incl. Hokkaido, China, Korea, Russian 
Maritime Province. 

Veverita didyma: Japan incl. Hokkaido, China. 

Mitrella bella: Japan incl. Hokkaido, China. 

The similar tendency of wide distribution is recognised in the estua- 
rine and brackish water molluscs, though sometimes replaced by closely 


MARINE BIOGEOGRAPHICAL MICRO-PROVINCES—JAPAN 495 


related forms in the continent. Corbicula japonica and Assiminea jap- 
_ontca may be examples of this category. 

From these facts it may be concluded that different parts of the 
same littoral region with similar depth may belong to different bio- 
geographical provinces according to the kind or system of fauna on 
which they are based. 


RECENT DECLINE OF CONTINENTAL COASTAL FAUNA FROM JAPAN 
AND ITS BIOGEOGRAPHICAL MEANING 


Among factors to determine the biogeographical provinces, there 
are geographical distance and ecological conditions of habitat on the 
one hand and historical processes on the other. ‘The analytical study 
of the relative weight of these factors is, however, not always easy. 
In Ariake Bay on the west coast of Kyushu, there occur several ani- 
mals which do not appear in other districts of Japan but are very com- 
mon in the continental coast of Asia. An Enraulid Coilia ectensis and 
a Gobioid Boleophthalmus pectinirostris among fishes and Salinator 
takit (represented by allied forms in the continent), Assiminea latericea 
and Cerithidea ornata among snails are some of the examples of this 
category. Based on these facts, Ariake Bay has been regarded to form 
a special biogeographical micro-province, and this peculiarity was attri- 
buted to the geographical proximity between this bay and the continent. 
Our recent survey has revealed that there are quite many mollus- 
can species which are found in only a few bays often including Ariake 
Bay, but are very common in the continental coast. Some of these 
molluscs are found as semi-fossils in many shell mounds and recent 
sediments along the Japanese coast. Some of the examples are as fol- 
lows: 
a) Molluscs found in a few Japanese bays at present, but their wide 
pre-historic distribution has been proved by remains in shell mounds 
and deposits: 
Anadara (Tegillarca) granosa: Living in Ariake Bay, Inland Sea 
and Mikawa Bay. Widely distributed in the continental coast. 
Fossil or semi-fossils in shell mounds or deposits of Sendai in 
North Japan, Nanao of Japan Sea coast and Osaka Bay. 

Trisidos tortuosa kiyonoi: Living in northern Kyushu (Fukuoka 
Bay and Karatu Bay). Represented by T. tortwosa in Indo- 
China and China coast. Fossils from Toyohasi in Central 
Japan and Osaka Bay. 

Erodona amurensis: Distributed in Hokkaido, Korea, China and 
Amur Region. Fossils from Toyohasi in Central Japan and 
Osaka Bay. 


196 EIGHTH PACIFIC SCIENCE CONGRESS 


b) Molluscs which appear in a few bays at present but are sup- 
posed to have had a wider distribution range in Japan, though no fossil 
remains are at hand. ‘They are common or represented by closely re- 
lated species in the continental coast. 

Glaucome chinensis: Tokyo Bay, Kozima Bay of the Inland Sea,. 

and Ariake Bay. 

Sinonovacula constricta: Kozima Bay and Ariake Bay. 

Striarca olivacea: ‘Tokyo Bay, Kozima Bay, and Ariake Bay. 

Standella pellucida: Kozima Bay. 

Cerithidea largillierti: Ariake Bay and Kozima Bay. 

Nassarius variciferus: Inland Sea and Northern Kyushu. 

c) Molluscs which appear as fossils in Japan, but are represented 
by closely allied species in the continental coast. 

Protapes irrediviva: ‘Totuka not far from Yokohama. 

Mabellarca hiratai: an undescribed new Ark-shell from Kagoshima of 

southern Kyushu. 

These facts seem to prove that the continental coastal elements of 
bay fauna have recently declined or become extinct. The causes of 
decline are not clear. The possible difference of submarine climate at 
different localities is not large enough to explain this phenomenon. 
As a more plausible reason for the decline of this fauna, which belongs. 
to muddy bottom community especially of indentation of bays, may be 
mentioned the recent change of micro-topography of the Japanese coast. 

N. Sakazume (1952) has found that Anadara granosa, a bivalve 
now extinct in Tokyo Bay, is an important member of the shell mounds 
along the coast of prehistoric Tokyo Bay. It occurs more abundantly 
in older mounds situated near the head of indentations. As the landing 
of the bay proceed, the sites of mounds advance toward the mouth of 
indentations, where this shell becomes a less prominent member of the 
shell assemblage. It has also been confirmed that in the same site, the 
lower strata of a mound contain more A. granosa than the upper strata. 

These facts seem to prove the gradual decline of this bivalve with 
the progress of landing process in recent geological time. In our opin- 
ion, the declining molluscs are preserved as relics in such places as 
Ariake Bay and a part of the Inland Sea (Kozima Bay as a typical place), 
where muddy bottom has still a large extent. In Ariake Bay, for an 
example, the tidal area is so muddy that shell collection by fishermen 
is made by using wooden runners or mud ski. The declining process 
seems in progression at present. 

Thus in this case the supposed existence of a special micro-province 
is to be explained neither by the geographical proximity nor by the 
climatic similarity, but by the survival of some continental elements 
in a special habitat. 


MARINE BIOGEOGRAPHICAL MICRO-PROVINCES—JAPAN 497 


DISTRIBUTION TYPE OF THE FAUNA AS A 
REGIONAL CHARACTERISTIC 


In the establishment of biogeographical provinces, the taxonomic 
list of fauna has been the material of the first importance to be con- 
sulted. From the standpoint of ecology and production biology for our 
economic life, however, the regional characteristics of biomass and dis- 
tribution types of fauna are no less important than the presence or 
absence of a particular species or a group of species. 

In respect to biomass, our study of bay communities has revealed 
that within the Japanese Islands the productivity has closer relation- 
ships with specific characteristics or individuality of bays such as the 
mean depth, influents and other ecological factors, than with geograph- 
ical regions with different submarine climates. 

The distribution types of benthic animals differ, on the contrary, 
in bays of the Pacific and Japan Sea sides. On the Pacific coast, con- 
tinental molluscan elements have a relatively narrow zonal arrangement 
in the inmost part of the bay, and the remaining larger area extending 
from the mouth to the inner part is occupied by the coastal elements of 
the open sea, showing more or less clear boundary between these two 
communities. On the Japan Sea side, continental elements occupy most 
of the area, and only a few open sea elements invade the bay. Further- 
more, the continental elements are segregated into two zonal commu- 
nities: i) the animals which are indices of strong embayment and dis- 
tributed in the inmost part, and ii) those of moderate embayment 
occupying the remaining area. 

Some of the molluscs of the continental and open sea systems ap- 
pearing in Japanese bays may be classified as follows: 

a) Continental coastal elements which appear in the inner part 
of bays of both Pacific and Japan Sea sides. They are used as indices. 
of strong embayment. 

Theora lubrica, Raeta pulchella, Pahia undulata and Fluvia hunger- 
fordi. 

b) Continental coastal elements which are quite common in the 
central and mouth parts of bays of the Japan Sea side, but are rare or 
absent on the Pacific side. They are the indices of moderate embay- 
ment. 

Veremolpa micra and Alvenius ojianus. 

c) Coastal elements of open sea under the influence of the warm 
Kuroshio Current. They are common in bays of the Pacific coast of 
southern Japan, but are less prosperous in bays of the Japan Sea and 
the Pacific coast of northern Japan. They are the indices of weaker 


embayment. 


498 EIGHTH PACIFIC SCIENCE CONGRESS 


Veremolpa minuta, Laevicardium undatopicta, Nucula paulula and 
Microcirce gordonis. 

The similar tendencies of distribution are found in plankton and 
perhaps in nekton, too. 

The difference of distribution types may be attributed to the dif- 
ferent degree of influence of the open sea water caused by tide. The 
tidal ranges differ on the opposite sides of Japan, which reach more 
than I m. on the Pacific Sea side and about 30-40 cm. on the Japan Sea 
side. 

K. Okamura (1926) published an opinion that the poorness of 
algal flora of the Japan Sea in comparison with that of the Pacific coast 
was due to the geologically recent origin of the Japan Sea. Although 
we have not sufficient reasons to deny this theory, the simpler composi- 
tion of coastal fauna of the Japan Sea may be more reasonably under- 
stood by simpler ecological conditions including a small tidal range than 
by historical sequence. 

We have an opinion that more emphasis should be laid in future 
on the biogeographical study from quantitative and typological view- 
points than from the taxonomic standpoint. 


SUMMARY 

1) In Japanese bays, there occur the faunal elements of the conti- 
nental coast, which have much wider distribution ranges than those of 
the open sea coast and their distribution is little influenced by the 
oceanic currents. 

2) Some of the continental coastal animals have recently become 
extinct or remain as relics in some special bays. This fact is proved 
by the study of shell mounds and it has an important meaning in the 
segmentation of marine biogeographical micro-provinces around the 
Japanese Islands. 

3) The bay communities have regionally characteristic distipatien 
types, and we have an opinion that the biogeography based on taxono- 
mic differences is only one side of biogeography. 


THE MARINE MOLLUSCA OF THE KERMADEC ISLANDS IN 
RELATION TO MOLLUSCAN FAUNAS IN 
THE SOUTH WEST PACIFIC 


By R. K. DELL 


Dominion Museum 
Wellington, New Zealand 


The demarcation and nomenclature of Australasian and South- 
West Pacific biogeographical regions have been largely a matter of 
rather haphazard incremental growth. Whitley (1932, p. 167) published 
a map showing the Australasian regions based upon studies by Hedley 
Iredale, May, Hull, Finlay, and Cotton. Unfortunately the journal in 
which Whitley published is not widely known overseas, and the com- 
pilation he so adequately presented does not appear to have attracted 
much notice. The Schilders, for example, (1938-39) in their monu- 
mental study of the Cypraeidae either did not know of Whitley’s 
scheme (or any of the previous work on Australasian faunal regions) 
or ignored it. Iredale and Allan (1940, p. 445) published a map 
showing “former Zoological Land connections with Lord Howe Island” 
which, together with their text, implies some interesting modifications 
of Whitley's scheme and indicates the probable origins of the faunal 
regions. 

In the meantime, Powell has added a northern faunal zone to the 
Neozelanic region, the Aupourian (Powell 1937, p. 156; 1940, p. 205). 
There is little difficulty involved in delimiting the broad faunal 
provinces of New Zealand and Southern Australia (though the actual 
boundaries have not been determined in a number of cases). But the 
Dampierian (Western and North-western Australia) and Solanderian 
(Great Barrier Reef) and New Caledonia, Lord Howe, Norfolk, and 
the Kermadec Islands are on the outskirts of the widespread Indo- 
Pacific marine fauna and are influenced to a varying extent by it. The 
truly marginal areas of Lord Howe, Norfolk, and the Kermadecs have 
always presented problems of classification. Each can quite easily be 
considered a distinct faunal province but the determination of the bio- 
geographical region to which each belongs has proved difficult. 

In the belief that study of these marginal areas may throw consider- 
able light upon the methods to be used in subdividing the Indo-Pacific 
marine fauna, the marine mollusca of the Kermadecs have been sub- 


499 


500 EIGHTH PACIFIC SCIENCE CONGRESS 


jected to a new analysis. In any case in any scheme for subdivision of 
the Indo-Pacific these marginal areas must receive due consideration. 

Oliver (1915) presented an account of the mollusca of the Kerma- 
decs. Since then changes in nomenclature have altered some of the 
relationships and a more detailed analysis has been found desirable. 
Oliver tabulated the relationship of the Kermadec mollusca under the 
following heads: Endemic, Polynesian, New Zealand, and Pelagic. The 
results so obtained give a biassed picture of relationships. No account 
was taken of Australian relationships, nor was any distinction made 
between those species occurring in Australia, New Zealand, and the 
Kermadecs, and those found in New Zealand and the Kermadecs only. 
‘These latter species alone form the neozelanic element in the Kermadec 
fauna, or the Kermadecian element in the New Zealand fauna depend- 
ing on the direction of original migrations. Lord Howe and Norfolk 
have been grouped into a Phillipian province and included in the 
Neozelanic region by Whitley. It is therefore necessary to consider the 
fauna of the Kermadecs in relationship to that of the Phillipian pro- 
vince. For the above reasons the marine mollusca of the Kermadecs 
have been analysed under the following heads: Endemic, Occurring in 
New Zealand, Occurring in New Zealand but not in Australia, Occur- 
ring in Australia, Occurring in Australia but not in New Zealand, 
Occurring in Norfolk and/or Lord Howe Islands, South Pacific and 
Pelagic (or drift shells). 


Total Per Gastro- Pelecye Amphi- Cephalo- 


cent poda poda poda poda 
Endemic 85 34 63 qT 8 iG 
New Zealand PAA YE ass ta a= — 
N.Z. (but not Aust.) Signe 3 5) a — 
Australia Chie oo 12 — — 
Aust. (but not N.Z.) 50) ) PAO) AO) 10 — —- 
Norfolk and/or Lord Howe 81 12 27 4 — — 
South Pacific G2mmoo ue an 15 —_ — 


Pelagic (or drift) PAS) ©2194). BAD) — — 9 


SSSESE 


The endemic element (one third) is thus seen to be the strongest 
represented. ‘The essentially New Zealand element is very small (8 
species), indicating that although 22 species are common to the Ker- 
madecs and New Zealand, 16 of them are also found in Australia. It 
is most probable that these species have been derived from Australia 
rather than from New Zealand. 

The eight species found in the Kermadecs and New Zealand, but 
not in Australia are: Xenophalium royanum (Iredale), Poirierta ze- 
landicus (Q. & G.), Neothais smithi (Brozier), Monia zelandica (Gray), 


MARINE MOLLUSCA GF THE KERMADEC ISLANDS 501 


Cosa costata (Bernard), Hoschstetteria meleagrima Bernard, Mytilus 
canaliculatus Martyn, and Modiolaria impacta (Hermann). 

Upon close examination this already weak link proves weaker still. 
Poirieria was recorded by the Challenger from 1,100 metres off the 
Kermadecs and these shells have not been critically re-examined. My- 
tilus was recorded by Suter but no specimens have been seen in quite 
extensive collections. Such a species would undoubtedly be well re- 
presented in beach collections if it were present. The Monza, Modio- 
laria, Cosa, and Hochstetteris are all doubtfully the same as the New 
Zealand forms. The Xenophaliwm occurs very rarely in northern New 
Zealand waters, and Neothais smithi, though abundant at the Kermadecs 
and occurring at Lord Howe and Norfolk, is but a rare straggler in 
New Zealand waters. 

From the above it appears certain that molluscan dispersal move- 

nents are from the Kermadecs to New Zealand, at least within recent 
times. 

A number of the genera occurring at the Kermadecs are otherwise 
endemic to New Zealand e.g. Eudoxochiton, Onithochiton, Maorichi- 
ton, Austronoba, Haurakiopsis and Pinnoctopus (?). If these genera 
were originally derived from New Zealand it must have been at some 
time in the Tertiary, since in all cases the forms at the Kermadecs have 
differentiated specifically. In all these cases there is no palaeontological 
evidence available to show whether dispersal took place in the direction 
mentioned or from the Kermadecs to New Zealand. 

It thus becomes apparent that the marine molluscan fauna of the 
Kermadec Islands has little relationship to New Zealand but has been 
derived from a number of other sources. The geological history of the 
group and their comparative isolation have been long enough for a 
large number of endemic forms to evolve. Some of these are large and 
characteristic shells e.g. Scutellastra, Tectus and the species of Cellana. 
and Siphonaria. Indo-Pacific and Australian elements are well repre- 
sented and a number of forms are shared with Lord Howe and Nor- 
folk Islands. It is difficult to assign the group to any zoogeographic 
region and a similar difficulty occurs with the neighbouring Lord Howe 
and Norfolk Islands. The marine fauna of these three marginal areas 
represents an interplay of factors such as geological age, distance from 
neighbouring land, the direction of surface water movements and larval 
motility and duration. 

Iredale and Allan (1940) suppose that the very evident relation- 
ships between the marine mollusca of Lord Howe and New Caledonia 
date back to a period when there was a land connection between the 
two. The presence of Placostylus in both areas is fairly conclusive 


502 EIGHTH PACIFIC SCIENCE CONGRESS 


evidence of a former land connection (possibly quite early in the Ter- 
tiary) but a number of the mollusca may quite well have been derived 
at a later period by transoceanic migration. ‘The slight Australian 
element could also have been similarly derived. Geographical propin- 
quity coupled with direction and intensity of ocean currents can be as 
important as a land connection in the past. 

Almost a tenth of the molluscan fauna of the Kermadecs are 
pelagic in habitat, but this is a sign of the comparative paucity of the 
molluscan fauna. On the other hand quite a large percentage of the 
Indo-Pacific mollusca present at the Kermadecs will probably prove to 
have highly motile larval stages. 

The figure shows in simplified form the probable relationships of 
the marine molluscan faunas of the various land masses in the South- 
west Pacific and points up the difficulty of assigning any of the isolated 
areas to a neighbouring biogeographical area. ‘he answer to the prob- 
lem may well be to designate a South-West Pacific biogeographical 
region with a large number of subregions, e.g., Kermadecian for the 
Kermadec Islands, Philippian for the Lord Howe and Norfolk Islands, 
Neozelanic for the New Zealand and Australian, and Montrouzierian 
for New Caledonia with subdivision into provinces when necessary (e. 
g. Australia and New Zealand). 


BIBLIOGRAPHY 


IREDALE, T. and J. ALLAN, 1940. A Review of the Relationships of the Mol- 
lusca of Lord Howe Island. Austr. Zool., vol. 9, pp. 444-451. 

POWELL, A. W. B., 1987. New Species of Marine Mollusca from New Zealand. 
Discovery Reports, vol. 15, pp. 158-222. 

PoWELL, A. W. B., 1940. The Marine Mollusca of the Aupourian Province, 
New Zealand. Trans. Roy. Soc. N.Z., vol. 70, pp. 205-248. 

SCHILDER, F. A. and M. SCHILDER, 1938-39. Prodrome of a Monograph of 
Living Cypraeidae. Proc. Mal. Soe., vol. 28. 

WHITLEY. G. P., 1932. Marine Zoogeographical Regions of Australasia. 
Austr. Nat., vol. 8, pp. 166-167. 


MARINE MOLLUSCA OF THE KERMADEC ISLANDS 503 


eFUNAFUT| 


NEW % 
° 
CALEDONIA |S 


AUSTRALIA 
NORFOLK sS, 


e@ 
——TorD HOWE IS. 


e 


e NEW ZEALAND 


‘ 
Pant aman 
DANAE NE 


Yt Sse 
ry \ 


ieee ad 
ex 


Ning 


if 


THE GEOGRAPHICAL VARIATION OF EARLY EMBRYONIC 
PROCESSES IN MARINE EGGS 


By ALEXANDER WOLSKY * 
UNESCO Science Cooperation Office for South Hast Asia 
Djakarta, Indonesia 


A. INTRODUCTION 


In a recent paper I have pointed out that the eggs of the marine 
Polychaete Hydroides norvegica have probably different cleavage pat- 
terms in the North Sea and in the Mediterranean (Wolsky 1952). 
Whereas in Kristineberg (near Fiskebackskil), on the west coast of 
Sweden, the early cleavage was found to be spiral and equal, an earlier 
observer, working at Cette (Sete) on the Mediterranean coast of France, 
found it orthoradial and unequal (Soulier 1898, 1902). It was suggested 
that this difference may be due to a differentiation of physiological 
races within the species, which occupy different regions and differ from 
each other in an early embryonic character of their eggs. A further 
study of the literature has revealed that the occurrence of such egg 
races, differing from each other in some physiological properties and 
early developmental processes is a widespread phenomenon. Moreover, 
these races seem to be well adapted to the environmental conditions of 
the geographical area in which they occur. This not only corroborates 
the view about the existence of two egg races in Hydroides norvegica, 
but also provides a basis for a more profound explanation of the pheno- 
menon and for some generalizations. In the following the relevant facts 
will be reviewed first, followed by some theoretical considerations and 
their application to the case of Hydroides. 


B. THE RELEVANT FActs CONCERNING PHYSIOLOGICAL EGG RACES 


(1) The factor which seems to have the most profound influence on 
the physiological properties and early developmental processes of eggs 
is temperature. This is obvious, considering the fundamental correlation 
between temperature and the properties of living matter, especially the 
velocity of biochemical reactions which make out the bulk of early em- 
bryonic processes (cf. Belehradek 1935). In addition, in the case of 
equatic eggs, salinity (osmotic pressure) of the medium is just as im- 
portant as temperature, and the two factors act synergetically. Higher 


* Present address: Biological Laboratory, Fordham University, New York 58, U.S.A, 


505 


506 EIGHTH PACIFIC SCIENCE CONGRESS 


salinity has the same effect as lower temperature (cf. Heuts 1947b, Koch 
and Heuts 1943). 

(2) The most immediate adaptive response of the organisms to 
these factors is the adaptation of the tolerance range and optimum of 
their eggs to the conditions existing in their environment. Eggs prod- 
uced in warmer waters tolerate higher temperatures and have a higher 
optimum temperature for their normal development than eggs from 
colder waters. This was shown both for egg races within the same spe- 
cies and for eggs of closely related species inhabiting different regions 
(cf. Runnstrom 1927, 1929; 1936, Moore 1939; 1942a,b, 1944) 11929); 
Similar differences were found between egg races from localities of 
different salinity in respect to adaptation to osmotic pressure (cf. Heuts 
192791949): 

(3) Certain physiological properties of eggs, in particular the rate 
of cleavage, are adapted to temperature (and salinity) in a regulative- 
compensatory manner. ‘That is, the adaptation tends to minimize the 
effect of extreme environmental influence and to establish a uniform 
physiological standard under different conditions. Egg races from colder 
waters have the same rate of cleavage at the average temperature of 
their normal environment as egg races from warmer waters at the higher 
average temperature of their normal habitat (ct. Munro Fox. 1936, Moore 
1939))1942a), 1929). | 

(4) Certain other physiological-biochemical properties of eggs, no- 
tably the rate of the production of morphogenetic or ‘“‘organ-forming”’ 
substances (i.e. the beginning of differentiation which is often called 
“chemo-differentiation”) do not show such regulative-compensatory 
adaptation. On the contrary, this seems to be influenced directly by tem- 
perature (and salinity), so that morphological differentiation proceeds 
quicker in warm regions (or regions of low salinity) and slower in cold 
regions (or regions of high salinity). In consequence there may arise 
some morphological differences between adult specimens of the same 
species, collected from different localities differing in their average tem- 
perature and/or salinity, which can be reproduced artificially in a lab- 
oratory by controlling temperature and salinity during embryonic de- 
velopment. ‘This has been shown for example for the so-called meristic 
characters of fishes, such as number of vertebrae, number of fin-rays, 
etc. (cf. Heuts 1946, 1947a, b, 1948, Hubbs 1922, 1926). 


C. SOME "THEORETICAL CONSIDERATIONS CONCERNING THE CORRELATION 
BETWEEN CLEAVAGE AND DIFFERENTIATION 

(1) From the foregoing it seems that in egg races the processes of 

cleavage are adapted to temperature in another way than the processes 


EARLY EMBRYONIC PROCESSES IN MARINE EGGS 507 


of the production of morphogenetic substances, i.e., differentiation. The 
former tend to be constant under various climatic conditions whereas 
the latter follow exactly the differences of temperature, i.e., will proceed 
slower in colder and quicker in warmer climate.* 

(2) This means that various stages of cleavage will not coincide in 
all egg races with the same stages of morphogenetic processes. In colder 
waters morphogenesis will proceed slower in relation to cleavage than 
in warmer waters. Therefore a certain stage of differentiation which 
in a race of a warmer region is reached, say in the 8-cell, or 16-cell stage, 
will be reached in a race from a colder region perhaps only in the mo- 
rula or blastula stage. 

(3) The relative time of differentiation defines also the mode of 
determination of subsequent developmental processes in the various egg 
races. A race with relatively early differentiation, i.e., an early produc- 
tion and segregation of morphogenetic substances, will have a mosaic 
type of determination, in which the fate of the blastomeres is fixed from 
the beginning. In a race in which such morphogenetic processes start 
relatively late and progress slowly, the development will be of the reg- 
ulative type; i.e., the morphogenetic potency of the blastomeres is in 
the beginning greater than their final role. 

(4) This difference may also determine the mode of cleavage as it 
is generally assumed that “mosaic” eggs have a tendency to unequal 
cleavage, whereas in regulative eggs the cleavage is usually equal (cf. e.g. 
Lillie 1901, Chen and Pai 1949). ‘The explanation is, of course, that in 
the mosaic eggs there are invisible differences between the various re- 
gions of the cytoplasm from the beginning, due to a precocious produc- 
tion and segregation of morphogenetic substances and these cause dif- 
ferences in the shape and size of blastomeres. In the regulative eggs 
the cytoplasm is in the beginning more or less homogeneous and con- 
sequently the blastomeres will be approximately equal. 


D. INTERPRETATION AND GENERALIZATION OF THE CASE OF 
HypROIDES NORVEGICA 


(1) The above theoretical considerations are in good accordance 
with the findings about the mode of cleavage in Hydroides. The cleav- 
age is equal in the North Sea, ie., in a colder region, and unequal in 
the Mediterranean, which is definitely warmer. On the basis of the fore- 
going the explanation must be that in the Mediterranean race the pro- 
cess of differentiation begins relatively early and the cytoplasm of the 
eggs must be differentiated into heterogeneous regions before the cleav- 


* Findings of Koehler (1912) seem to indicate that the two sets of processes have differ- 
ent temperature coefficients even within the same egg, which shows that they are of differ- 
ent nature (Koehler, 1. cit. page 273). 


508 EIGHTH PACIFIC SCIENCE CONGRESS 


age begins, so that the blastomeres will be of different size. In the North 
Sea race, on the other hand, the egg cytoplasm must be practically 
homogeneous during the first stages of cleavage and consequently the 
blastomeres will be more or less equal. 

(2) The further fact that the cleavage of Hydroides is orthoradial 
in the Mediterranean race and spiral in the North Sea race may be per- 
haps also explained by differences of temperature. Knowing that the 
two types of cleavage depend to a certain extent on differences in the 
cohesion of the blastomeres (cf. Gray 1931), and knowing that calcium 
plays a decisive role in this cohesion (cf. Herbst 1900), one may specu- 
late if the difference in the cleavage pattern is due to differences in the 
availability of calcium in the waters of the two regions, caused by dif- 
ferences of temperature. However, this trend of thought has its serious 
obstacles and for the time being no satisfactory explanation can be of- 
fered to account for the phenomenon. 

(3) The explanation of the differences in the mode of cleavage of 
Hydroides can be generalized and a tentative prediction put forward 
concerning physiological egg races. It can be predicted that marine 
species occupying large geographical areas, within which there are dif- 
ferences of climate, probably have physiological egg races differing from 
each other in the type of the determination of their developmental 
processes and their pattern of cleavage. In colder regions the eggs 
of such species should be of the regulative type and their cleavage 
equal. In warmer regions one should expect to find egg races of the 
same species with a ‘mosaic’ character and unequal cleavage pattern. 
The same difference should be found between eggs of closely related 
species occupying different geographical areas, in which the climate 
is different. —These predictions could be verified, or disproved by 
further investigations on a broad comparative zoogeographical basis. 


ADDENDUM AT PROOF-READING 


Since this paper was submitted I have had an opportunity to study 
the mode of cleavage of Hydroides norvegica in the Mediterranean (cf. 
Wolsky, A. “Mode of cleavage of the eggs of Hydroides norvegica in the 
Mediterranean,’ Nature 176, 75, 1955). It turned out that the dit- 
ference between the eggs from the North Sea and from the Mediterra- 
nean is not so sharp as assumed on the basis of Soulier’s categorical state- 
ment (Soulier 1898, page 1662) “chez Hydroides. . . . la segmentation 
est inégal au debut”. Measurements have shown that the cleavage is 
indeed somewhat more unequal in the Mediterranean than in the North 
Sea, but it was impossible to decide whether this difference is statisti- 
cally significant. On the other hand, definitely no difference was found 


j 


EARLY EMBRYONIC PROCESSES IN MARINE EGGS 509 


between the two races as regards the spirality of the cleavage. The 
cleavage is of the spiral type from the beginning both in the Mediterra- 
nean and in the North Sea. This makes paragraph D (2) above ob- 
solete and no further attempts will be needed to explain a phenome- 
non, which does not exist. —However it is interesting to note that re- 
cently W. Ludwig and H. W. Ludwig have reported physiological dif- 
ferences in the regenerative potency of Hydroides norvegica from dif- 
ferent localities, such as Naples, Plymouth and Cold Spring Harbor 
(Ludwig, W. and H. W. Ludwig “Untersuchungen zur kompensatoris- 
chen Regeneration an Hydroides norvegica” Roux’ Arch. Entwicklungs- 
mech. 147, 259, 1954). It is also noteworthy that in another marine 
Polychaete, Ophryotrocha puerilis, Bacci and La Greca have described 
slight physiological and morphological differences between the races 
inhabiting the North Sea and the Mediterranean respectively (Bacci, G. 
and M. La Greca “Genetic and morphological evidence for subspecific 
differences between Naples and Plymouth populations of Ophryotrocha 
puerilis’ Nature 171, 1115, 1953). Finally it should be mentioned that 
Steinboéck and Ausserhofer have found in a primitive fresh-water flat- 
worm, Prorhynchus stagnalis, two fundamentally different types of clea- 
vage within the same species, one equal and orthoradial, one unequal 
and spiral.* These findings seem to corroborate in one way or another 
the general conclusions of this paper. 


REFERENCES 


BELEHRADEK, J. (1935) “Temperature and Living Matter.” Protoplasma 
Monographs 8, Berlin (Borntraeger). 

CHEN, C. L. and S. Par (1949) “Furchungsgeschwindigkeit und Furchungs- 
rhythmus bei Brachionus pala und Polyarthra platyptera.” Exper. Cell 
Res. Suppl. 1, 540. 

Fox, H. Munro (1936) “Rates of Cleavage of Sea Urchin Eggs in Dif- 
ferent Latitudes.” Nature (London), 138, 389. 

GRAY, J. (1931) “A Text-Book cf Experimental Cytology.” Cambridge 
(Univ. Press). 

Herest, C. (1900) “Uber das Auseinandergehen von Furchungs- und 
Gewebezellen in kalkfreiem Medium.” Arch. Entw. mech. 9, 424. 
Heuts, M. J. (1945) “La régulation minérale en fonction de la tempera- 
ture chez Gasterosteus aculeatus. Son importance au point de vue de la 

zoogéographie de l’espéce.” Ann. Soc. Roy. Zool. Belgique 76, 88. 
(1946) “Physiological Isolation Mechanisms and_ Selection 
within the Species Gasterosteus aculeatus.” Nature (London), 138, 839. 
(1947a) “The Phenotypical Variability of Gasterosteus aculea- 
tus L. Populations in Belgium.” Verh. Kon. Akad. Wetensch. 9, 63. 


* Steinbock, O. and B. Ausserhofer ‘“‘Zwei grundverschiedene Entwicklungsaublaufe bei 
einer Art, Prorhynchus stagnalis M.Sch., Turbellaria’” Roux’ Arch. Entwicklungsmech. 144, 
155, 1950. 


510 EIGHTH PACIFIC SCIENCE CONGRESS 


Heuts, M. J. (1947b) “Experimental Studies on Adaptive Evolution in Gas- 
terosteus aculeatus L.” Evolution 1, 89. 

— (1948) “Racial Divergence in Fin Ray Variation Patterns in 
Gasterosteus aculeatus.” Journ. Genetics 49, 183. 

(1949) “On the Mechanism and the Nature of Adaptive Evolu- 
tion.” La Ricerca Scient. 19 (Suppl.), 35. 

Hupss, C. L. (1922) “Variations in the Number of Vertebrae and Other 
Meristic Characters of Fishes Correlated with the Temperature of the 
Water During Development.” Amer. Naturalist 56, 360. 

(1926) “The Structural Consequences of Modifications in the 
Developmental Rate of Fishes.” Amer. Naturalist 60, 57. 

Kocu, H. J. and M. J. Heuts (1943) “Regulation osmotique, cycle sexuel 
et migration de reproduction chez les Epinoches.” Arch. internat. Phys- 
iol. 68. 

KoEHLER, O. (1912) “Uber die Abhangigheit der Kernplasmarelaticn von 
der Temperatur und yom Reifezustand der Hier.” Arch. f. Zellforschung 
Seeziias 

Linum, F. R. (1901) “The Organisation of the Egg of Unio, Based on a 
Study of its Maturation, Fertilization and Cleavage.” Journ. Morphol. 
10, 1. 

Moore, J. (1939) “Temperature Tolerance and Rates of Development in 
the Eggs of Amphibia.” Hcology 20, 459. 

(1942a) “The Role of Temperature in Speciation of Frogs.” 
Biol. Symposia 6, 189. 

— (1942b) “Embryonic Temperature Tolerance and Rate of De- 
velopment in Rana catesbiana.” Biol. Bull. 83, 375. 

(1944) “Geographic Variation in Rana pipiens Schreber of 
Eastern North America.” Bull. Amer. Mus. Nat. Hist. 82, 343. 

(1949) “Patterns of Evolution in the Genus Rana.” In Jepsen- 
Mayr-Simpson (Editors) ‘Genetics, Paleontology and Evolution.” 
Princeton. 

RUNNSTROM, S. (1927) “Uber die Thermopathie der Fortpflanzung in 
Beziehung su ihrer geographischen Verbreitung.” Bergens Mus. Aarbok, 
Nat. Rekke. 

— (1929) “Weitere Studien tiber die Temperaturanpassung der 
Fortpflanzung und Entwicklung mariner Tiere.” Burgens Mus. Aarbok, 
Nat. Rekke. 

(19386) “Die Anpassung der Fortpflanzung und Entwicklung 
mariner Tiere und die Temperaturverhaltnisse verschiedener Verbrei- 
tungsgebiete.” Bergens Mus. Aarbok, Nat. Rekke. 

Souuier, A. (1898) “Sur les premiers stades embryogeniques de Serpula 
infundibulum et Hydroides pectinata.”’ C. R. Acad. Sci. Paris 126, 1666. 

—_———— (1902) “Les premiers stades embryologiques de Serpula.” 
Trav. Inst. Zool. Univ. Montpellier, N.S. 9. 

Wousky, A. (1952) “Notes on the Variability of the Cleavage in the Eggs 
of Marine Polychaeta.” Arkiv. f. Zool. 3 (Ser. 2), 341. 


November 20, 1953 


SYMPOSIUM ON GENERAL CIRCULATION IN THE PACIFIC 


Convener: Dr. Koyt Hwaka, Geophysical Institute, Tokyo University, 
Tokyo, Japan. 
Secretary: Mr. ALFonso R. SEBASTIAN, Bureau of Fisheries, Manila. 


PROCEEDINGS 


Session started at 9:00 A.M. Dr. Hidaka remarked that although 
the symposium would be about the general circulation of the Pacific, 
some papers to be presented would touch on other aspects of physical 
oceanography. He suggested a limited speaking time of 10 to 15 min- 
utes for every one who would present a paper. He made an exception 
in the case of Dr. Pettersson who had requested for longer time. 

Papers read and discussions that followed were: 

1. “Theoretical Studies on the General Circulation of the Pacific 
Ocean” by Dr. Koji Hidaka, Tokyo University, Tokyo; Department of 
Oceanography, Texas A. & M. College, College Station, Texas. Read 
by Dr. Hidaka. With slides. 

Discussion 
Tutty—In your calculations do you come to a level of no motion? 
Hipaka—Yes, at 10 D,. 
SpiLHAUS—Do your calculations show the Equatorial Counter Current 
underneath the Equatorial Current? 
Hipaka—We have not yet reached that in our studies. 
Hwaka (in answer to question by UpA)—This theory assumes that the 
mixing coefficient is constant. 


2. “A Contribution to the Theory of Upwelling and Coastal Cur- 
rents’ by Dr. Koji Hidaka. Read by the author. With slides. 
Discussion 
Tutty—Is this theory for infinite depth? 
Hipaka—Yes. For finite depth it becomes more complicated. 
SpiLHAUS—Do your computations hold approximately, as long as the 
depth is 2D? 
Hwaka—Yes. 
ScumitT—For what latitude were these computations made? 
HiaAka—Latitude 50°. 


511 


512 EIGHTH PACIFIC SCIENCE CONGRESS 


3. “Surface Waters off the Canadian Pacific Coast’ by J. P. Tully 
and L. A. E. Doe, Pacific Oceanographic Group, Fisheries Research 
Board of Canada, Nanaimo, B.C., Canada. Read by J. P. Tully. With 


slides. 


Discussion 

WoostreR—What is the West Wind Drift referred to, the Aleutian Drift 
or the West Wind Current? 

Tutty—There is a change of properties through the Aleutian Drift and 
the West Wind Current. 

PETTERSSON—We have been struggling for 20 years on a synoptic repre- 
sentation off the northwest coast of Europe; it becomes more and 
more complicated. The North Pacific Ocean must be an ideal 
‘hunting ground’, better than off the northwest coast of Europe. 

TuLtty—We do not expect eddies to be constant; if we could once see 
a whole picture then we can realize the general principle, although 
we can say this is only transient. 


4. “Circulation near the Washington Coast” by Cliiford A. Barnes 
and Robert G. Paquette, Department of Oceanography, University of 
Washington, Seattle, Washington, U.S.A. Read by Dr. Barnes. With 
slides. 

Discussion 
Dirrz—Is there mixing or sinking? 
Barnes—There is no evidence. Water coming out is stable. The very 
shallow surface layer is turbid at times. 
SpitHAus—Have the G. E. K. velocities been corrected for the group 
factor? 
BARNES— Yes. 


5. “U.S. Navy Contributions to the Study of Pacific Circulation” 
by John Lyman, Director, Division of Oceanography, U. S. Navy Hy- 
drographic Office, Washington, D.C., U.S.A. Read by title only. 


6. “On the Variation of Kuroshio near the Japan Islands” by D. 
Shoji and K. Suda, Hydrographic Office, Tokyo, Japan. Read by Dr. 
Suda. With slides. 


7. “Sedimentation in the Deep Sea” by Hans Pettersson, Oceano- 
grafisca Institutet, Gdteborg 4, Sweden. Read by the author. With 
slides. 

Discussion 
BrkLAGE—How are the cores taken homer 
PrTTERSSON—In long steel tubes in sections (stainless steel or brass). 


PROCEEDINGS 513 


8. “Seme Characteristics of Sea Water Structure” by John P. Tully, 
Pacific Oceanographic Group, Nanaimo, B. C., Canada. Read by the 
author. 

Discussion 
Upa—What can you say of the influence or stratification by frontal trans- 
port or movement of cold water invading as in the case where 

Oyashio and Kuroshio come together? 

Tutty—This is a technique for marking or examining the structure. 

Using the technique emphasizes the limits of such invasion. 
Hwaka—Does this analysis apply to other parts of the ocean? 
Tui_y—Our office is preparing statistical analysis of 5,000 samples from 

all over the world. 

Hwaka—I think somebody should work on the theoretical explanation. 


AFTERNOON SESSION 

9. “On the Circulation in the North Pacific in Relation to Pelagic 
Fisheries” by Michitaka Uda, Tokyo University of Fisheries, Tokyo, 
Japan. Read by the author. With charts and graphs. 

Discussion 

Tut_y—Last year people were working on correlation of occurrence of 

seals with this study. What latitudes are here involved? 
Upa—41° N Latitude. 


10. “The Topography of the Sea Surface in the Region of the Phil- 
ippines” by Herbert W. Graham, U. S. Fish and Wildlife Service, Woods 
Hole, Massachusetts, U.S.A. Read by Dr. Dahlgren. With slides. 


11. “Recent Oceanographic Exploration in the North and Equa- 
torial Pacific Ocean” by Warren S. Wooster, Scripps Institution of Ocea- 
nography, La Jolla, California, U.S.A. Read by the author. With 
slides. 

Discussion 

Upa—Is a boundary or line of discontinuity seen between the Peruvian 
and the Equatorial Counter Currents? 

WoosTER—We never saw one along the north wall of the Peruvian Cur- 
rent. 

Tutty—Is a composite picture made up from all the expeditions? 

WoosrER—Yes, but rather poor, from Japanese data, some U. S. Navy 
data, Carnegie data, Sardine Research data, etc. 


12. “Basin Waters of Southern California” by K. O. Emery, Allan 
Hancock Foundation, University of Southern California, Los Angeles. 
California, U.S.A. Read by the author. With slides. 


514 EIGHTH PACIFIC SCIENCE CONGRESS 


Discussion 

Barnes—Any evidence of any pattern of circulation below the sill? 

EmMerRy—None within individual basins. Most upwellings occur on the 
basin along the continental slope. 

Barnrs—Any tilt along the slope? 

EmMERY—No. Only indications of seiches within the basin. 

Emery (in answer to question by Upa)—In one of the deep basins there 
was a distinct rise of actual temperature with depth. 

Dietz—Any indications of the effect of sediments on the slope? 

Emery—Yes. But we have no information on channels running down 
the slope. 


13. “An Oceanographic Model of Puget Sound” by Clifford A. 
Barnes, John H. Lincoln, and Maurice Rattray, Jr., University of Wash- 
ington, Seattle, Washington, U.S.A. Read by Dr. Barnes. With slides. 

Discussion 

Tutty—Is it advisable to make a model on a bigger scale? 

BaARNES—Yes, possibly on a space about four times as big. 

‘TuLtty—We have a corresponding model about 200 miles from that of 
Dr. Barnes. With larger scale we get natural turbulence on rather 
lower levels of flow, and a little more room to work in, as on sa- 
linity gradients. One other trick would be the use of color photo- 
graphy (with dyes). 

14. “Daily Seawater Observations on the Pacific Coast of Canada” 
by H. J. Hollister, Pacific Oceanographic Group, Nanaimo, B.C., Ca- 
nada. Read by J. P. Tully. 

Discussion 

RevELLE—Is there really an association between daily sea water condi- 
tions and the fisheries? 

‘TuLty—Yes, as in the case of the tuna fisheries. 

TuLLy (answer to question by Dr. Bruun)—In the studies of correla- 
tion with fisheries, there are actually more in Washington and Ca- 
lifornia than in our own country. These studies were, in fact, 
recommended by Dr. Helland Hansen in 1943. 


15. ’A Study of Local Variability in Marine Sediments” by Richard 
G. Bader, Department of Oceanography, University of Washington, 
Seattle, Washington, U.S.A. 


16. “Secular Variation of the Annual Mean Sea Level along the 
Japanese Coasts’ by Masamori Miyazaki, Kobe Marine Observatory, 
Japan. Read by title only. 

Session adjourned at 4:36 P.M. 


PROCEEDINGS 515 
November 21, 1953 


Session resumed at 9:13 A.M. 
Papers read and discussions that followed: 


17. “Submarine Canyon Investigations” by Francis P. Shepard, 
Scripps Institution of Oceanography, University of California, La Jolla, 
California, U.S.A. Read by Dr. Dietz. 


18. “Surface Temperature and Salinity in the Southwest Pacific 
Ocean” by D. M. Garner, Oceanographic Observatory, Department of 
Scientific and Industrial Research, Wellington, New Zealand. Read by 
Dr. Rochford. With slides. 

Discussion 
Upa—What would you call the southward current east of New Zealand? 
RocHForp—I do not know of the existence of one, as verified by the 
isotherms. 
Upa—Can there not be one due to upwelling? 
RocuForp—I don’t think so. 


19. “Secular Trends at East Australian Coastal Stations: 1942-1952” 
by D. J. Rochford, Marine Biological Laboratory, Cronulla, N. S. W., 
Australia. Read by the author. With slides. 
Discussion 
Upa—Is there any influence of the flow of Arctic Water mass to increase 
the nutrients in Australian coastal waters? 
RocuFrorp—Recent discoveries in the region close by suggest there isn’t 
very much. 
(Dr. Rochford exhibited an apparatus for hydrological observations). 


20. “Recent Developments in Tidal and Tidal Current Measure- 
ments” by U. S. Coast and Geodetic Survey. Read by Capt. Andres O. 
Hizon, Director, Bureau of Coast and Geodetic Survey, Philippines. 
With charts. 

Discussion 

Dietz—Do you have these instruments described in the paper in your 
country? 

Hizon—No. 

Tutty—Would there be any trouble in the buoy due to oscillations and 
other effects? 

Hizon—I haven’t had the opportunity to work on these instruments as 
yet, but I have read that the magnetic system is statically and dy- 
namically balanced. There is also a great tampering effect. 


516 EIGHTH PACIFIC SCIENCE CONGRESS 


(Session temporarily suspended at 10:35 to enable members to 
attend showing of Dr. Woodcock’s film on “Bursting of Spherical Bub- 
bles on Sea Water Surface” at the Liberal Arts Theater, University of the 
Philippines. Session resumed at 3:35 P.M.) 


21. “On the Minimum Oxygen Layer in the North Pacific Ocean” 
by Takeo Kawamoto, Kobe Marine Observatory, Japan. Read by Y. 
Miyake. 


22. “A Study on the Property of the Coastal Water Around Hachijo 
Islands” by Y. Miyake, Y. Sugiura, and K. Kameda, Meteorological Re- 
search Institute, Tokyo, Japan. Read by Y. Miyake. 

Discussion 
Upa—What causes the diurnal variation in oxygen, salinity, and_ sili- 
cates? 
MiyaKE—Phytoplankton for the oxygen, and tides and large horizontal 
disturbances for the silicates and chlorinity. 


23. “On the Oceanographical Conditions of the Sea near the Fixed 
Point 153°E, 39°N, in the North Pacific Ocean” by M. Nakano, M. Kot- 
zumi and J. Fukuoka, Central Meteorological Observatory of Japan, 
Tokyo, Japan. 


24. “Distribution of Copper and Zinc in Sea Water” by Yoshimi 
Morita, Faculty of Science, Nagoya University, Japan. Read by Y. Mi- 
yake. 


25. “Abnormal Summers in the Peruvian Coastal Current” by Er- 
win Schweigger, Companhia Administradora del Guano, Lima, Peru. 
Read by Dr. Lovell. 

Discussion 

Woopcock—Are there very marked and significant meteorological occur- 
rences in the region of upwelling? 

LovELL—Yes, also violent electrical storms and abnormal change of wind. 

Hipaka—What is the size of the gyro? 

Lovetit—Ten to fifty or sixty miles, depending upon the area. 

Upa—Is there upwelling all along the coast? 

LovELt—No. There are certain local regions where upwelling is not 
appreciable. 

HiyamMa—What relationships exist with the sardine fishing grounds? 

LovreL.—Sardines in general abound all along the coast where you have 
the coolest water. Areas of upwelling have more sardines than any 
other. As for the tunas, skipjacks are found in more oceamic 

(warmer) waters, 17°-18°C and yellowfins in the margins of warm 

water intrusion, about 16°C. 


PROCEEDINGS 517 


Hr1vaMA—What are the particular fishing seasons? 
Lovri_—For sardines, southern summer, December to March or April; 
for tunas, January at the earliest. 


26. “Quantitative Determination of Tungsten and Molybdenum in 
Sea Water” by Masayoshi Ishibashi, Tsunebobu Shigematsu and Yasu- 
haru Nakagawa, Kyoto University, Japan. Read by title only. 


27. “A Study on Temperature and Salinity of the Surrounding Wa- 
ters of Taiwan” by Chu Tsu-yao, Taiwan Weather Bureau, Taipei, Tai- 
wan. Read by the author. With charts. 

Symposium ended promptly at 4:33 P.M. after Dr. Hidaka expressed 
the sentiment of the body that the whole proceedings had been highly 
successful, for which due appreciation and gratitude were addressed to 
the organizers of the symposium, as well as to the members who had 
faithfully attended the sessions. 


ABSTRACTS OF PAPERS SUBMITTED 
28. “On the Fluctuation of the Kurosiwo and the Oyasiwo” by T. 
Nan’niti, Meteorological Research Institute, Japan. 


29. “A Report on the Oceanographical Observations in the Antarc- 
tic Ocean Carried Out on Board the Japanese Whaling Fleet during the 
Years 1946-1952” by M. Hanzawa and T. Tsuchida, Oceanographical 
Section, Central Meteorological Observatory, Tokyo, Japan. 


ADDITIONAL PAPER SUBMITTED 
30. “A New Japanese G.E.K.” by K. Suda, Kuroda-Masao, D. 
Shohji and Sawayanagi-Fumiwo, Hydrographic Division, Maritime Safety 
Agency, Tokyo, Japan. 


Aan 
; NR 


rae eg 
ey 


it 


A THEORETICAL STUDY ON THE GENERAL CIRCULATION 
OF THE PACIFIC OCEAN * 


By Koji Hipaka ** 


1. INTRODUCTION 

The following discussion is one of the results of the research for 
determining the vertical structure of the wind-driven circulation in an 
enclosed basin comparable in size to the Pacific Ocean. 

The first attempt to verify the effect of prevailing winds in main- 
taining the oceanic circulation was undertaken by H. U. Sverdrup 
(1947). According to his result, the oceanic currents in the eastern 
part of the Equatorial Pacific are largely fed by the energy of the winds 
blowing over the surface of the ocean. R. O. Reid (1948) also confirmed 
this conclusion. At nearly the same time Henry Stommel (1948) could 
explain the intensification of the wind-driven currents along the west 
coast of an ocean by assuming the existence of horizontal friction and 
the meridional variation of Coriolis forces. These investigations alto- 
gether have enabled us to ascribe the major part of the oceanic circu- 
lation to the result of the superincumbent wind system prevailing over 
the oceans. 

Munk (1950) published a very important paper on the wind-driven 
circulation of the oceans. The next year (1951) he treated the circu- 
lation of the North Pacific, regarding this ocean as a triangular basin. 
He could explain the pattern of the actual ocean circulation very well, 
so that at the present, there seems to be little room left for us to discuss 
much more on this subject, so far as the major characteristics of the 
general circulation in the Pacific Ocean are concerned. 

Hidaka (1951) solved the problem of the general circulation which 
would be produced by both zonal and anticyclonic wind systems. In 
this computation spherical coordinates were used, thus taking the effect 
of the sphericity of the earth into account. But both assumptions on 
the wind distribution gave no essential difference in the results except 
for the magnitude of mass transport. Moreover, the result for zonal 
distribution gave no sensible difference in the pattern of the circulation 
compared with Munk’s which was derived by using a rectangular coor- 

* Contribution from the Department of Oceanography of the Agricultural and Mechanical 
College of Texas, Oceanographic Series No. 42. Based in part upon work done under the 
sponsorship of the Office of Naval Research and the Bureau of Ships. Previously published 
in Pacifie Science, 9(2): 183-220, 1955. 


+* Visiting Graduate Professor 1952-53, Department of Oceanography, Texas Agricultural 
and Mechanical College: Professor of Physical Oceanography, Tokyo University, Tokyo, Japan. 


519 


520 EIGHTH PACIFIC SCIENCE CONGRESS 


dinate system, except in the magnitude of the mass transport. These 
facts show us that we have only to treat the circulation driven by a 
zonal wind system. 

An earlier paper (Hidaka 1950) contained a theory of ocean circu- 
lation using the current velocity in place of the mass transport. The 
analysis was complex because the vertical variation of the movement 
of water had to be taken into account. The result was nonetheless 
quite ridiculous; no perceptible concentration of the streamlines towards 
the west coast could be found. The explanation for this result was 
that the approximation to the mass transport was inadequate for its 
east-west variation. Thus, the solution smoothed out the western cur- 
rents and boundary vortices which were apparent in Munk’s paper. 

The mass transport method which has been adopted by Defant 
(1941), Stockmann (1945-46), Sverdrup (1947), Reid (1948), Munk (1950, 
1951) and recently by Walter Hansen (1952) is surely eminent, especially 
in the point that it enables us to reduce the analysis to two dimensions, 
and makes the mathematical procedure very simple. Moreover, it is 
not necessary for us to consider the vertical variation of density and 
vertical coefficient of eddy viscosity. These authors have indeed con- 
tributed greatly to the solution of many important problems on the 
oceanic circulation by this method. ‘The author himself also employed 
this method several times in discussing the problems in this direction. 
However, it is impossible for this method to show how the wind-driven 
circulation varies in a vertical direction. Neumann also expressed re- 
cently (1952) his opinion for the necessity of the dynamical treatment 
of ocean currents as a three-dimensional problem. 

All of these circumstances lead one to recompute the general circu- 
lation of the Pacific Ocean under the modified conditions and assump- 
tions. The present investigation is one of the results of the author’s 
efforts in this direction. We here treat the general circulation of the 
water in a square ocean comparable in size to the entire Pacific Ocean 
Basin. Spherical coordinates, which were used in a preceding paper 
(Hidaka 1951), are not used here partly in order to avoid mathematical 
difficulties. But the more basic reason is that the two systems of co- 
ordinates did not give any important difference between Munk’s and 
the author’s results except for the magnitude of mass transport. ‘The 
value of the lateral mixing coefficient is taken 3.08 x 107 c.g.s., a value 
consistent with the research of former investigators. The wind system 
is considered zonal, because this assumption is far simpler for the sub- 
sequent analysis, and also because there has been found no essential 
difference between the results obtained under the assumptions of zonal 
and anticyclonic wind distributions. Of course, the variation of the 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 521 


Coriolis parameter with latitude is taken into account. The use of cur- 
rent velocity in place of mass transport makes the mathematical analysis 
many times more complicated because the problem is now three-dimen- 
sional. But the result will be of importance because it should give an 
idea of the vertical structure of the wind-driven circulation of the oceans. 


2. THEORY 
The dynamical equations of the stationary ocean currents, taking 
both vertical and horizontal mixing into account and neglecting the 
non-linear terms, are 


07u Q ou op 
Ree ad gee pes 
A ae a ( + 2wpu sin d Be 0, 


U ay? Oz 
| 1) 
07u Q OU op ( 
et A AS 
 Qx? az ( Oz eeu DS oy " 


where u and v are components of the current velocity in x (eastward 
positive) and y (northward positive) directions, p is the pressure, p the 
density, A; and A, the horizontal and vertical coefficients of eddy vis- 
cosity of the water, while » is the angular velocity of the earth, and ¢ 
the geographical latitude. The axis of z is taken positive downward, 
the origin being placed on the undisturbed sea level. 

The boundary conditions to be satisfied on the surface (z = 0) and 
at the bottom (z = h) are 


ou ov 
iO ena a) ats eas A) (2) 
and 
Dal =o =U. (3) 


Here both coefficients of eddy viscosity A, and A, are supposed to be 
constants. The right members of (2) are known as the wind stresses. 
The conditions to be satisfied along the coasts are also necessary. ‘These 
are simply that there is no water flow across and along these coasts. 
If the coasts consist of vertical cliffs, we have 

u = v = 0 at the coast-lines. (4) 

In addition to the dynamical equations (1) the equation of con- 

tinuity should be included. If we neglect the vertical component of 
velocity, it is 

du ou 
ae ate ay = ()) (5) 
The equation (5) assumes that there is neither vertical current 


nor vertical gradient of the vertical velocity. Thus, our theory cannot 
be applied to the coastal and other regions of upwelling and sinking 
caused by local monsoons or other temporary winds. But, if we con- 
fine ourselves to the gross features of the horizontal circulation in great 


522 EIGHTH PACIFIC SCIENCE CONGRESS 


oceans, induced by the superincumbent, quasi-permanent wind system 
(westerlies or trades), the equation of continuity as given by (5) will 
not cause serious errors in the results. 

There may be some further question concerning the use of (5) for 
the continuity equation. But, in treating the oceanographic data for 
estimating geostrophic currents, we always assume 


Ue : i op ; 
2wp sin ce) oy i 
] op 


Z2op SIN Ox 
provided the frictional terms are neglected. These expressions imply 


that geostrophic currents usually satisfy the equation (5), which shows 
the absence of horizontal divergence. This means that the equation 


ou ov 

sale =") 

Ox oy 
may be used without serious errors in treating the general circulation 
of the oceans. 


On eliminating p between the two equations of (1) by cross- 


differentiation, we have 
a(S )+ 2 [42 (= dS 
oy? oxs Oz OZ oy oz 


d 
+ op om (sin d) v = 0 (6) 


when we take the equation of continuity (5) into account. This equa- 
tion may also be regarded as expressing the condition that a function p 
(pressure) should exist on a level z as an exact differential with respect 
to x and y. And the validity of equation (6) suggests the possibility 
of determining the pressure in any level z as a function of x and y. 

Now suppose the coefficients of mixing 4; and 4, are both inde- 
pendent of z, and put 


[o) ‘ 
Wy (2s = Vaz (7) 
i > Ux (X,)) COS RLORE aC 
s—1 
where 
2, A (25 aes lag > 
oo) SS SE | weeds = dé (8) 
U,(X,)) h ahs (x,y.€) oh 
and assume, in accord with Stokes, 
CO F 
o7u 2 25 — 1)xz h O?u 25 — l)xé 
woos gy cos onl —— cos Gas dé; (9) 
Oz? h 2h 0 0c? 2h 7 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 523 


then we have, by substitution from (2), (3) and (8), 
i hou (Qs Mn a(t) (28 — In? 
9 


Ape oS er con en oy, A, 4h? 


and (9) becomes 


Oeu S 2 z(xy) (2s—1)?x (2s — 1) az 
le Te IEG ae AE) CLS Se Cy aa 
s=] 


Similarly we have 


atu S$ 2 xy(xy) — (26— 1)?x? (25 —1)xz 
= WLI Nae ay akon ae A eT me, We ee eg 
s=1 zi “i 


2? 
(11) 
where 
oO 
25 — 1)xz 
v= > vel) cos \ Oh Lae (12) 
== 1 
Substitutions of (7), (10), (11) and (12) into (6) and (5) give 
(= —) (Ci Wael, (= CoP 
on oy? i oxs 4h? Oy Ox 
Cos 2 ( ix OTy ) 
a= 4 i oe Bae = () 13 
SRE RE She TRON Oy Fags: 
where R is the radius of the earth, and 
Hala 7 Saree 14) 
et ON ate ( 
Equation (14) gives a set of functions ¥,(x,y) such that 
Ov. Ov. 
Ss = a m5 Us ae A (15) 
cy Ox 
and (13) becomes 
i OY. Ot. ) (CS l\Peele (= Ca ) 
: ( ox4 ars We 4h? Ae ey? 
cosh dv, 2 (= Cty ) 
9 aes = -: 16 
iditneRIEE: h oy ex : als) 


524 EIGHTH PACIFIC SCIENCE CONGRESS 


If we introduce two quantities D, and D, such that 


D=7Ve (17) 
and 
AG 
D, =7 po ? (18) 


equation (16) becomes 

Dt (0, O*Y, (2551) 2-6 DaN2 (0n%. or, 

— EMME) (tas he 1 Sa 

27? \ ax4 ays 8 h Ox? oy? 
COS d Oe (= — = )=s 
R Ox poh oy Ox 

The quantity D; may be called “the frictional distance’, whereas 
D, is the same as Ekman’s “depth of frictional influence” except that 


it does not contain sin ¢. 
The coastal conditions which %, should satisfy are 


ov, 
on 


(19) 


vice ==a() (20) 
along the coast-lines, where 0%,/0n is the derivative of %, in the direc- 
tion normal to the coast-lines. 

If equation (19) can be solved and we can determine the functions 


(XV) Win (es) via Cosby) sien) 3 Ce sum. 
ioe) 
(2s — 1)xz 
#092) = >) a,(¢,9) 008 5 1) 
s=1]1 


will give the horizontal streamlines at any level z for the wind stresses 
tz (x,y) and 7,(x,y). The stream function ¥ (x,y,z) should, of course, 
satisfy the condition: 
ov 
v= Fay = (22) 


along the coast-lines and the horizontal streamlines of the currents 
are given by 
(x,y, Z) = constant. (23) 


3. INFINITELY DEEP OCEAN 


If G1 is the solution of (19) when h = 1, the solution of (19) will 
be 


(x,y) = i. (x,9). (24) 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 925 


Thus we have the solution (21) of our problem in the form: 


1 Cs I)xz 
ax)2= > Hey) = os (25) 
s=] 


and we may write down (25) in the form: 


= w(x, y) 7% D, 2D, 
¥(x,,Z) = SO Kee 2D. (251) aR ay rae 


oT 


If we consider the depth / of the ocean increases indefinitely, we 


have 
D, 2D, 
Cs 1) h coat} aun = dy (26) 
and 
¥i(x,Y) —> ¥,1(x, 95 9); : (27) 


where ¥,(x,y,7) is the solution of the equation: 


A, oy, +o! =) 4 ual € ae oN pace ) 
2wp ( ox* Ox? + By? 
cos : ov, ] (= OTs 


ROdx a fo) cy Ox 


= 0 (28) 


which is derived from (19) by putting (2s — ye = prand ny = Je 


The right hand sides of the equation (24) will be, when the depth h 
increases indefinitely, 


1 oe) aZ 
¥(x, y> z) = apf He ys 7) cos Gs 7) dy. (29) 
ze 4 os 


It may be mentioned that y is a parameter increasing from 0 to oo. 


4. APPLICATION TO THE PACIFIC OCEAN 


In 1950, Munk used the rectangular coordinates in discussing the 
wind-driven oceanic circulation in a rectangular ocean. Though he 
did not take the sphericity of the earth into consideration, he could 
explain the general pattern of the actual circulation of the Pacific quite 
well. Further, his result shows little difference from the one above 
(Hidaka, 1951), in which the curvature of the surface of the earth is 
taken into account and spherical coordinates are used. 

These results show that the Pacific Ocean can be treated approxi- 
mately as a rectangular ocean, provided we consider the Coriolis para- 


526 EIGHTH PACIFIC SCIENCE CONGRESS 


meter 2» sin @ varies with y. This is a quite natural consequence when 
é ' y 3 
we consider the relation ¢ = a where R is the mean radius of the 


earth, and y is counted zero on the equator. 
For these reasons, we can represent the Pacific approximately as 


ae : 
a square ocean bounded by x = 0, x = a and y= =>, in which 
y = 0 coincides with the equator (Fig. 1). Here a is a mean east- 
west extent of this ocean and approximately equals 120° of longitude 
or 27/3 in radians. ‘This means that the northern and southern bound- 
‘ 27R 
aries of this ocean are given by y = + or the parallels of 60° N 


9 
ro) 


and S. 
To solve the equation (28), assume 


vy 
#,(x,93 9) = Ly Maly) No(s 9), 


(30) 
where: 972 "Al S2ah oa ee and N,,(x, 7) are functions ol x which are 
to be determined later, while coy are of the forms: 

. my 
M,,(y) = cos Cio for m: odd 
2a 
(31) 
Ty i tay) 
= cos “sin. for m: even. 
2a 
: saad : a 
Since these functions and their y-derivatives vanish along y = + =, (30) 
oe a é 
and its y-derivatives will also vanish along y = + —. ‘This makes the 


function (x,y,z) satisfy the condition (22) along the northern and 


southern boundaries y = = 


ro| & 


5. STRESSES OF WINDS OVER THE PACIFIC OCEAN 
Dr. Munk kindly furnished me with his unpublished data of the 
distribution of the wind-stresses over the Pacific Ocean north of 5° S. 
From these data, the most probable distribution of the wind-stresses was 
found to be zonal and determined as 
7z(¢) = + 0.045544M? (¢) — 0.262308M$§ (4) 
+ 0.022902M*, (¢) + 0. 069493M’, (d) 
— 0.036900M*% (6) + 0.011560? (4 ) dyne/cm? (32) 
where ¢ is latitude so that 6 = y/R and M’ (qd) stand for 


d d 
area A s) — —M,, D 
dd ih (#) R dy ($) 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 527 


If we are to derive (32) from a stress-function T (x,y) such that 
or or 33 
2 A ay’ ip axe 3 ( ) 


we have a stress function which depends on ¢ or y only, or 


E(¢) = Dts - Ma($) 


I! 


m 
[0.29003M, (6) — 1.67122M, (4d) 
+ 0.14591M,(¢) + 0.44276M, (6) 
— 0.23510M; (¢) + 0.07388M, (4) ] x 108 dynes/cm, (34) 
provided we take R = 6.3712 x 108 cm. 


The values of stress and stress function computed after the formu- 
las (52) and (34) are compiled in Table I and illustrated in Figure 2. 

From the formula (32) we have a much larger wind stress in the 
west wind belt in the South Pacific Ocean than in the North Pacific. 
It is not because we had wind observations available from the former, 
but is a necessary consequence resulting from determining the formula 
so as to meet the observational data for the latitudes north of 5° S. 
As a matter of fact, the west wind belt in the South Pacific is said to 
have stronger wind than that of the North Pacific. So this formula 
will not give wind stresses in the South Pacific too inconsistent with 
observations. 


6. ELIMINATION OF y-COORDINATE 


The equation to be solved is from (28) 


D; i oy, 7? ee i On, ) 
9-2 \ ox4 1 ays ae ax? ay? 


BOE gy? ‘= <<) = (35) 
J hte ata? po \ ey ox 
where 
a eee (36) 


2, 


Between the equator and 60° N or S, cos ¢ varies irom I to 4. 
Since this is not a large variation, we may take the average value for 
cos ¢ for this range, or 


pace 1 a 3\/3 
COS G5 2/3 cos ey aay =F 4919" 


2 
2 


EIGHTH PACIFIC SCIENCE CONGRESS 


528 


000° 
#20 + 
6a + 
TGs 
P8P + 
Wud FLG + 
929° + 
pula 929° + 
pogo t+ 
489M ser t+ 
6ca + 
spo + 


tLT — 

696° — 

vig — 

G6g°— 

909° — 

sepely, roo" — 
9F — 

as 098° — 
GLO — 


SMuUVASYy 


JZ NOWONA SSdULg NV 2 SSAYLS GNIMA GHL JO NOILVIAVA ‘IVNOIGINay, aaWwASsy 


(,u0/audp) 
2 


s0T X 000° 
s0L X TZ0° 
s0I X 880° 
OT X L8T 
s0OT X TEs’ 
80T X OTS’ 
sOL X FTL 
s0L X Lee 
s0T X lett 
s0T X S08'l 
80T X F6Pr'T 
sOL X 9LF'T 
s0L X PoP lL 
s0T X 098'T 
8s0L X g0e'T 
s0L X 8TO'T 
s0L X TTS" 
s0T X §99° 
sOL X TPP 
s0t X F008" 
s0T X TOS 

(wa/saucdp ) 

ZL 


aa 


DNNNRNRNANNRNM 


RNRANNNRNM MN 


009 
oLS 
oFf 
ofS 
o8P 
off 
oOP 
o6& 
o9& 
0&8 
o0€ 
old 


oFG 
ol® 
o8f 
oGT 
o6l 
06 
9 
of 
00 


“LV 


003° — 
GLv0— 
0Sh'0 — 
Gor 0— 
00F°0— 
GLE°O— 
oge"0— 
g68°0 — opeuy 
00¢°0— 

¢L3°0 — ‘ON 
096°0—. 

6660 — 


wmnaplog 


002°0— 

GLTO— 

OsT'0— 

S3T'0— FFI 
00T'0— 

g2l0°0— purm 
020°0— 

£60°0 — 789M 
000°0 


o/h SHUVHIY 


I Wav 


GLO — 
61a — 
616° — 
9G" — 
PS — 
Teh — 
0G" — 
Vode 
LOG 
9TP — 
996° — 
oL0i— 


oe 
Los” 
68P 
Lg" 
68¢° 
865" 
968° 
19 
000° 


(,t49/ausp) 
4 


e0L x TOe + 
80T X oor + 
s0T X $G0° + 
s0T X 720° — 
s0T X S@r — 
sOl X §g3° — 
sOL X Ilr — 
s0T X ggg — 
s0OT X LOL’ — 
s0T X 926° — 
e0L X FPOT— 
s0T X POTT— 
80 X $60°'T— 
s0l X STO T— 
s0T X 918° — 
a0OL X 769° — 
30. X 86h — 
s0t X Tos" — 
s0OT X Trl — 
s0OLT X LEO" — 
000° 
(uo / sauAp ) 
JL 


ZALZAZZAZALZAAZA ZAZZAZAZAAZZAG 
=) 
inn) 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 529 


Thus the third term in (35) now becomes approximately 


_ 60S OH, _ _ 8/8 Ov) (37) 
R Ox 27R 0x 
Substituting (30), (32), (34) and (37) in (35), we have 
> [ D? 1 GENE A cae ds Ne 
e | ee | (Seles (9) + Na Qin) Re ape 
3 
ms I @Nyp a 1 @Ny, 
8 e jie dye Mm ($) + Nm Qin) Re dd? 
3 
+ INEXOSB n) Le dM 
Re Vd? 
3\/3 
24 dNn aes > aM, 
— ——— ——M aga = = $ 
ot p dy » (9) po R2 m Tm dg? Ce) 
3 
where we have 
39 
A= ~ (2nR/3) , (39) 


so that the ocean is supposed to be bounded by the meridians of 0° 
and 120°, and the western and eastern boundaries are given by A = 0 
and »} = | respectively. 


2 diM 
My, d m 


Now it is possible to express an ae in terms of M,, (¢), 
dy’ 
or 
aM. ia 
dy > ee 
and 
d*M 3 
aes y= mM .(¢) - 


Substituting (40) in (38) we have 

D; d*N GING. 
SMa (8) } 52 Se 
m 


On? 16x*R* das 8 47R? dy? 
3/3 
22 aANu i > 0? 1 ae D; 1 : a 
Qn dA > ( a Sai oh one 
— R2 
3 
© 1 


530 EIGHTH PACIFIC SCIENCE CONGRESS 


In order that this relation should be always valid, the coefficients 
of M,,(¢) must vanish. Thus we have 


Bil 228 GENE, y @N  9x/38 aNe 
—_—_. iin va EL A SY tons ee SR se a 
32 R2 on 327? 4 aX 477? dx 
1 ; A 1 
ae =( - = oy + 9-2 Pope iv + N, po dal,T, = (0) (42) 


where T, is given by (34). 
It may be anticipated from (39) and (40) that the values of Bi 


are larger than that of ai,for any corresponding set of values of i and 
m. But the ratio 


D} 2 Ay 

Re po NR? 
is of the order of 10-* for the usual value of A; (=108), so that we 
may neglect the terms of #? in the coefficients of N; in (42). Then 
(42) becomes 


nie oe Se ae 
32 R2 dy gone 1 dy? TET GIN 
1 
on > (43) 


7. DETERMINATION OF THE VALUES OF ai | 
5 5 : aM, 
The coefficients of M,,(¢) in the expansions of ; were eval- 
bp? 
uated as far as M,,(¢), the higher terms being neglected. 
For the ocean under consideration, we have 


Ma © a M, ($) + 8M; (¢)— 6M; (4) t 
i + 4M, (¢) — 2Mg ($) , 

D a 9 | — 3M, (¢) + 20M. (¢) + 18M; (¢) , 
WA) tar <i — 12M, (4) + 6M, (4) [ 

ne aa WEG) a IGE (A) so CI) 
MS KD) ee a1 + 20M, ($) — 10M, ($) ft 
pate eet! — 7M, (4) + 21M, (¢) — 35M; (¢) t 

TA) + 148M, ($) + 14M, (¢) , 

. 9) + 9M, ($) — 27M, ($) + 45M; ($) 
BE A) = — 63M, (¢) + 257M, ($) 7 (44) 
and 

SS Fe 3 | 7M,(s) + 16M,(¢) — 12M, (¢) Blige: 
Mz (¢) = — 4 + 8M, (¢) — 4M, (¢) : 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 531 


i 3 | — 8M, (¢) + 43M, (¢) + 24M (¢) 
Me keh 0 — 16M,(¢) + 8M, (¢) . 
a + 12M, (¢) — 24M,($) + 111M, (4) t 


MS (Qe ar + 24M, (6) — 12M, (¢) 
i 3 | — 16M, (¢) + 32M, (¢) — 48M, (6) 
8 (¢) 4 + 211M, ($) + 16M, (¢) 
, 3 | 20M, (¢) — 40M, (¢) + 60M, (9) an 
M’ (¢) = — 4 — 80M, (¢) + 343M, (¢) 


’ 


(45) 
Substituting (44) and (45) into equation (43), and evaluating the 
numerical values of their coefficients with R = 6.3712 x 10° cm, po = 
0.000075 sec-1 and 
ATi 308) >@ 10Meerse (46) 
we have for odd series 
9 (N, — 3N; + 5N; — 7N, + 9N,) 


D(N,) + 4747600y? x 4 — 0.548249 x 102° = 0, 
OVSNae i 20N, = ISN. PING = 27 Ni) 
D(N3) + 47476007? anil > HOMIE) See 
9 (—6N, + 18N,; + 69N; —35N, + 45N,) 
D(N;) + 47476007? ar SOI alo woul) 200—— 10) 
9 (+4N, — 12N, + 20N,; + 148N, — 63N,) 
D(N,) + 47476007? X 47 + 2.19300 x 102° = 0, 
9 (-2N, + 6N, — 10N, + 14N, + 257N 
D(N,) + 4747600;? x Aes 1.096499 . 1020 m0! :) 
(47) 
where the operator D stands for 
d4 2 d 
1D) = Fa, 1082323? — 14997110 -— (48) 


dy? Gh 
For even series, we have . 


(LIN, = SIN, 4b TON, = TENG 
+ 20 .N,,) + 5.45179 x 102 = 0, 


GolGNs 4 43N—1O4N,, + 32Ne 
— 40N,,) + 3.59829 x 102° = 0, 


(SION, GE DAN, Se TNEUNG, == BOING 
+ 60N,,) — 14.76753 x 102° = 0, 


(ALINE, == GIN se DAN, ts ON, 
— 80N,,) + 7.09512 x 102° = 0, 


(NL, <4 GN, == ONG <2 GINS 
+ 343N,,) — 3.54756 x 102° = 0, 
(49) 


D(N,) + 47476007? x 
D(N,) + 47476007? x 


D(N,) + 47476007? x 


ale ee le 


D(N;) + 47476007? X 


3 
D (N30) + 47476007? X —; 


532 EIGHTH PACIFIC SCIENCE CONGRESS 
where the operator D is also given by (48). 

To solve the simultaneous differential equations (47) and (48), 
we employ the method of indeterminate multipliers. Let the odd set 
of equations be of the forms: 


9 
DN) GN, + E, = 0, 
i 
9 
D(N,) + 2 CIN, + Es 
aa 
D(N,) + 2CIN, + E, = 0, 
Fil 
9 
D(N;) + DCW, te 1 
a 
D(N,) + > CN, + E, 0, 
= (50) 
where the summation is made with respect to odd numbers. 
Multiply each of the five equations in (50) by J, Js, 1;, l;, and l, 
respectively, and add together; we have then 


DUNE art Nast, tN a LNG oie LNA) 
tC OC Cr, CN 


0, 


| 
= 


e So ei ci, it Cl, u Cr, WP ey) N, 
ap (CRE se (CRM ae Og) ae Gg 8 Gu) a 
sp (CHL ap (GR te Ga ae (Ga ae CEI) NY 
+ (Ci, + C3, + C5 + Ci + C%)N, 
Now let ees ee oie ee ae (51) 
CU, + C3, + Col, + CU, + Cl, = Le 
CU, + C3l, + CS, + Cl, + Ci, = Le, 
7 : p 7 Oy as 
and eliminate ae vis ‘i ee Git Co ee (52) 
gene Si pa cr co =o 
“3 CS atc Ce C7 or 
C1 C3 Co — ¢ C7 Ce bo 
“ROW. CWE ec tlt (kta 
. : “3 “s Ce 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 533 


This equation has five real roots. Let them be 
£1, &3, &, € and & 
and, corresponding to them, equations (52 will give five sets of 1,, l,, 
5 op: Ulery Cove 
ae ii, Ii, Yh, Hi, lh; 
1 1 3 5 7 9 
3 UB) (ES RS Bo Tes 
1 3 5 7 9 
Eney LE lost, 15, 1 
Sen ibn wircenio 
pee Ts As a aE ICR 
1 3 5 7 9 
Epcos p, p, 19, l. (54) 
These five sets of roots and multipliers /’s will give Y,, and F,, as 
Yt elaN InN, see EN are OTN oi IN es 
| ta (I) Sa eae bY Oate yes (1) ley i a be 2 
Ge Sle Buy Te ©) (55) 
and the corresponding five equations 
D(¥,) + EY + Eq = 0 
(i = 1k, Be Oy 7/5 8) (56) 
for ¥5, Vz, «8, Yo. a beygare no) longer simultaneous; and not. diffi- 


cult to solve. The same, of course, applies to even sets, too. 
Practically, the equation corresponding to (53) is 


1—¢ + 8 — 6 + 4 — 2 
— 3 20— ¢€ + 18 — 12 + 6 — 0 
+ 5 — 15 69 — é + 20 — 10 
— 7 + 21 — 35 148 —¢ +14 
+ 9 — 27 + 45 — 63 257 — € 
or 
210830400 — 841564682 + 462522522 — 7877123 
+ 4954 — = 0 (57) 
where 
=) 2] (Ganstoseiiess Y< BAN) (58) 


and the five roots of (57) are 
Ga 29011943; 
Ca — 26 1028 ie 
Ge Jan Bisse), 


Gi 1464569045 
Go 2A AOOT Ae (59) 
For even series we have, corresponding to (57), (58) and (59), 
d= 57 + 16 — 12 + 8 — 
— 8 BG oy Pe — 16 + 8 = 0 
+ 12 — 24 Non | ee ae: — 12 
— 16 + 32 — 48 Aaya LG 


ae AD) = a) ae (av —+80 toa ey 


534 EIGHTH PACIFIC SCIENCE CONGRESS 


5217079023 — 593115237) + 16671798? — 17245878 


+ 715y! — y= (60) 
where 
y = £/(4.38649084 x 34) (61) 
and 
= 12.8567852, 


ys = 51494636, 
116.1536052, 
ye = 207.4231320, 
vo = SerOT1e42, (62) 


8. DIFFERENTIAL EQUATIONS FOR Y’s AND THEIR SOLUTIONS 
. From the numerical computations described above, the numerical 
coefficients of the differential equations for Y,,(\; 7) were determined 
as follows: 
D(Ya) + 11514116,2Y, — 04037686 >< 1022 =" 0; 
Dot LOST tiWGo72Ys 0.020421 cnlO22s— 0; 
De) te 28880000872 — 2041449265 > 10220: 


IDO) ae Oe] isa ae SATB ios) < MUAY = UU), 
Da) Fo OSI SAOMO n2i5 oe Zonal o0o4 xe i020 sO: 
(63) 
and 
D(Y,) -- 51883042n7Y, + 7.4929828 x 1070 = 0, 
D(A) 207804544720 3393918 xo 0257— 10) 
D(V,) + 46873322877Y, +. 258.843806 x 107° = 0; 
De) 83701752725) 4) 158. 8661390 x 1025 = 10> 
D(Yao) + V319885336n2¥55, a 290:023938) x 1022.0: (64) 
where 
| : d? d 
1D) = anata 1082323? a 14997110 ol 
and Ya, Ve, -- +» Yon Yo, 0. © 2) Yao Stand fon the tollowing expressions 
in terms of N,,: 
Y, = N, + 0.2167031N, — 0.0302211N,; + 0.0100338N, 
— 0.0045539N,; 
Y, = N, + 4.6332707N, + 1.6778105N,; — 0.2720794N, 
+ 0.1018516N,; 
Y, = N, — 7.3461297N, — 31.5044500N, — 13.18126660N, 
+ 2.0803739N,, 
Y, = N, — 4.2883468N, + 20.4004807N, + 99.0498144N, 
+ 47.0163475N,, ; 
Y, = N, — 3.6583547N, + 9.7849522N, — 40.0969663N, 


— 245.9320935N,. (65) 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 5080 


and 

Y, = N, + 0.3172231N, — 0.0501698N, + 0.0180624N, 
— 0.0086497N,,, 

Y, = N, + 4.1262613N, + 1.5874177N, — 0.2597861N; 
+ 0.0995609N,,, 

Y, = N. — 5.4990870N, = 23.8405548N, — 10.3129949N, 
+ 1.6109253N,,, 

Y, = N, — 3.0874234N, + 13.8285447N, + 68.6295877N, 


+ 33.3180647N,,,, 
Y,. = N, — 2.5712654N, + 6.4271377N, — 25.6939046N, 
— 160.9722444N,o. (66) 


If the 10 functions Y,, Y,,..., Yy) can be determined by solving 
the differential equations (63) and (64), it will be possible to compute 
N, (A; 7), No (As 9), - - -» Nio (A; 7) from the following expressions which 
are the reversions of the expressions (65) and (66). 
= + 1.0650221Y, — 0.05878696Y, — 0.00491292Y,, 

— 0.001038174Y, — 0.000284101Y,, 
= — 0.2793058Y, + 0.2586992 Y, + 0.01644431Y, 
+ 0.003283144Y, + 0.000879072Y,, 
+ 0.1254434Y, — 0.07711532Y, — 0.04050495Y, 
= 0:006251173Y, — 0.001571970Y,, 
NGA = 0.05969848Y, + 0.03367969Y, + 0.01083299Y, 


1 


+ 0.01265900Y, + 0.002526788Y,, 
N, = + 0.02520969Y, — 0.01264167Y, — 0.003642393Y, 
— 0.002365708Y, — 0.004554906Y,. (67) 
and 
N, = + 1.1172140Y, — 0.1028957Y, — 0.0109283Y, 
— 0.0026156Y, — 0.0007745Y,,, 
a = — 0.3385977Y, + 0.3066091Y, + 0.0247985Y, 
+ 0.0055792Y, + 0.0016107Y,,, 
N, = + 0.1613919Y, — 0.0943220Y, — 0.0548464Y, 
— 0.0096171Y, — 0.0026064Y,,, 
Nee —-0:0792995 >. = 0.04207 TY 00175807, 
+ 0.0184664Y, + 0.0040001Y,,, 
Nig= + 0.0314504Y, — 0.0160186Y, — 0.0050095Y, 
— 0.0034369Y, — 0.0069853Y,,. (68) 
Substituting the functions N, (x; 7), No(xim), - - -» Nio (x3) thus 


obtained in (30), we shall obtain the expression for ¥, (x,y; 7). Further 
substitution in (29) will give the solution of the problem as 


1 ww Pp 7% 
LOC 2) = oD. 2yMn(y) {a (x; n) cos ) = )a (69) 


536 EIGHTH PACIFIC SCIENCE CONGRESS 


The method of solving equations (63) and (64) and the evaluation 


of the integral: 
ce 
Nin (*3 ( ak je 
Grvcerncn (ala 


will be discussed in the following section. 


9. INTEGRATION OF THE DIFFERENTIAL EQUATIONS 
The next step will be to solve the ten differential equations (63) 
and (64). Let any one of these equations be 


pe — 10se3o3eemen 1907 10 
4 dn? dn 
where b and c are constants assigned to each of these ten equations. 


Since a particular solution of this equation 1S 


+ by?Y +-+Cc= 0 (70) 


y, =e (71) 
n? 
the general integral of (70) will be of the form: 
c 
2) =e Age er IBIS (Crags ot) [DAN a ma (72) 
where a, 8, y and § are the four roots of the algebraic equation: 
O = 1082323 7202, 12997 MOG) 4 10ne — 0 (73) 


and A, B, C, D are constants to be determined according to the con- 
ditions: 

Y(0) = Y(1) = 0; 

y"(0) = Y(1) = 0. (74) 

The equation (73) has four roots a, 8, y and § for any given value 
of », and A, B, C and D all depend upon a, £, y and 8. 

The parameter 7 varies from & to oo, and the values of a, B, y, 8 
all depend upon 7. When yn is very large, these four roots are approxi- 
mately 
020/307 57); 

— 1040.3075y, 
Vit (O} LO82323)rz6 
= — (0/1082323) 2. (75) 

As 7 decreases, a, 8, y and § also change gradually. For » less than 
a certain value between 7 = 0.4 and » = 0.3, B and § become complex 
conjugate. As » approaches 0, a, 8 and § approach finite values, while 
y decreases indefinitely as con?. “Thus we have, when yn — 0. 


M2 DR 
I| 


Sai ea (76) 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 5387 


where 
p = (14997110)%, 
3 
G | = oe (77) 


For the intermediate value of 7, these four roots vary continuously ex- 
cept 8 and § which change from complex conjugates to real as 7 
increases from 7 = 0.3 to n = 0.4. 

Of course, there are 10 series of such four roots of 10 equations 
(70), each varying with the parameter 7. 

The constants 4, B, C and D can be, of course, expressed in terms 
of a, 8, y and §. Thus the solution Y becomes, when £ and § are com- 
plex conjugates of the form 


B=+ pt qu J 12 — Ue (78) 
, uf 
Y= 41 te ex(h—1) — ev) 
Oa ay; Oeareey, 
a 
a ( ev — 1 eco ga 
G5 
a= 
+ ( a Pe tase aa) =) e-P\ sin ga bY, (79) 
ae) q q 
and, when a, f, y, § are all real, 
v= [is x ea) +4 : Ne ket Ua ys eBr 
Qany, B-8& a-yf-8 


1) 4 RUSE a Sie gir +e] 12 
Teay [Eee Ws Coolers nah dcdiag 
(80) 


where Y, is the particular solution given by (71), of the equation (70). 
When 7 increases y also increases. If we can neglect e€-7, the ex: 
pression (80) will be further simplified, and we have 


{ y 8 a 
a—y p-8 a—y 
: f 
— ae ce 
g—o* (* (81) 
Since Y, is given by (71) as 
b/c 
Hale AGE 


2 


the solutions of the equations (63) and (64) will tend to zero as » in- 
creases indefinitely. 

The values of the roots a, 8, y and § of each of the 10 equations 
given by (63) and (64) were computed numerically and given in Tables 
V-XIV. 


Ol 
(oy) 
10.) 


EIGHTH PACIFIC SCIENCE CONGRESS 


10. COMPUTATION OF THE CURRENTS 


In order to calculate the distribution of the currents at various 


levelss we had ‘first toicompute ¥q\(\;)s) Yo (sim) nee (A; 7) accord- 
ing to one of the expressions (79), (80) and (81) for 
A = 0.0000, 0.0025, 0.0050, . . ., 0.0500, 0.0550, 0.0600, . . ., 
0.1000, 0.1100, 0.1200, 0.1300, . . ., 0.2000 
and for 
ae WAOOE, 2 oo vont 0 BHO, oo dey ONO). 


For larger values of 7, we have 
Oa 1040.3075, 


B = — 1040.3075n, 
y = + (b/1082323)%, 
8 = — (b/1082323)% (82) 


very accurately, while Y, () are all very small, so that Y,(A; 7) will be 
approximately given by 

a i Sey G1) — ek =o 
| 7 (83) 
where y, and c are independent of 7. It will be more convenient to 
leave (83) as it stands rather than to compute their values against ». 
These values of the ten functions Y,,(\; 7) may be then converted 
into the functions N,,(\; 7) by virtue of the formulas (67) and (68). 
Substitutions of the functions N, (A; 9), No(A3; 7), Ns(Ain), - - 3 

No (A; 7) into the equation (69) give the complete solution as 


ee ub 
Wr (Go y, Z) = On ai (y) ie (A; ”) cos ( 2D, 1) dr, 
isnt ed Tele 


(84) 
To evaluate the uatceral 
fx, (A; 7) cos (= =n ) dy, 
we have computed the functions N,, (\3; 7) for 
oa OOS OM Opec 8 een IOS PO ON S65: HOD 
and the process has to be carried out numerically between » = 0 and 
7 = 10.0. For larger values of », we may use the approximate for- 
mula (83). 


Let the values of a function F (yn) for » = 0, h and 2h: be aswiae 
and F, respectively. Then the interpolation formula in this interval 
of » will be given by 


ua — 3F, + 4F, — F, ) Fy — 2F, 4 F, 0 2 
BG) Bieta) 0 Tapes Ve) os 9 hows 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 539 


Then we have 


2h 2h 
Tz TZ 
2) cos i= dp = io feos 2D," dn 
= Baa ee 4h — Fe 
Bene Aad) 3 cos lam 7 Idy 
SS AO ae Jae k ( 1 ya 
opis ie cos op,” 7 


or 
2h 
fea z 
fr (m) cos OD, nay = = (a, — 3b,+ ¢,) Fo 
+ (4b, — 2c.) F, + (0; + 63) Fe 
where 
a i Zz 
Te a 
aol Secs (57)a ( oy (an, zn) 
2D, 


Chae ae 


oa Som (x) 
aA Ope. Messy 9D, n 


ue op, h Hy Dh 
ie 1 i. D OD, eos om + op 2h)— 2¢ sin ) 
bey Giese wz 2 (86) 
( 7) ( oD! 2h) 
For larger values of 7, we may express F (yn) in the form 
r Lies fgg Bei cha 
F(y) = Fy + Soe i ae aly Op? Ge at)? 


where F_, F,) and F,, are the values of F(y) for y) — h, no and 4 
+ h respectively. We have then 


noth xz oe = 
fie cos (a7) dy = (— dy + 6)F_y + (2 — 23)Fo 
79>—h rete 
+ (0; + ¢5)F iy (87) 


540 EIGHTH PACIFIC SCIENCE CONGRESS 


w= f1-3(a) fe (s.") 
= {a(a) - aS )t= (ar) 
C= Wee Cay 1) bo oa) (88) 


The integration was carried out taking h = 0.1 in the interval 
0 = » 1.0; and h = 1 for the interval 1.0 S y= 10.0. For larger 
values of y, integration was carried out by using the formula (82) 
which is only inversely proportional to 7?. In this case, we have only 


to evaluate the we 
Ve fF ol -1 Jay (89) 


The aes were rather tedious and took three computers 
more than six months to complete the surface, 1/2D,, D,, 3/2D,, 2D, and 
3D,. The values of a, 8, y and § which are the roots of the quadratic 
equations (73) with » as a parameter and computed for the necessary 
values of y, are compiled in Tables V to XIV (omitted). 

The values of the stream-function were computed for the western- 
most 1/5 part of the entire expanse of the ocean, and the streamlines 
were drawn for the layers z = 0 (surface), 1/2D,, D,, 3/2D,, 2D,, and 
3D,. The computations were not carried out for the deeper levels and 
for the part to the east of this area, partly because we did not have 
enough time to compute, and partly because the central and eastern parts 
are not as interesting. We have only a very slow zonal flow in the centrai 
part and very diffuse meridional flow close to the eastern coast of the 
ocean. Indeed, the California and Peru Currents are considered to be 
produced by local winds as proved by Munk (1950). 

The circulation patterns in the area close to the western coast were 
obtained from these computations, and illustrated in the Figures 3, 4, 
5, and 6. The discussions for them will be given in the following 
paragraphs. 

Table II gives the velocities of the western current in the subtropic 
gyre corresponding to the Kuroshio, or the Japan Current, at the depths 
z = 0 (surface), 1/2D,, D,, 3/2D,, 2D, and 3D, along the 33° N parallel, 
which is the swiftest part of this mighty current. These velocities were 
computed by the formula: 

v=(& =) S _ Qo + AA) = ¥ Ao — Ad) 
0 


linear ~ linear distance of 2AX 


3 


041 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 


‘siajeu Ul passeadxa s1 *q o10q M4 a/b Aq satzI00eA esayy ATdyynw ‘w Gy, wey, Jaq}0 *"Gq yo saNnteA aAOJ AWIDOTOA ay} 423 OF, 


Sissel =— > ils —S=.- 8o- SS — 03 6g 6 OTT 62 0 (9as/w9)*qg = 2 ye Aqr0TOA 
fae Ole oe Coe 6 II ty 18 6ci LE LOL 0 (o0s/m9)"*qZ = 2 7e Aqro0joA 
8- 6 Ve Bie Gg 1Z LY VOm 67 ie SOR = een (as /w9)*qZ/g = 2 ye AALO0TOA 
= 9- 8- G- L 8 3h OD Se ie (9es/u19)"q = 2 4a Aq00T9A 
Pv T 0 v LT &P 8 Cole = 98 = 90G = OSTa <0 (908/19) *qQZ/T = 2 ye ApD0PaA, 
TW: 8 L ral td 2g v6 OV ee OCI LG) es CO 0 (998/t9) AQToofeA eoejaing 
Giga OSG = Seon 00G = oT. 0Sh = cok 200K cv 0g GS 0 (wy) ATepunog 4seM WoOIZ ooULySIC 


w ¢), = 7q ONIWASSY 
“IATIVAVd N o&& GHL ONOTV “Gg GNV *qz “°d2/E “G2/T ‘0 = 2 
SHLddgd INAYGIAIG LV OIHSOUNY BAL AO » ALIOOIVA GALNIWOD 


Il WTavai 


542 EIGHTH PACIFIC SCIENCE CONGRESS 


and taking D, = 75 meters. Because the velocity is inversely propor- 
tional to the quantity D,, we can compute it for any other value of D.. 
For this we have only to multiply these figures by 75/D, where D, is 
expressed in meters. The maximum surface velocity of 217 cm/sec 
agrees with actual observations very closely. 

Table II gives the distribution of EW-components along a meridian 
24° of longitude east of the western boundary, or 1/5 of the entire 
east-west expanse of the Pacific Ocean off the western coast. At this 
distance from the western coast the coastal. effect nearly vanishes and 
the pattern of the circulation consists of approximately zonal flows. 
In this table the value of D, was again assumed to be 75 meters. Dis- 
cussions concerning these results will be made in the following para- 
graphs. 


1]. SURFACE CIRCULATION 

The numerical result for the horizontal circulation has been worked 
out for several levels specified by the ratio z/D,. We show here those 
Ob thepsunfiace (ai — 10) yz De 25) (2 // De —— al se AD == 2 
and z/D, = 3. The most important of them is, of course, the surface 
circulation, and Figure 3 shows its pattern. The gross features of the 
current distribution on the surface thus do not seem to differ much from 
those given by Munk (1950) and by the author (1951) for the distribu- 
tion of mass transport streamlines. Because of the considerable labor 
contained in the calculation, the computation is confined only to the 
western part of the ocean bounded by two meridians ) = 0 and \ = 0.2, 
that is, 24° of longitude apart. Choice of the western part of the ocean 
for the computation was made because the circulation patterns in that 
section are more complicated and hence more interesting. In the cen- 
tral part of the ocean we will have indeed a very slow motion approxt- 
mately in east-west direction, while very diffuse meridional motion will 
exist close to the eastern coast. 

We have a number of gyres in the surface circulation corresponding 
to those obtained in Munk’s (1950) and the author’s (1951) results with 
respect to mass transport. We have a broad gyre with strong western 
current flowing north in the latitudes between 20° and 40° N and 
corresponding to the Kuroshio or Japan Current. We also notice one 
boundary vortex, but the secondary boundary vortex is not distinct. 
We have a subtropic gyre with the western current flowing south. This 
corresponds to the Mindanao Current. Of course, we have a faint sub- 
arctic gyre corresponding to the Oyashio or the Kurile Current. 

On the surface of the Southern Pacific Ocean, we have western 
currents flowing north a little south of the equator and in the sub- 
antarctic latitudes. Between these two we have a strong current cor- 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 543 


TABLE III 
ZONAL DISTRIBUTION OF EW-—COMPONENTS OF OCEAN CURRENTS EXPRESSED: IN 
em/sec, ASSUMING D, = 75 m (++ EASTWARD, — WESTWARD) 
LAT. z= 0) 2 —) 1/2D) z= DI 2 — 3/2D 2) — 2D, z — 3Dy REMARKS 
(SuRFACcE) 
60° N 0 0 0 0 0 0 
Dili NI 0. =e Duo WP aah esl tO ea Oi PA CLIC 
54° N SOT ee OMe an I ek 2p eo eee oo Current 
FyieeIN| si BH Se BO sk BR do Oey oe OI a 
48° N wDo S-ehikGe > 3:6 ee 6. a2 ae 
45° N 20:40 Eb toto El Os Ou eg! Wiest 
42° N TEAMS Salle aE SE ee Se Ess) \ abe! 
39° N SE SL TS) OS SE Wie Se Rea Der beg 
Omen 26 YQ a2 AB 2 RE -e aM +6 -2G chad 
SOmEN| HELO: demi OL Mia A te OCC th toto lin tem eore 
SO mee se AC OM at et ie tO Obie Un (PAGE vie 
PA? INS ies — dE — 1s I BS ED INoreln 
24° N = WEA oS Wl op Re Os Se LIL Tropien cop ereal| 
Pilea WIN = 1S — 1s = O8 = WH 8 i> Sa. -Oumarinte 
18° N ae Rese SOM Reeve Gana Ota soo. tan le 
oe IN = Tees = AD) Sees HD Hell =A! 
UA? IN Cale Ah eae td WP 0 J Oe ao) Oe SS -Os3 
DSN BA ean ue tee eA) ee ore me Om quatorial 
6° N Seen = 1.0) EV 9.8) ee 6.5). 14:8 Counter. 
Sani de te TA Eg elle sy sat (Gabber ele 
0° Soro) Osan en iieOl tO Se Ger ee bee 
eo = OY: 22°10 46 25 sb Be se Be . ab aul 
6° S$ eG SO ie OA co AIC ec OM Cone ogee eer ()ib 
aS eg Oc Ameer ae OS Oi mene bic COSI. emus) 
12° FS} = BI) == GES 1s} RAL RS i Souda 
lee =a A bef Sp OI Geers erm Ube Le rr Lt bap 9.1 —5.9 Equatorial 
18° §$ Sl Sey e aet ARO OS eam ONy era Ok Gee ee Ava nN Current, 
Fall tS: = HONG I) 74 CO = Oe) == 0 = By 
Blo SR EE BE lls OBO) a alee 
PANE TS) Sie, == 7 0f8) 06 = 04 703 0 
30° S Sea to G5 = e508 ea 3tOs 3.0) ny, 
oR SS) SUA) eo - O58 - Th + 8. 4a AWese 
365 5 JL OO) SS Ios) SE BED Sen SE Cbs Stash Aihara 
39° S aE | BOK IE IZ) SIP tl ae ID igbis 
42° S$ +200 +164 +1381 4+125 + 84 45.6 
AUS S) +138.7 +106 + 7.9 + 60 + 47 + 3.0 
48° § HE NO) 2S Pate ete aly) 0 == ON = WG 
mt? iS) = OE Giana aaa AS Ohi em Ose ad Ae Ole Memes oS 
54° S GD GS iis ONE ee SO ae O Abe iA. Oy Ee PAILLATCEIC 
si? S = ALS ere Dla On AeA oe Ourrent 


E44 EIGHTH PACIFIC SCIENCE CONGRESS 


responding to the East Australian Current, though actually this current 
never develops so strongly because of many passages connecting the 
Southern Pacific to the Indian Ocean through the numerous islands 
and archipelagoes in the Australian-Asiatic Mediterranean. Had we 
not these passages together with the Southern Antarctic Circumpolar 
Ocean, we could have a much stronger western current in the South 
Pacific Ocean than actually observed. 

It looks also rather strange that we do not have any strong west- 
ward flow in the latitudes between 5° N and 2° S. Actually the north- 
ern margin of the South Equatorial Current is in this zone. This comes 
as the consequence that the Equatorial Counter Current appears in our 
theoretical result much broader and much more diifuse than actually 
observed. ‘This is also the same in Munk’s and Hidaka’s results. The 
theory of the Equatorial Counter Current has been attacked and ex- 
plained by several authors (Montgomery and Palmén, 1940, Neumann, 
1947) in some other ways than ours. 


12. EVALUATION OF THE COEFFICIENT OF VERTICAL MIXING 
The streamlines in Figure 3 are drawn for an interval 
Av = 250 x 10'°/D, cm?/sec. 

of the stream function. The velocity can be determined as the ratio 
Aw /Ax, where Ax is the actual distance between two consecutive stream- 
lines. Because these diagrams are not drawn in a common scale for 
the north-south and east-west directions, it would be rather laborous 
to compute the magnitude of current velocity for all parts of the Pacific. 
Still it will be easy to know it when the streamlines run in exactly north- 
south or east-west directions. 

The values of the stream function at several points along the 33° N 
parallel are computed as compiled in Table IV. Assuming the Pacific 
Ocean is 10,000 kilometers across in its east-west direction, we obtained 
the velocity of the Kuroshio at its swiftest zone, which is located approxi- 
mately 55 km off the coast, to be 329 cm/sec, 219 cm/sec, 165 cm/sec, 
and 110 cm/sec according as we assume D, = 50 m, 75 m, 100 m and 
150 m, respectively. 

Actual velocity of the Kuroshio has been estimated at approximately 
3 to 5 knots, or about 150 to 250 cm/sec in its swiftest zone. From 
Table IV we recognize that the computed velocity of the Kuroshio, 
assuming for D, a value between 50 m and 150 m, agrees with the ob- 
served values fairly well. ‘The previously determined values for D, fall 
mostly in this range also. ‘This enables us to compute the values of 
vertical coefficient of mixing from the formula (18). The above values 
of D, correspond to the values 188, 422, 750 and 1688 g/cm/sec of A, 


545 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 


s/uo g ¥ Vv 9 rae 9% LE eL GOL 60T 28 go :u OST = *d | 
s/uio g 9 9 6 61 68 OL aye Ne RE eas) SUD *q 101 AqTOOTOA 
s/Wd TT 8 L Ho Ea A OT 1m GL = “Cf 10 pemmaure 
s/o 9T ZT as 8T 88 8L we ie ab eB —ae O Us "a = 


*d 
—— eC BG 95S 88 o6t o68 VOL Gé60T OLST OS9T FSst 09 = ay /4V 
s/moyOT 

“al aa 

== SG 1S 86 ad G6 cet 3c oro G8 S18 cay = a 
s/,m00 10 


wy GZ 066 46s 002 GLE Ost Get oot gL os ga Q = Arepunog ysoM WOIZ eoueystd 


@LZ0° 0&Z0° ¢2z0° 0020" SLTO QSTO’ zto’ O0TO’ 200° 0900" Gz00 0 = X 


qaATIVaVd N o$§ GHL Ssouov OIHSOUNY AHL Ao ALIOOTAA DOVIINS TVOLLAUOUH [, LO NOILVLNd NOD 


AI @1avVib 


546 EIGHTH PACIFIC SCIENCE CONGRESS 


respectively. These are, of course, values consistent with the results 
derived from many other different sources. (Sverdrup, et al., 1942). 


13. SUBSURFACE CIRCULATION 

Figures 4, 5, 6, 7, and 8 show the horizontal distribution of stream- 
lines in the level 14D,, D,, 1/4D,, 2D,, and 3D, below the sea surface, 
respectively. All give patterns similar to the surface circulation shown 
in Figure 3. We have western currents and a boundary vortex attached 
to each gyre. The only difference noticed is a general subsidence of 
the motion as we go down into deeper layers. Still, we see that the 
intensity of motion is only reduced to as low as half that of the sea sur- 
face even in the layer 3D,. Figure 9 shows the comparison of the cur- 
rent velocity profiles along the 33° N parallel at several levels to that 
on the surface of the sea assuming D, = 75 m. The maximum speeds 
are seen at about 55 kilometers off the western boundary. Although 
the Japanese Islands are not disposed parallel to a meridian, the above 
result agrees with the observed profiles of this mighty current quite satis- 
factorily. Another result of particular interest is that, at a distance 
larger than about 150 km, there is a flow to the south with much larger 
velocity than in upper layers. ‘This counter current reaches a maxi- 
mum speed of 20 to 30 cm/s at about 200 km off the western coast, 
despite the practically motionless upper layers. Figure 10 gives the 
comparison of the zonal distribution of EW-components along a meri- 
dian 24 degrees of longitude to the east off the western boundary. In 
this longitude it is expected that the influence of the western boundary 
nearly vanishes and the actual flow pattern of the Pacific circulation 
is disposed mostly as a zonal current system. The velocities of the 
current in these diagrams were computed assuming D, = 75 meters. 
For computing the velocities when the value of D,, is different, we have 
only to multiply these figures by 75/D,, where D, is expressed in meters. 
If we assume, however, that the value D, = 75 m-is consistent, we have 
for the maximum surface velocities of North Pacific Current, North 
Equatorial Current, Equatorial Counter Current, South Equatorial 
Current, and Antarctic Circumpolar Current 22, 19, 8, 23 and 23 cm/sec 
respectively. They are reduced to 18, 16, 8, 18 and 18 cm/sec respec- 
tively at a level 14D, and to 11, 9, 8, 9 and 10 respectively at 2D,. The 
Equatorial Counter Current remains nearly unaltered in its speed in 
all depths compared above. 


14. VERTICAL VARIATION OF THE CURRENTS 
The most important objective of the present research is to get a 
certain idea about the vertical structure of the wind-driven circulation 
in the Pacific Ocean. ‘This will be, of course, impossible to obtain from 


GENERAL CIRCULATION OF THE PACIFIC OCEAN DAT 


former theories which have been mostly propounded with respect to the 
mass transport. 

Since the problem is three-dimensional, the numerical computation 
is rather tedious. For this reason the author has not yet been able to 
finish the computation below the level z = 3D,. Still we should be 
able to expect some important conclusions from what has been com- 
pleted thus far. 

First of all it is very interesting that the wind-driven currents exist 
in a layer much deeper than that expected from: the classical theory of 
Ekman (1905). According to Ekman’s theory, a wind-driven current is 
confined to the surface layer about D, thick, and we can expect prac- 
tically no drift current at a deeper level except very close to the equator. 
From cur computation, it can be shown that the current velocity does 
not drop as low as half the surface value even at a level 3D,. Hf we 
take D, = 75 meters, this depth is 225 meters. 

This conclusion will be helpful for us to understand the fact that 
wind-driven currents can penetrate into a layer several hundred meters 
deep, a layer several times as deep as that expected from Ekman’s theory 
as the limit of the wind-driven currents. This implies that the motion 
of water in most parts of the oceanic troposphere could be produced 
by the stresses of the permanent wind system prevailing over the oceans. 
In other words, the winds are responsible not only for the currents in 
the skin layer of the ocean, but also for the most part of the circulation 
in the oceanic troposphere. 

We have long considered that the winds are responsible only for 
the current motion in the surface layer of about 100 meters thick. This 
depth is nothing but the “depth of the frictional influence’ defined 
by Ekman. To explain the circulation in deeper parts of the tropo- 
sphere, we had to assume a very strong convection current and slope 
current. Still we had a distinct difference in the circulation patterns 
between the troposphere and stratosphere. “These circumstances have 
made several problems very much complicated. Defant (1928) defined 
the troposphere as the part of the ocean in which we can expect strong 
currents due to violent turbulence and convection. Still we can have 
violent convection in the seas of higher latitudes beyond the polar 
fronts which are no longer defined as troposphere. The conclusion 
that the drift currents penetrate into much deeper layers than D, is 
much in favor of the definition of troposphere that this is the upper 
layer of the ocean in which strong currents are present. 

‘The explanation of the result that we can have a strong motion 
even in a layer several hundred meters deep might look possible by 
assuming slope currents which would be produced as the effect of purely 


548 EIGHTH PACIFIC SCIENCE CONGRESS 


wind-driven water masses piled up against the land barriers. As a mat- 
ter of fact, Ekman’s theory assumes no boundaries and a constant lati- 
tude. We can prove the existence of slope current in an ocean having 
boundaries partly or completely enclosing it. The slope current is 
uniform from the surface down to the bottom. This fact seems in 
favor of the theoretical result we have obtained. Still, we must give 
attention to the fact that the velocity of slope current is always inversely 
proportional to the depth of the sea. When the depth is large as we see 
in the actual oceans, the slope current will not be strong enough to 
account for those large velocities we have obtained at the depth twice 
or three times as large as D,. 

We don’t know an appropriate explanation of the theoretical re- 
sult that the effect of winds can be felt at a depth several times as large 
as Ekman’s depth of frictional influence. It would be hoped someone 
may be able to solve this question satisfactorily in the near future. 


15. SUMMARY 

(1) A theory of the general circulation of water in the Pacific Ocean 
produced by the semi-permanent wind system prevailing over this ocean 
is propounded. 

(2) The velocity is used to express the water motion which has 
formerly been explained by several authors in terms of mass transport. 

(3) The Pacific Ocean is considered to be a rectangular ocean ex- 
tending from 60° S to 60° N latitudes and from 0° to 120° longitude, 
and a zonal distribution of the wind system determined from actual 
observations has been assumed. 

(4) The effects of horizontal turbulence and the meridional varia- 
tion of the Coriolis forces have been taken into account. 

(5) The patterns of horizontal circulation are obtained in terms 
of streamlines for the sea surface and several deeper layers specified by 
the ratio z/D, where z is the geometrical depth below the surface and 
D, the depth of the frictional influence, a measure of vertical turbulence. 

(6) Surface circulation has a pattern similar to that actually ob- 
served and does not differ much from Munk’s result obtained in terms 
of mass transport. We have very strong western currents and boundary 
vortices. 

(7) The magnitude of the Kuroshio and other western currents 
was computed from the distribution of the streamlines in each level. 
The velocity is inversely proportional to D, so that we can determine 
it by assuming an appropriate value for D,. A value of D, between 
50 m and 150 m gives values most reasonable and consistent with the 
actual observations. 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 549 


(8) Subsurface circulations also show similar patterns except for a 
general subsidence as we go down into deeper layers. Still, it is remark- 
able that we have far stronger currents than expected from Ekman’s 
classical theory even at a depth much larger than Ekman’s depth of 
frictional influence at which we can scarcely expect any motion except 
very close to the Equator. This seems to show us that the winds are 
responsible for the most part of the tropospheric motion of water. 


16. ACKNOWLEDGMENTS 

This research was initiated several years ago. Due to the great 
amount of computational work, however, the author had to ask finan- 
cial aid from the Ministry of Education, Japanese Government. Actual 
computations have been carried out in Tokyo by Miss T. Osada, Miss T. 
Yoshimura, and Miss K. Maruyama since December, 1951. 

The completion and publication of this work were accomplished 
at the Agricultural and Mechanical College of Texas. Several persons 
in the Department of Oceanography helped greatly in its preparation. 
The author is very much indebted to Dr. Dale F. Leipper, Head of 
the Department, for his kind suggestions and advice. Mr. Robert O. 
Reid was also greatly interested in this research and gave several sug- 
gestions to the author. Dr. Walter Saucier was kind enough to check 
the mathematical analysis and the English. Mr. Richard M. Adams 
and Mr. George B. Austin assisted the author in preparing the manu- 
script. Dr. Walter H. Munk of the Scripps Institution of Oceanography, 
University of California, and Mr. H. Stommel of the Woods Hole 
Oceanographic Institution kindly furnished the author with data of 
wind stresses in the Pacific Ocean which enabled him to determine the 
meridional distribution of the semi-permanent wind system. 

It is the author’s utmost pleasure here to express his deepest thanks 
to all who helped him in carrying out this research. 


June 17, 1953 


REFERENCES 


DEFANT, ALBERT. 1928. Die systematische Erforschung des Weltmeeres. 
Gesellsch. fiir Erdkunde zu Berlin, Zeitschrift, Jubilaums Sonderband. 
p. 450-505. 

EKMAN, V. W. 1905. On the Influence of the Earth’s Rotation on Ocean 
Currents. Arkiv for Matematik, Astronomi och Fysik, Stockholm 1905- 
06, Vol. 2,-No. 11, p. 1-52. 

Hmaka, Kosi. 1950. Drift Currents in an Enclosed Ocean. Part I. Geo- 
physical Notes, Tokyo University. Vol. 3, No. 38, p. 1-23. 

1951. Drift Currents in an Enclosed Ocean. Part III. Geo- 

physical Notes, Tokyo University. Vol. 4, No. ai jos olen) 


550 EIGHTH PACIFIC SCIENCE CONGRESS 


MONTGOMERY, R. B. and EK. PALMEN. 1940. Contribution to the Question of 
the Equatorial Counter Current. Journal of Marine Research. Vol. By 
Now J pedal 133, 

Munk, W. H. 1950. Wind-driven Ocean Circulation. Journal of Meteorol- 
ogy. Vol. 7, No. 2, p. 79-93. 

MUNK, W. H. and G. F. CaArripr. 1951. On the Wind-driven Circulation in 
Ocean Basins of Various Shapes. Tellus. Vol. 2, p. 158-167. 

NEUMANN, GERHARD. 1947. Uber die Entstehung des aquatorialen Gegen- 
stromes. Forschungen und Fortschritte 21/23 Jahrgang Nr. 16/17/18. 

1952. Some Problems Concerning the Dynamics of the Gulf 
Stream. The New York Academy of Sciences Transactions Ser. II, Vol. 
14, No. 7, p. 283-291. 

Rew, R. O. 1948. The Equatorial Currents of the Eastern Pacific as Main- 
tained by the Stress of the Wind. Journal of Marine Research. Vol. 7, 
No. 2, p. 74-99. 

STOCKMANN, W. B. 1946. Equations for a Field of Total Flow induced by 
the Wind in a Non-homogeneous Sea. C. R. (Doklady) Acad. Sci. URSS 
N.S. 54 (5) p. 403-406. 

STOMMEL, Henry. 1948. The Westward Intensification of the Wind-driven 
Ocean Currents. American Geophysical Union Transactions. Vol. 29, 
p. 202-206. 

SVERDRUP, H. U. 1947. Wind-driven Currents in a Baroclinic Ocean; with 
Application to the Equatorial Currents of the Eastern Pacific. National 
Academy of Sciences, Vol. 338, 318-326. 

SVERDRUP, H. U., et al. 1942. The Oceans, their Physics, Chemistry and 
General Biology. Prentice Hall, Inc., New York. 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 5DbiL 


y = + + a(60°N) 


=X 


(O=X)] 


y=O (EQUATOR) 


y=--5 0 (60°S) 


Fic. 1.—A Rectangular Ocean comparable in size to the Pacific Ocean. 


552 EIGHTH PACIFIC SCIENCE CONGRESS 


WEST ———> EAST 


WEST WIND DRIFT 


NORTHEAST TRADES 


EQUATOR 


SOUTHEAST TRADES 


WEST WIND DRIFT 


| 
| 
| 


-0.5 oO 0.5 DYNE/CM2 


Fic. 2.—Assumed meridional distribution of wind stress. 


553 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 


NV390 DgINVd FHL JO LYVd NY31S3M BHL Ni ~*. NV390 D151IDVd 3HL 40 LYVd NYZLS3M FHL NI 


NV300 91510Vd 3HL 4O LYvd NY3LSIM 
*0.01=Z 73A37 Vv NI NOILVINDYID G3LNdWOD 49452 73037 v Ni NOILYINDNID a3LNdWOD BHL 4O NOILVINOYIO JOVIENS GILNdWOO 
Soy b Oi4 € 614 
(ZO) (OY) (oy) 
ve cdl é 
Coe) 
Ob Osan 
bHAD 
ia eam 
wand 
eyousey 83 
(ve) 
yeysd| "ier 
won) 


BYS2) (Foy 


tess ecsssom 


$29ssRD 
(sperandg eee 


aweasy 


EIGHTH PACIFIC SCIENCE CONGRESS 


554 


NV390 D15IDVd FHL 40 LYVd NY31SIM FHL NI 
"00€*Z 13437 V NI NOILYINONIO G31LNdWod 


ag 614 


NV300 91d1D¥d SHL JO LYVd NY31S3M JHL NI N¥300 914/0Vd FHL 4O LYVd NYFLSIM FHL NI 
7q.2:Z V3A37 BHL NI NOILYINDNID G3LNdWoOo 4QGi=Z 13A37 ¥ NI NOILVINIYID G3ILNdWOD 


2 b4 9614 
(Z0=¥) (10=¥) (O-”) 
tye edi 0 
° S09 
Be - - 
SSe 
ose 
5 =< 
ose 


00s 


a 
oce - 
° 
ose 
NGI 
Ose 
° 
os2- 
N.O€ 
00s - 
cos - 
Osz- 
NSP 
° 
oz s. 
Yooz{) 
oor ‘ 
NOD 


4, 
ozg gid 


420 
FER 1th 


young 
oosyemy 4953 


194504022 YROS 


weoum) 


sayened joy 01000] 


(y91m eouEporm 


reaun 
102050832 WN 


omy 


955 


GENERAL CIRCULATION OF THE PACIFIC OCEAN 


(‘Siejout UL posserdxe st “7 atayAy *77/ey Aq Serqto 
-OJeA 9Sey}y Aydiyjnur ‘wi Gy ueYyy TaYy,O 7q AOF SoTyord oy} 4ad OF) ‘WeG), = 7q Sutunsse ‘jaTTeIV~gG N ee 
24} suo[e ‘aovjins oy} MOTEq Syydep 4JUdteFJIP [BIAS Je OTYSOINY ey} Jo sapyord Ayroojaa [eoye1004,—'6 “DIY 


= 
> 
°) 
Ww 
8/400I- 
AYVONNOG NY3LSIM 
WOYS JONVLSIO 
ae 
i 
a 
2) 
Zz 
SSS Suro ool 
Shyj002 


556 EIGHTH PACIFIC SCIENCE CONGRESS 


WEST < 


> EAST 


=SOun/s) = 2Onn ys) 10° 5) NO +10°%5 = 20° «430% 
60°N 


WEST WINO DRIFT 


30°N 


NORTH EQUATORIAL 
CURRENT 


1S°N 


EQUATORIAL COUNTER 


EQUATOR Mean 


SOUTH EQUATORIAL 
CURRENT 


15°'S 

30° S 

WEST WIND ORIFT 
OR 


ANTARCTIC 
45° S CIRCUMPOLAR CURRENT 


ANTARCTIC 
CURRENT 


60°S 


Fig. 10.—Zonal distribution of 1W-components of ocean currents at several 
depths expressed in cm/s, when D, = 75 meters. (To get the velocity 
for other values of D, multiply these velocities by 75/'D, where D, is 
expressed in meters.) 


A CONTRIBUTION TO THE THEORY OF UPWELLING 
AND COASTAL CURRENTS * 


By Koji Hipaka 
Geophysical Institute 
Tokyo University, Japan 


1. INTRODUCTION 


There have been several descriptions of the upwelling noticed off 
California, Peru, West Africa and other coasts by Thorade (1909), 
McEwen (1912, 1929), Gunther (1936), Defant (1936, 1952), Sverdrup 
(1931, 1938) and Sverdrup and Fleming (1941). The explanation of 
this process given by Sverdrup in 1938 is worth attention. According 
to Sverdrup and Fleming, it is known from the analysis of the water 
masses that the water taking part in the process of upwelling off the 
coast of Southern California originates mostly in the layers from 200 
to 300 meters below the surface. ‘These are, however, all qualitative 
discussions and it has been as yet not possible to explain this phenome- 
non theoretically and predict the velocity and width of the coastal cur- 
rents produced by the prevailing winds. Very recently Defant (1952) 
made a theoretical explanation assuming a sea consisting of two layers 
of water with different densities. “The present research is an attempt 
to solve this problem mathematically and to draw some quantitative 
conclusions concerning this process, which is very important in all fields 
of oceanography. 

The explanation of the upwelling seems to be satisfactory only by 
treating this problem thermodynamically as well as hydrodynamically. 
The following discussion will, however, be made only from a purely 
hydrodynamical standpoint, on the assumption that the seawater is of 
uniform density. ‘This is a necessary consequence for simplifying the 
mathematics, but the author believes to have been able to obtain some 
results which are consistent with certain facts observed in this process. 

It has been noticed that the upwelling takes place most favorably 
when, in the northern (southern) hemisphere, a wind blows in such a 
manner that the coast is on the left-hand (right-hand) side of an ob- 
server who looks in the direction of the wind. ‘Thus the upwelling off 
the coast of California is most remarkable in early summer when north- 
westerly winds prevail for several weeks nearly parallel to the coast. 


+ Published in the Transactions American Geophysical Union, June 1954, v. 35, No. 3, 
p. 431-444, 


5D7 


558 EIGHTH PACIFIC SCIENCE CONGRESS 


consideration. And it may be stressed that the horizontal mixing seems 
to play the most important role in the theoretical explanation of the 
process of upwelling. 


2. ‘THEORY 


Consider an infinitely long straight coast coincident with the axis of 
y, and take x-axis perpendicular to it in the offshore direction. (Fig. 1). 
Suppose a wind of constant force and direction is blowing steadily and 
uniformly in a belt of limited width L parallel to the coast from nega- 
tive to positive direction of y. This is a disposition favorable for the 
upwelling to actually occur. Take the z-axis vertically downwards. 

In a steady state which is attained after a sufficiently long time since 
the wind began to blow constantly, the motion of water will be inde- 
pendent of y. This means that all the vertical and horizontal compo- 
nents of the currents can be determined as functions of x and z only. 
Moreover, the surface of the sea will not be a plane, but have a slope 
in the x-direction. In such a case, the hydrodynamical equations of 
motion of sea water are, after several reasonable simplifications, 


A, 0?u A, 07u ; 0g 
+ 2 — — 0 
Pox? =e aes © SIN gv Sas 
A, 37u A, Ow ; 
set —— — 2 sin gu = 0 
PROX Py Oz (1) 


where uw and v are the horizontal components of the current velocity 
in the x and y directions, £ the surface elevation depending on x only, 
P the density, A, and A, the coefficients of vertical and horizontal mix- 
ing, of sea water, © the angular velosity of the Earth and ¢ the geographic 


latitude. In addition to these, we have the equation of continuity in 
the form: 


+ a0 (2) 
Ox OZ 


where w is the vertical component of currents and represents the intensity 
of the upwelling, and because duv/cy = 0. 

Suppose the wind blows in the positive direction of y in a belt 
between the coast x = 0 and x = L. The wind velocity may vary in 
the offshore or x-direction. The conditions to be satisfied on the sur- 
face of the sea are therefore at 


Cu 
— A =) e 
” Oz (3) 
can eee ~ =, for? =*2SL 


=0 forL<x< @ 


THEORY OF UPWELLING AND COASTAL CURRENTS 559 


where 7 is the stress of wind and may be either a constant or a function 
of x. On the bottom we must have no motion, because of the vertical 
ipietion: at z= ih: 

aa (4) 
and along the coast, which is considered to consist of vertical cliffs, we 
have because of the horizontal friction at x = 0: 

ee (5) 
In the region very far from both the coast and wind region, we have 
atx = 0: 


“u=v=—— = 0. (6) 


Let us define D, and D, by 


D, = a\/A,/po sin od; Dy = a\/Ay/ po sin o. (7) 
D, is the depth of frictional influence defined by Ekman (1905) in his 
theory of ocean currents, and D, is a quantity having a dimension of 


a length and may be called “frictional distance.” “This is a measure 
of the horizontal turbulence. Then the equations (1) now become 


Be pe ee ee ER eg 
o&? Maz: oSind O& 
o°u ou (8) 
= 55 IDR + 272u = 0 
0€? Vv OZ" 
where 
x 
—. : 9 
f= ) 


In order to solve the equations (8), suppose 


9 co 
u= f u, (A) sin Aédd, 
0 


(10) 
0 
C(O) = Ve (a, Z) sin Aada 
Q 


3 oa 
v= 7 fe (A) sin Aéd), 
i) 
A ql) 
v,; (A) iG (a,Z) sin ada 
te) 


560 EIGHTH PACIFIC SCIENCE CONGRESS 


n¢ oe) 
CG i» f 
poly, (eS a fetes sin rEdd, 
0€ i f 
e (12) 
y (Xr) = i 26 sin Nada. 
9 Oa 
Next assume for the wind stress 
Ve 216 i) een (13) 
woe ae (A) sin Aéd 
0 
and 
oO 
OU } 
Ee (A) ={(-4 =) sin Nada 
0 a 
L/D, 


= 7 sin A\ada 
0 


1 — cos(AL/D 
= (14) 
if 7 is independent of x. 
Substituting (19), (11) and (12) into (8) and writing 


Me A dy = (15) 
the two equations (8) are combined into 
p ow (2 4 2n%i) W fl Wes GO 16 
See (ON rt — = 
Bade eed » Sin PD), y On 


and the conditions to be satisfied along the boundaries now become 


Hse ated Nunes dw i 1 — cos (AL/Ds) -_ a7) 


dz DN 
and 


z=h: W = 0. (18) 
‘The solution of the equation (16) subject to the conditions (17) 
and (18) is 
aoe h p, 2 2772 z y 
ion m8y (X) (a as HVA he See) 
(A? + 2771)o sin oD, cosh (\/n2 + 272i h/D,) 


Mis VW TNS Aare ee 
gy A yee hose) ny 2 ae 


\J 2 2775 r cos h (\/d2 + 272i h/D,) 
(19) 


THEORY OF UPWELLING AND COASTAL CURRENTS 561 


{f we separate the real part P of \/\? + 2772 from the imaginary part 
Q, we have 


ES J (\/r4 + 4n74 + A*)/2 v= | (QVNE Ab Bae 3 W/Z 

(20) 

Thus the real part of \/A? + 27% is always greater than z. Hence, if 

the depth of the sea is sufficiently large (h/D, > 2), the expression 
(19) can be given very accurately by 


W = agy (A) Be ay 
(2 a0 2772)u sin bD;, 


i7D, 1 i 1 — cos (AL/D,) Opera ie 
JL NE x (21) 
Now we have, for the vertical component w, 
mw =O sep = Oe S10 (22) 


since there can be no vertical motion on the surface and bottom of the 
sea. Integrating (2) with respect to z from the surface down to the 
bottom, we have 


3 {: + a 
ea |) YC S00 |\ SS 
Ox 0 z—0 
h 


This means that the integral Sua 


is independent of x, or therefore a constant. But as this integral must 
vanish directly on the coast or at x = 0, we must have 


bh 
uae = () (23) 
0 


always. Integrating (21) with respect to z from 0 to k and equating 
the real part of the resulting equation to zero, we have 


() ’ x7/ pw 1] — cos (AL /D,) 
Hs 
? le Qi he A 
BC pee? ) tee (24) 


This determines the relation between the wind stress 7 and slope of the 
sea surface induced by the former. Substitution of (24) in (21) gives 
u,, and v,. The substitutions of u,, v, and y(A) thus obtained into 
(10), (11) and (12) give wu, v and the surface slope 0¢/0é. The vertical 
velocity w can be derived from the equation of continuity (2) as 


562 EIGHTH PACIFIC SCIENCE CONGRESS 


Z 


pent ac 0) i) udz (25) 
Ox 0 : 2 ; 


3. UPWELLING IN A DEEP SEA 


When the sea is sufficiently deep and the ratio h/D, increased in- 
definitely, we have from (24) 
yO) 0 (26) 
and (21) becomes 


17D Ae = cosy (NIE/ DD) 
SS a ea led 


YS ee oy ee (27) 
N/ NEw nr 
Then we have 
ey | eae ale 
U(x,z%) = po sin om (A, 2) R (A, x) dr (28) 
Q 
mn 2rr co 
acd f N (2) R (a,x) da (29) 
0 
D co 
2 2ar mae NEE, 2) Saco (30) 
ce) po sin ol Di . 
where 
Ov cos(Oz Dy we sin(Oz 7D) ia. 
vie rn 
P? = Q? 
P DN Oo 1D), 
INI Os, 2) = pa ee i a Ane) pe ern ie (32) 
P? — (OP 
LL(A,2) = if 
2PQ | cos (Qz/D,)e-P2/D, — I } + 2 — Q* sin (Qz/D,Je P42. 
(P+ OP (33) 
18 (A, x) ==" Sin) (ax/D,)} ita eee (34) 
S(A, x) = cos (Ax/Dy){1 — cos (AL/D,) } (35) 


and P and Q are the real and imaginary part of \/A2 + 272: whose 
expressions are given by (20). 


These results show that, by the effect of the wind blowing parallel 
to the coast, we can expect a vertical circulation in the plane perpen- 


THEORY OF UPWELLING AND COASTAL CURRENTS 563 


[ne 


dicular to the coast in addition to a coastal current parallel to the 
direction of the wind. The vertical component of this circulation evi- 
dently represents the upwelling. 

From the expressions (28), (29) and (30) for u, v and w, it can be 
expected that the horizontal velocity of the water in this process is 
approximately D,/D, or \/A,/A, times as large as the vertical velocity. 
This result will be very useful in estimating the approximate speed of 
upwelling. But this kind of vertical circulation can be noticed best 
in the case of a very deep sea where there is very little current produced 
by the slope of the surface of the sea. 


If we define a function ¥ (x,z) as 


(oa) 


GR f Srl gee eos ULE Ne NP 
poe. A/S 2 


(86) 


we can show that this is the stream function in the plane perpendicular 
to the coast and u and w are given by 


ov ow 
(Dea ries : v= — 3 
OZ Ox (37) 
so that any curve 
W (x,z) = constant 


represents a stream line. 


4. A NUMERICAL EXAMPLE 


So far the author has elucidated the process of upwelling in a quan- 
titative manner and obtained the expressions representing the motion 
of water produced by a wind blowing parallel to the coast in a belt of 
finite width. The stream-function w (x,z) can be computed from the 
formula (36) for any distance x/D, and for any depth z/D, below the 
sea surface where D, and D, are the distance and depth specifying the 
intensity of the horizontal and vertical mixing respectively. The result 
of computation of the stream function is given in the Table I and illus- 
trated by the diagram in Figure 2. ‘The unit is given by 


canme 10-+ 
po sin. cr) 
From the table and diagram it can be easily shown that the vertical 
circulation is most strongly developed close to the coast and in the upper 
layers of the sea directly below the surface swept by the wind. An in- 


564 EIGHTH PACIFIC SCIENCE CONGRESS 


tense upwelling can be seen in the belt within 0.5D, from the coast-line 
and the stream-lines go down gradually outside the wind zone. This 
means that beyond the wind zone there occurs the process of sinking. 

The fact that the expressions for the velocity components all in- 
clude sin ¢ in the denominator shows that the lower the latitude the 
more intense will be the process of upwelling. Perhaps the strong 
upwelling off the Peruvian coast may be ascribed to this theoretical 
result. ae 
It will be interesting and useful to compute the magnitude of the 
off-shore currents and the velocity of upwelling from the stream-function 
given by (36) and to compare them with the values formerly estimated 
from various sources. 

It is of course not easy to estimate the magnitude of the coefficients 
of mixing. ‘The vertical mixing coefficient may be estimated at some- 
thing like 1000 c.g.s. If we adopt this value, D, is about 162 meters 
for a latitude of 30° N. ‘To estimate A, is even more difficult. But 
actual oceanographic observations show that 4,/A, = 10° approximately. 
This means that D, is just about 1000 times as large as D,, cr 162 kilo- 
meters. Furthermore, we do not know much about the width of the 
coastal wind belt. In this computation, the author tentatively assumed 
L = 2.0944 x D, that is, about twice as large as D,; or at 339 kilo- 
meters. 

It will be still more difficult to estimate the wind velocity of the 
northwesterlies prevailing off the coast of Southern California in the 
earlier summer months. The author took ; = 1 cg.s. ‘This corre- 
sponds to a wind velocity between 5 and 6 m/s. If we consider the 
upwelling off the coast of southern California and take 6 = 30° N, 
we have 


Se So 0 wae 


From the table we can compute the average velocity between the surface 
and the layer 0.2D, deep by 


oie 
SoeTEN) Bie volar citigs eee 
po Sin db Az 0.2D, 


= 3.35 cm/sec (offshore) 


This is the maximum velocity of the offshore current in the layer be 
tween the surface and the 32.4 meters level. 

The maximum vertical velocity can be estimated in a similar way, 
Viz., at 


THEORY OF UPWELLING AND COASTAL CURRENTS 565 


ant At 0.083 
Se CG $2 108 cE Be 
po sin & Ax 1 X <4D, 3.14 x 10-3 cm/sec (upward) 
= Zhi) aii. 


This speed of upwelling is just about 80 meters per month. 

G. F. McEwen (1929) estimated the speed of upwelling off the coast 
of Southern California at about 10-20 meters per month. The present 
result appears to show a speed a little too high, but may be suggestive 
of the order of magnitude of ascending motion in the process of up- 
welling. 

From the diagram in Figure 2, we can see that the water mass par- 
ticipating in this process comes up from the layers from z = D, to 1.5D, 
or more. If we take D, = 162 m, the layers from which the upwelled 
waters originate are located somewhere around the layers 200 meters or 
deeper. This also agrees with Sverdrup-Fleming’s estimation derived 
from practical observations off the coast of Southern California. 


5. COASTAL CURRENTS 


In addition to the circulation in a vertical plane perpendicular to 
the coast, we have a current parallel to the coast. The author thinks 
that this will be another subject of major interest. 

The model treated in this research is very simple, the winds being 
assumed always to blow parallel to the coast. But it may be considered 
that a certain pattern of water motion will always correspond to the 
wind of any direction. ‘The investigation into this problem seems sug- 
gestive of the explanation of several facts observed close to the shore 
in relation to the motion of the water. 


6. ACKNOWLEDGMENTS 


The author hereby expresses his sincerest appreciation to Dr. Dale 
F. Leipper, Head of the Department of Oceanography, Agricultural and 
Mechanical College of Texas, who encouraged the author in carrying 
out the present research and publishing the result during his stay in the 
department. He is also much obliged to Mr. Robert O. Reid and 
Dr. John T. Hurt who kindly discussed on the result. 


REFERENCES 


DEFANT, A. 1936. Das Kaltwasserauftriebsgebiet von der Kiiste Stidwest- 
afrikas—Landerkundliche Forschung, Festschrift Norbert Krebs zur Vol- 
lendung des 60, Lebensjahres dargebracht, p. 52-66. 

1952. Theoretische Uberlegungen zum Phanomen des Windstaus 
und des Auftriebes an ozeanischen Kiisten. Deutsche Hydrographische 
Zeitschrift. Bd 5, Heft % pp. 69-80. 


566 EIGHTH PACIFIC SCIENCE CONGRESS 


GUNTHER, E. R. 1936. A report on oceanographical investigations in the 
Peru coastal current. Discovery Repts. Vol. 13 pp. 109-275. 

McEwen, G. F. 1912. The distribution of ocean temperatures along the 
west coast of North America deduced from Ekman’s theory of upwelling 
of cold water from the adjacent ocean depths. Internationale Revue des 
Gesamten Hydrobiologie und Hydrographie. Bd 5, pp. 248-286. 

1929. A mathematical theory of the vertical distribution of tem- 
perature and salinity in water under the action of radiation, conduction, 
evaporation, and mixing due to the resulting convection. Scripps Inst. 
Oceanogr. Bull., Tech. Ser. Vol. 2, No. 6. pp. 197-306. 

SVERDRUP, H. U. 19380. Some oceanographic results of the Carnegie’s work 
in the Pacific—The Peruvian Current. Amer. Geophys. Union Transac- 
tions, pp. 257-264. 

1938. On the process of upwelling. Journal of Marine Research. 
Vol. 1, pp. 155-164. 

SverDRuUP, H. U.. and R. H. Fupmine. 1941. The water off the coast of 
Southern California, March to July, 1937. Scripps Institution of Ocea- 
nography, Bulletins. Vol. 4, pp. 261-378. 


567 


THEORY OF UPWELLING AND COASTAL CURRENTS 


| @le- | ke 1) T= ap | ee geet le ocp | See bt 
| ebb—- | ees—- | er8—- | sas— ws— s,s L8G Lee— (ree eo | 
| 88L— LE8 — ec8— | 898— 3o8— 269 — 628 — | 0 Es 
L6L— | 9S8— S18— 068 — G98 — 86g — Zee— 0 | wt 
808— 698 — 188 — 168 — TL8— oo9- | res— 0 - eo | 
| 88L— 878 — 998 — L98— h8— gLg— | Tes— | 0 ' 90 
289 — PEL — ogL— 8hL— | GBL— 66h— | LLB — 0 0s | 
| 93r— cep — Gor y= | Cir = | ite 0 aD 
0 0 0 0 | 0 0 0 0 0 
| | | “ale 
9L9°T | 966°T LITT 8&3°0 | 6ss'°0 6100 : 968T'0 0 | q/x 
| SS 
g@ UIS do ae = 
s-OT 1208 x 
LSVOD FHL OL UVINOIGNAdYad ANVIdG TWOILYGA GHL NI NOWONOAY WVGULS AHL dO SAN IVA TVOTHGWoON 


I WIlaVvib 


aN ah sae ea 


THEORY OF UPWELLING AND COASTAL CURRENTS 569 


COAST 


WIND BELT 
SCHEMATIC DIAGRAM OF WIND TO COAST RELATIONSHIP 
OR THE DEVELOPMENT OF UPWELLING IN THE NORTHERN HEMISPHERE 
FIGURE | 


570 EIGHTH PACIFIC SCIENCE CONGRESS 


¢ NY SK > 
DISAROLE o 
R SSS S> Wl 


ND ZONE L 


ae ae 


Z=0 
(SURFACE) 


Z#12D, 


Zz 


UPWELLING AS INDUCED BY A WIND PARALLEL TO THE COAST 
(ILLUSTRATED BY THE STREAMLINES IN THE VERTICAL PLANE PERPENDICULAR TO THE COAST) 


FIGURE 2 


80'UO- 
20°0- 
90'0- 


SURFACE WATERS OFF THE CANADIAN PACIFIC COAST 


Bye LuLty and LAS Es Dor 


Pacific Oceanographic Group, Nanaimo, B.C., Canada 


In 1950 the Pacific Oceanographic Group undertook an explora- 
tory investigation of the physical oceanographic conditions in the Paci- 
fic Ocean within some 300 to 650 miles west of the Canadian coast 
(Figure 1). Four surveys were completed, in August 1950, May 1951, 
August 1951, and March 1952. ‘These included serial observations of 
temperature and salinity to depths variously of 900, 1000, and 1200 
metres on the several cruises. Although the four cruises were observed 
in different years it is convenient in some cases to regard the data in 
sequence of seasons. 


STRUCTURE AND PHySICAL PROPERTIES OF THE WATER 


The most conspicuous characteristic of the water structure of this 
area is the presence of the distinct layers, or zones.* “These are con- 
veniently illustrated by plotting the properties as functions of the loga- 
rithm of depth as shown in Figure 2 (Tully, 1948, 1953). In this figure 
the surface zone is defined by the logarithmic salinity-depth relation ex- 
tending to about 80 metres, the lower zone by the logarithmic relation 
below 180 metres, and the salicline is regarded as a transition zone be- 
tween these two principal water masses. A similar but not concurrent 
structure occurs in the temperature. 

In winter (March 1952) the properties of the upper zone approach 
vertical homogeneity due to cooling at the surface and vigorous mixing 
by winter storms. At this time the temperature and salinity structure 
correspond. As vernal heating progresses (May 1951) the surface waters 
are warmed and a shailow thermocline develops which gradually deep- 
ens and becomes more pronounced as summer progresses (August 1950, 
1951). With the advent of autumn weather and storms in September, 
the surface waters are cooled and the winds cause mixing to greater and 
greater depths. In this process the thermocline sinks, becoming less 
distinct, until late winter (March) it coincides with the salicline. 

During the summer the fresh water from precipitation and land 
drainage is conserved near the surface in the presence of light winds 


? Tully, in his discussion of the oceanography of Alberni Inlet (1949) has used the term 
‘zone’ to designate the principal layers in the water structure. This term has the advantage 
of being more specific in its reference than “layer’’, which is used variously to designate hori- 
zontal strata of any order. 


5i1 


572 EIGHTH PACIFIC SCIENCE CONGRESS 


and strong thermal gradients. In the winter there is much greater pre- 
cipitation but the fresh water is mixed to great depths by the violent 
winter winds, which also reduce the thermal gradient. 

The seasonal variation occurs only in the surface zone, and never 
extends below the salicline. Thus the properties of the water at this 
boundary are associated with the extreme of winter conditions. Due 
to the strong salinity gradient, it is the zone of permanent stability 
maximum below the depth of seasonal influence. There is always a 
temperature discontinuity of some degree coincident with the salicline. 
Usually there is a small negative (decreasing) temperature gradient; 
however, there were positive (increasing) gradients in the northern 
part of the area in 1950, and in the southern part in 1951. In some 
cases these amounted to more than a degree Centigrade and were stable 
in the presence of large salinity gradients. 

Beneath the salicline and extending to the maximum depth sam- 
pled, is the lower zone, where both the temperature and salinity gra- 
dients show marked regularity. In fact they fitted the logarithmic struc- 
ture suggested by Tully (1953) within the limits of observations. 

As shown in Figure 3 the surface salinity is lowest at the ccast 
and increases seaward throughout the area, and in all seasons. The 
lowest salinities appear to be associated with Juan de Fuca Strait, and 
Queen Charlotte Sound, and suggest outflows of coastal waters. The 
runoff from the land is a substantial factor in reducing the salinity of 
the surface zone. Even in March when the offshore region was essen- 
tially homogeneous to 100 metres depth, appreciable gradients were 
observed near the coast. Along Vancouver Island the local runoff is 
a maximum in the winter (Pickard and McLeod, 1953). However, the 
greatest runoff from the coast as a whole occurs in June, when the 
large mainland rivers flood due to melting snow in the mountains. 
Following these floods the fresh water influence is a maximum and 
extends far offshore. More detailed investigation immediately adja- 
cent to the land would undoubtedly reveal a complex series of systems, 
varying with tide, as well as the local runoff and discharges from the 
major drainage systems. 

In the offshore region the salinity was relatively constant during 
each survey, but changed significantly from summer to winter. In the 
summer, the fresher waters tend to be conserved near the surface, hence 
the salinity is less than in the winter when the waters are mixed to great 
depth by the violent storms. In this region the vertical salinity gradient 
is small at all times, but tends to be greater in summer than in winter. 
The summer gradients are presumably due to the great precipitation 
in this area, and are preserved under conditions of strong thermal! 
stability. 


SURFACE WATERS OFF THE CANADIAN PACIFIC COAST 973 


The surface temperatures observed during the four cruises are 
shown in Figure 4. During the summer the water along the coast is 
cold, particularly in the approaches to Juan de Fuca Strait. This cold 
coastal belt corresponds to the region of fresh water influence shown 
in the previous figure. The temperature of the surface zone increases to 
seaward. 

In August 1950 there were several clouds of warm water lying in 
a band extending due south from the Queen Charlotte Islands and be- 
coming warmer towards the southern limit of the area. Thus the coldest 
and warmest regions were contiguous. West of the warm belt the 
water became colder in all latitudes, the minimum temperatures being 
similar to those in the approaches to Juan de Fuca Strait. 

In August 1951 the characteristic band of cold coastal water was 
again present, and the temperatures increased to seaward. However, in 
the offshore regions the isotherms crossed the area essentially normal 
to the coast. ‘The principal gradient instead of being east-west as in the 
previous year, was practically north-south. Although the average tem- 
perature was two degrees higher in 1951, the range was smaller. This 
picture is a distinctly different type of situation from that observed 
in the previous year. 

It is interesting to note in passing that during August 1950 vast 
numbers of vellela were observed throughout the entire areas of this 
survey west of Longitude 130°W. Large numbers were visible at all 
times, and they frequently occurred in such concentrations as to look 
like great streaks of foam on the water. By the crudest of calculations 
it was estimated that the number in the area between Longitude 
141°W and the coast would be of the order of 10° to 101, and it is 
not known how much further they extended in all directions. In 
August 1951, on the other hand, when the water was warmer, not a 
single specimen was observed throughout the cruise. 

In winter the warmest water was along the shore, and became 
colder to seaward. It appears likely that this condition is typical of 
winter and spring. 

The dynamic topographies of the sea surface shown in Figure 5 
indicate that the currents are weak and variable. In the summer the 
currents do not exceed two miles a day (4 cm./sec.). They are so sinu- 
ous that there appears to be no resolution of flow in the southern 
part of the area. However, there is a general tendency for water to 
enter from the south and west, and leave to the north. This results 
in some degree of convergence and acceleration towards the northern 
limit of the area. The two August and the May surveys were made 
during periods of northwest winds which oppose and retard the net 
flow. The northward tendency is much stronger in the winter (March 


574 EIGHTH PACIFIC SCIENCE CONGRESS 


1952), attaining four miles a day (8 to 10 cm./sec.). This flow was 
accelerated by southeast winds, which are dominant in winter. 

In the study of the data it was found that the currents decreased 
with depth to about half the surface value at 300 metres. Below this 
depth there was little or no intrusion of water from the west, so that 
there was only a slow northward movement. 

It was considered instructive to examine the data by the method 
of isentropic analysis (Rossby, 1936; Montgomery, 1938), which does 
not assume gradient flow. However, it was kept in mind that the pro- 
cess of vertical mixing, which would limit the validity of this ap- 
proach, is likely to be strongest near the coast. The principal patterns 
of flow suggested by the isentropic charts was similar to those shown by 
the calculated dynamic topography, although considerable differences 
in detail were overlooked. However, there was no more definition of 
flow in these isentropic analyses than in the gradient studies. It was 
evident that in the summer the area was dominated by eddies or very 
slow indeterminate movements, with no more than a general tendency 
northward. 

When surface waters are carried seaward by winds from the north- 
west they are replaced in part by the upwelling of deep waters along 
the coast. This upwelling has been advanced by a number of authors 
as an explanation of the cold saline waters found along this coast in 
the upper zone, during the summer (Igelsrud et al., 1936; ‘Tully, 1938: 
Pickard and McLeod, 1953) and by Sverdrup (1941), who observed simi- 
lar phenomena along the California coast. 

Figure 6 shows the disposition of isotherms and isosalines along 
a line normal to the coast of Vancouver Island, during each of the sur- 
veys. The March 1952 cruise followed a period of fairly strong varia- 
ble winds which were predominantly southeast. There is no indication 
of upwelling associated with these data. The other three cruises were 
preceded by predominantly northwest winds, and show a distinct rise 
of the isotherms and isosalines adjacent to the coast. ‘This tendency 
is most marked in August 1951, when the northwest winds were most 
prolonged and consistent. 

In the classical example of upwelling found off California, the 
offshore movement of the waters results in the accumulation of light 
surface water in a narrow stream parallel to the coast, and some dis- 
tance from it. Off the British Columbia coast the northwest winds 
oppose the prevailing current and no coastal stream is developed. How- 
ever, the offshore tendency persists and results in a degree of upwelling. 
As the water upwells in summer it is diluted by coastal drainage, warmed 
by insolation, and dispersed in a narrow north flowing coastwise cur- 
rent which has been described by Tully (1938). ‘Vhis current loses 


SURFACE WATERS OFF THE CANADIAN PACIFIC COAST 575 


water to the coastal region because of the offshore component of the 
summer winds. This seaward transport is evidently greater than the 
supply from runoff so that there is a degree of upwelling. This results 
in a band of cold water along the coast, which would be as saline as the 
California coastal water, if it were not diluted by the great summer 
runoff. 

In the winter the prevailing southeast winds impart an onshore 
component to the motion, the light water is confined in a narrow region. 
close to the coast, and the surface waters are depressed. ‘This is evi- 
denced in the accumulation of low salinity warmer water along the 
coast at this time. ‘The seasonal effect is noticeable here in that the 
coastal water, although warmer than that to seaward, is colder than 
during the summer. 


ORIGINS AND CIRCULATION OF THE WATER 


The general circulation system of the north Pacific Ocean (Figure 
7) has long been established by the Pilot Charts of the U.S. Hydrograph- 
ic Office. The west wind current, called the Sub-Arctic Current by 
Sverdrup (1942) is the wind driven drift of surface water eastward 
across the Pacific Ocean between Latitudes 40° and 50°N. As this cur- 
rent approaches the coast of North America it divides. Part turns north 
to form the Alaska Gyral, and part turns south to form the California 
Current. 

The Marine Lite Research Program from Scripps Institution of 
Oceanography has been studying the California Current in a series of 
near-monthly cruises since 1949. Fortunately their Cruise 17 coincided 
with the August 1950 survey and it was possible to combine the dynamic 
charts as shown in Figure 8. This chart covers an enormous area, and 
is the first dynamic picture of the current system off the North Ameri- 
can coast. It is a spectacular confirmation of the previous conclusions 
from the Pilot Charts. 

It is regretted that the other surveys by both agencies were not co- 
ordinated more closely so that a seasonal, and annual series of such 
diagrams could have been prepared. However, this example shows the 
position of the area of the present studies in relation to the whole cur- 
rent system, and allows the interpretation of the observations on a 
broad basis. 

Evidently the area off the coast of British Columbia is in the region 
of the divergence. Because of this, it is a region of eddies, or slow 
and indefinite currents. Furthermore, it is extremely sensitive to small 
changes in the route of the trans-ocean current. It may be subject to 


576 KIGHTH PACIFIC SCIENCE CONGRESS 


northern or southern flow as the point of division of the major current 
shifts south or north. 

Previous studies in the northeast Pacific Ocean have examined 
small parts of the system. ‘The U.S.S. Bushnell (Sverdrup et al., 1942) 
crossed the Sub-Arctic Current from the Aleutians to Hawaii. U.S.S. 
Oglala (Goodman and Thompson, 1940) crossed from the Aleutians 
to Juan de Fuca Strait. The International Salmon Commission (Mc- 
Ewen e¢ al., 1930) examined three sections normal to the coast in the 
Gulf of Alaska. Each of these studies shows part of the general picture. 
When they are considered together it is evident that there is a con- 
tinuous circulation of low salinity coastal water, in a counterclockwise 
direction all around the Gulf. Part of this stream is dissipated through 
the Aleutian Islands into the Bering Sea and the remainder moves 
southwards to join the continent-bound Sub-Arctic Current. The low 
salinity surface zone water found throughout the Gulf of Alaska is pro- 
bably due to the conservation and re-circulation of a substantial part 
of the coastal water, as well as to the high precipitation associated with 
the semi-permanent Aleutian low pressure area. 

Thompson and Van Cleve (1936) have deduced from drift bottle 
experiments that in March 1932 the division of the Sub-Arctic Current 
to form the Alaska Gyral and the California Current occurred well 
south of Latitude 47°N. They point out that this conforms to the la- 
titude of the division between residual winds, with a northerly and 
southerly component, as calculated from the Pilot Charts. The result- 
ing current along the British Columbia coast in the winter agrees well 
with this. 

From drift bottle experiments during the summer of 1931, Thomp- 
son and Van Cleve concluded that the division of the currents occurred 
further north at Latitude 50°N, which again agrees well with the divi- 
sion of winds deduced from the Pilot Charts. This conclusion is also 
supported by Tully’s (1938) examination of the waters within 100 miles 
of Vancouver Island in 1936. ‘These indicated that the general flow was 
southeasterly and suggest that the division of the great current was 
north of Latitude 50°N in that summer. ‘These early observations ap- 
pear to contradict the findings of the 1950 and 1951 studies where the 
general movement appears to be northward. However, when these are 
viewed as part of the overall picture (Figure 8) it is evident that there 
is no contradiction. The southward movement occurs near the coast of 
Vancouver Island, while the northward tendency is further offshore, 
and becomes stronger to northward. 

These earlier studies are not complete enough to describe the 
character and location of the great divergence with any precision, and 


SURFACE WATERS OFF THE CANADIAN PACIFIC COAST 577 


it cannot be determined whether there are significant differences be- 
tween them and the present surveys. 

However, it is evident that there are important differences be- 
tween the conditions observed in 1950 and 1951 (Figure 5). The cal- 
culated gradients and isentropic analyses suggest that the division of 
the Sub-Arctic Current was further south in 1951. An attempt was 
made to relate this difference with the atmospheric pressure systems 
in the area. However, these showed that the division between the winds 
with a southerly component and those with a residual northerly com- 
ponent was further south in 1950. Thus the differences between these 
two years observations are not immediately apparent in the wind fields. 

Considering the character and magnitude of the system (Figure 8) 
it may be anticipated that the division of currents will shift north and 
south by several degrees of latitude from year to year. Such changes 
are small, but their effect is enormous in the strategic area off the Bri- 
tish Columbia coast. It cannot be said that the early data showing a 
southward flow near the shore are inconsistent with the present data 
indicating a northward movement further offshore, or that the change 
of character of the currents and properties from year to year are ano- 
malous. The present problem is to determine the cause, sequence, and 
nature of these changes. 


REFERENCES 


GOODMAN, J. and T. G. THOMPSON. Characteristics of the waters in sections 
from Dutch Harbor, Alaska to the Strait of Juan de Fuca, and from 
the Strait cf Juan de Fuca to Hawaii. Univ. of Wash. Publ. in Ocea- 
nography, 3 (8) 81-103, 1940. 

IGELSRUD, I., R. J. ROBINSON and T. G. THOMPSON. The distribution of phos- 
phates in the sea water of the northeast Pacific. Univ. of Wash. Pudl. in 
Oceanography, 3 (1) 1-34, 19386. 

McEwEn, G. F., T. G. THOMPSON and R. VAN CLEVE. Hydrographic sections 
and calculated currents in the Gulf of Alaska, 1927 and 1928. Rep. Int. 
Fish. Comm., 4, 86, 19380. 

MoNTGOMERY, R. B. Circulation in the upper layers of the southern north 
Atlantic deduced with use of isentropic analysis. Papers in Phys. Ocea- 
nog. and Meteorol. Wood’s Hole Oceanog. Inst., VI, 2, 55, 1938. 

PICKARD, G. L. and D. C. McLrop. The seasonal variation of the tempera- 
ture and salinity of the surface waters of the British Columbia coast. 
Journ. Fish. Res. Bd. Can., 10 (8) 1958. 

RossBy, C. G. Dynamics of steady ocean currents in the light of experimental 
fluid mechanics. Papers in Phys. Oceanog. and Meteorol. Wood’s Hole 
Oceanog. Inst., 5, 1, 1936. 

Scripps Institution of Oceanography. Physical and chemical data, Cruise 17, 
Marine Life Research Program, MS. 51-32, 1951. 

SverDRuP, H. U. and R. H. FLEMING. The waters off the coast of southern 
California. March to July, 19387. Bull. Scripps Inst. Oceanog., 4, 10, 
261-378, 1941. 


578 EIGHTH PACIFIC SCIENCE CONGRESS 


SVERDRUP, H. U., W. M. JOHNSON and R. H. FLEMING. The oceans, their 
physics, chemistry, and general biology. Prentice-Hall Inc. New York, 
1087, 1942. 

THOMPSON, W. F. and R. VAN CLEVE. Life history of the Pacific halibut. 
Rept. Int. Fish. Comm., 9, 184, 19386. 

TuLLy, J. P. Some relations between meteorology and coast gradient cur- 
rents off the Pacific Coast of North America. Trans. Amer. Geophys. 
Union, 19th Annual Rept., 1, 183-187, 19388. 

TULLY, J. P. Notes on the behaviour of fresh water entering the sea. Proc. 
Seventh Pac. Sc. Cong., Wellington, N.Z. 1949 (1952). MS. Rept. Pacific 
Oceanographic Group, Nanaimo, B.C., 1948. 

TuLty, J. P. Some characteristics of seawater structure. Proc. Eighth Pac. 
Se. Cong., Manila, 1958. MS. Rept. Pacific Oceanographic Group, Na- 
naimo, B.C., 1953. 


SURFACE WATERS OFF THE CANADIAN PACIFIC COAST a7T9 


LIST OP FELCURES 


Fig. 1.—Chart of the offshore waters of the Canadian Pacific Coast showing 
the courses sailed, and the stations occupied in May and August, 
1951. Observations were made along approximately the same lines 
in the other cruises, although the arrangement and numeration of 
the stations were different. 


Fic. 2—Examples of the characteristic temperature and salinity structure 
in the offshore region, off the Pacific Coast of Canada, at Latitude 
50°N, Longitude 1385°W (c.f. Figure 1). 


Fic. 3.—Surface salinity observed off the Pacific Coast of Canada. 
Fic. 4.—Surface temperatures observed off the Pacific Coast of Canada. 


Fic. 5.—Calculated geopotential topography of the sea surface (anomaly of 
dynamic height, metres) and implied gradient currents. Arrows in- 
dicate the direction of flow. The inset diagram shows the current 
speed in relation to the distance between isobars. 


Fic. 6.—Structure of the water off the Pacific Coast of Canada. Vertical 
sections showing the distribution of temperature (°C light lines) and 
salinity (S °/,, heavy lines) as observed on line A, normal to the 
coast of Vancouver Island during each o fthe four cruises. The 
location of the section is shown in Figure 1. 


Fic. 7.—-Schematic diagram of the surface zone circulation in the northeast 
Pacific Ocean. 


Fic. 8—Anomaly of dynamic height (metres) from the August, 1950 survey 
of the Pacific Oceanographic Group, and Cruise 17 of the Marine 
Life Research Program (Scripps, 1951). 


DR 


. 


ee 


si lath av teen) aa tee a 


a CN OHRERE | 
Pais Rania 


en ny 


AD Pact 4 tee 7 
: aud ¢ en"? Tee's ts 
b) Pega Be WHR it pa Woah 


i 


SURFACE WATERS 


s*c 


moter 


OFF THE CANADIAN PACIFIC COAST 


q- ENTRANCE 


581 


nw asd 


QUEEN 
9] cuarLorte 
OUND 


FIGURE 1 


TERPLRATURE SCALE 
= Lh 


is 
T i 


Stotion 39 


AUGUST ___1950 


Station C8 


MAY _1951 


Sol/nity 
Temperature 


Upper Lone sper Zone 


100 F rhermoctine 


Lower 


Winter 
Thermocline 


no 


fone lower Zone 


LiL 


ava 
Stotion Station C8 
AUGUST MARCH 1952 


Temperature 


Upper Lore Upper Zore 


Temperature 


Winter 
Thermocline 


lower Zone 


3 
SALINITY SCALE 


FIGURE 2 


5&2 EIGHTH PACIFIC SCIENCE CONGRESS 


MAY 


+ AuGUST 195! 


MARCH 1952 


FIGURE 


° us 30° 
CEN. 

120 > age) 

ZIV ES 

. we ass 


AUGUST 1951 


FIGURE 4 


(J) 


MAY ISI 


ns 


MARCH 1952 


SURFACE WATERS OFF THE CANADIAN PACIFIC COAST 583 


z061 HOUVH \ Is6l 4snony 


isst AVA 


1000 KLM 800 200 KLu oO 1c0O KLM €00 600 200 mt OO 
e780 B50 & omsmsnae 19 gs 0 9 es 7 6 5 Siswabenr 
Kal Se es 
i 50 n 
©. 23 
G4 2. 33.0) 
3324 
150) 
S a 
200] Bsn 
3c 
300) { 
a - 
E400 2400) 
3 e 5+)340 |x 
= o 
= = 
S50) E soo) 
3 - 
600) rll — 
700) 700 T > 
Pal 
Line A 
800 ~ 00; —}—+ 
lari AUGUST 1950 | Line A- MAY 1951 
wot 1M) Le | | aL 
DISTANCE FROM COAST DISTANCE FROM COAST 
4 200 Kim O KLM 600 400 KLM 200 
eR Bad Ce EES, 
Led 
50 ae © 
r 
oo 100) . = 
330, 
35 
cy Bees f 150) 
2 200) 
Bree) 
use 
300) IL Ht . 
3 3 
Fy ea 
= 400) 5 
2 3 
= So = 
= 
é 500) 
 500}—- TZ rf 
8 
60o}—} 600) 
T00r wey 
Se [s4z5|m 
C Ee 
800) co 
Line A 
MARCH 1952 
Ling A AUGUST I95! a 
en 


FIGURE 6 


584 EIGHTH PACIFIC SCIENCE CONGRESS 


SUBARCTIC 
CURRENT 


2 TO CALIFORNIA 
CURRENT 

—_ 

NORTH PACIFIC 

Hs 


dL 


CANADA 


FIGURE 8 


CIRCULATION NEAR THE WASHINGTON COAST * 


By Ciirrorp A. BARNES and RoBERT G. PAQUETTE 
Department of Oceanography 
University of Washington 
Seattle, Washington, U.S.A. 


INTRODUCTION 

The area covered in this paper is a section of the Northeast Pacific 
Ocean bordering the West Coast of North America between the paral- 
Jels of 44° and 51° North and extending 600 miles seaward (Fig. 1). 
The coast is mountainous and contributes considerable runoff to the sea 
from heavy precipitation in winter and the melting of the snow in early 
summer. ‘Two concentrated sources of fresh water are the Strait of 
Juan de Fuca and the Columbia River, which drain large inland areas. 
The Strait differs markedly from the river in that it is the mouth of a 
large tidal basin and is deeper than 100 fathoms for a considerable dis- 
tance inshore. As a result of the tidal action, its effluent has been 
considerably altered by mixing with the cold deeper water. 

The continental shelf, as measured by the 100-fathom contour, ex- 
tends about 40 miles offshore near the Strait of Juan de Fuca and nar- 
rows to about 20 miles both northward and southward. Beyond the 
slope, depths increase gradually to about 2000 fathoms. A number of 
‘seamounts rise from this deeper water, but the bathymetry of only a few 
has been worked out in any detail. 

The climate of the region is predominantly maritime with prevail- 
ing southwesterly onshore winds accompanied by heavy precipitation 
from autumn to spring. In summer considerable air flow is from the 
northwest and north and little precipitation occurs. 

The circulation of the Northeast Pacific is predominantly clock- 
wise to latitude 40° North, giving way to counterclockwise south of 50° 
North (Sverdrup, Johnson and Fleming, 1946). The colder water along 
the northern periphery of the main easterly drift in mid-ocean, the so- 
called Aleutian or Subarctic Current, splits in all ill-defined zone well 
seaward from the coast near 45° North, both orientation and position 
of the zone of divergence varying with the season. The northerly arm, 
the Alaska Current, recurves through the Gulf of Alaska; and the south- 
erly arm, the California Current, sets south well offshore at lower lati- 


* Contribution number 194 from the Department of Oceanography of the University of 
Washington. Technical Report No. 17, University of Washington and Office of Naval Research, 
Contract N8onr-520/III, Project NR 083-012, and Contract Nonr-477(01), Project NR 083-072. 


585 


O36 EIGHTH PACIFIC SCIENCE CONGRESS 


tudes. Oif the Washington and Oregon Coasts in winter, the Davidson 
Current feeds water northward inshore. The area studied, being an 
area of divergence, is characterized by weak and poorly defined currents 
which are easily influenced by temporally changing wind patterns and 
local bathymetric irregularities. 

The measurements to be reported in this paper were carried out 
with the research vessel M. V. BROWN BEAR during seven offshore 
cruises in the spring and summer months of 1952 and 1953. Because 
of the anticipated variations of currents with time, determinations of 
circulation patterns by dynamic topographies were supplemented by use 
of the Geomagnetic-Electro-Kinetograph (G.E.K.). It was quickly dis- 
covered that the latter instrument was measuring currents (or effects) 
very much greater than those from dynamic topographies, and showing 
a rotary variation with time. In recent cruises therefore, several time 
studies have been made to discover the nature of the rotary variations. 

Further evidence of the reality of the rotary variations was ob- 
tained by direct current measurements from an anchor station on Cobb 
Seamount, a seamount rising very sharply from 1500 fathoms depth to 
within 16 fathoms of the surface, and located approximately 270 miles 
west of the Washington Coast (46°-45.5’N, 130°-46.3’W). ‘The results 
from two such time studies are presented in some detail. 

Another sphere of activity has been a detailed investigation of the 
outflows of the Strait of Juan de Fuca and the Columbia River, par- 
ticularly the latter. “The outflow of the Columbia has been traced for 
over 200 miles seaward. The position and structure of this long plume 
of less saline water is of interest as an indicator of offshore circulation 
and mixing, and because of the possible influence it may exert in di- 
recting the salmon which migrate to and from the river. 

The circulation near the coast of Vancouver Island and the mouth 
of the Strait of Juan de Fuca has been discussed by Tully (1938, 1941) 
on the basis of salinities and temperatures measured near the coast, 
often in shallow water. ‘These measurements as well as those of Mar- 
mer (1926) made from Swiftsure Lightship establish the direction of 
outflow of the Strait of Juan de Fuca as northwestward, very close and 
parallel to the coast of Vancouver Island. Tully further shows the 
accumulation of fresh water along the coast due to the prevailing south- 
westerly winds in spring and early summer, with a gradual transition 
to a condition of upwelling in a narrow band along the coast under 
influence of the northerly winds of late summer. He interprets the 
resulting dynamic topographies as representing northwesterly flows close 
to the coast in early summer and a reversal in direction in late summer. 
The latter flow, however, is overcome by the generally northwesterly 


CIRCULATION NEAR THE WASHINGTON COAST D387 


outflow of the Strait of Juan de Fuca near the mouth of the Strait. 
Similar conclusions as to the seasonal shift in currents were reached by 
Thompson and Van Cleve (1956) from drift bottle experiments com- 
menced about 80 miles off the Canadian Coast. These authors also 
relate the change in direction of flow during the summer to a change 
in wind pattern. Some dynamic sections along the coasts of Washing- 
ton and Oregon are presented by Sands (1937), but these are too few 
in number and too close to shore to correlate with the present work. 

Farther offshore, the circulation off the Canadian Coast has been 
studied by Doe (1952) and Goodman and Thompson (1940) in two 
sections, from the Strait of Juan de Fuca to Dutch Harbor, and from the 
Strait of Juan de Fuca to Hawaii. Still farther offshore, the Carnegie 
Cruise VII (Fleming, 1945) established the gross structure of the east- 
ward flowing Aleutian Current and the beginning of its separation into 
southeasterly and northeasterly branches. ‘Iwo or more sections have 
also been made by Scripps Institution of Oceanography, the U. S. Fish 
and Wildlife Service, and the U. S. Navy Electronics Laboratory, but 
the results are unpublished. ‘Yo the south, Scripps Institution of Ocea- 
nography have studied the coastal currents very intensively and their 
cruises have occasionally come as far north as the Columbia River. 
Thus the details of the circulation near the Washington Coast are little 
known. 

With respect to the G.E.K., as used in areas of weak and poorly 
defined currents such as this, there is little published. The interpreta- 
tion of the results as currents is in some question, as is the “K’’ factor. 
The apparently rotary current changes observed, although indicated by 
von Arx (1950), have not been carefully analyzed, probably because in 
areas Of higli currents they are relatively less important. Oceanogra- 
phers at Scripps Institution of Oceanography are known to be working on 
this problem. For analysis of the rotary current changes in the deep 
sea, One must turn to the direct measurements made from anchored 
vessels, the BLAKE in West Indian waters (Pillsbury, 1891), the 
MICHAEL SARS (Helland-Hansen, 1930), the METEOR (Defant, 1932), 
the ALTAIR (Defant, 1940), and the ARMAUER HANSEN (Ekman, 
1953). In all of these, the uncertainties due to the motion of the an- 
chored vessels weaken the validity of the conclusions. However, rotary 
current changes do occur and these changes apparently contain com- 
ponents of tidal and inertial periods as well as random fluctuations. 
The existence of rotary currents of tidal period in shallower water is 
well established, and Gustafson and Kullenberg (1936) have demon- 
strated an excellent example of inertial rotations in the Baltic. 


588 EIGHTH PACIFIC SCIENCE CONGRESS 


WATER PROPERTIES AND CIRCULATION 

As others have suggested, the horizontal gradients of temperature 
and salinity may be generalized in two representations, one for spring 
and early summer and one for late summer. ‘The winter conditions 
have not been studied. Figures 2 and 3 show the horizontal distribu- 
tion of surface temperature and surface salinity in April-May, 1953, the 
data having been smoothed to eliminate local fluctuations. ‘The piling 
up of warm surface water along the coast of Vancouver Island is evident. 

Figures 4 and 5 show the conditions in July 1952. Here the break- 
down of spring conditions is just beginning to appear. The water 
which earlier increased in temperature essentially up to the coast is now 
showing a wide band of somewhat cooler water near the coast. The 
effect is more marked if vertical sections of temperature are plotted, 
demonstrating the decrease in thickness of the surface water layer on 
approaching the coast. Close to the mouth of the Strait of Juan de 
Fuca, the effect is accentuated at the surface probably because of the 
mixing processes of tidal flow as well as the tendency of upwelling 
deeper water to appear far within the Strait. 

Figures 6 and 7 (smoothed somewhat) show the conditions in Sep- 
tember 1953, farther south. Although not completely comparable with 
the above data because of the different areas covered, there is still sur- 
ficial evidence of upwelling in the region near the mouth of the Strait 
of Juan de Fuca. Along the Washington Coast south of the Strait, the 
subsurface temperature structure indicates the presence of upwelling 
which, however, does not reach the surface because of a blanketing layer 
of less saline water. ‘This is especially so in the vicinity of the Colum- 
bia River mouth where the surface waters flowing seaward are rapidly 
replaced by river effluent. Along the Oregon Coast south of the Colum- 
bia, low temperatures characteristic of upwelling are again apparent at 
the surface. 

Figures 6 and 7 also show the first results of a detailed study of 
the Columbia River outflow. The plume of water having a salinity 
less than 32.0°/,, is seen to extend over 200 miles to the southwest. 
Associated with the lower salinity is a somewhat higher temperature. 
The position of the wake stream is in itself evidence of the generally 
southerly set of the currents in this region during the summer. At the 
velocities indicated by the dynamic topography for the general area, 
the time required for the water to travel to the outer limits of the 32°/,,, 
isosal is of the order of one to two months, and hence the position of 
this limit establishes a minimum value for the integrated currents for 
at least this period. 


CIRCULATION NEAR THE WASHINGTON COAST 589 


The processes of mixing in the wake stream have not yet been 
examined. However, there is some interest attached to the abrupt 
change in salinity gradient seaward of the 31.0°/,, isosal. In essentially 
all of the area between this and the next isosal, the surface salinities 
are greater than 31.5°/,, and mostly greater than 31.7°/,9. 

The dynamic topographies within 300 miles of the coast have been 
quite consistent in all the cruises analyzed. Since only Cruise No. 7 in 
July 1952, went as far offshore as 600 miles, data from this cruise are 
combined with a composite of all the others to obtain a generalized 
diagram for the area which is presented as Figure 8. The curves south 
of 46°-30’ are based principally upon data from Cruise No. 9 in early 
September 1952. 

Appearing generally in all cruises are the lower dynamic heights 
to the west of about 130°W, corresponding to northerly or northeasterly 
flows of 5 cm/sec or less. Some changes in gradient occur in different 
months but the general picture is little altered except that the contours 
seem to tend more nearly northward in the early summer, as would be 
expected from the meteorological conditions. Also appearing in all the 
data is evidence for a deflection southward of northeasterly flowing 
streamlines in the area between 128° and 130°Wand 47° to 49°-30’N. 
The data of Cruise No. 9 indicate that this flow continues southward 
along the Washington Coast and is probably responsible for carrying the 
Columbia River water southward. ‘These results are consistent with 
those of Doe (1952). 


G.E.K. RESULTS AND TIME STUDIES 

Early in the investigations, it was discovered that apparent cur- 
rents measured hourly by means of the G.E.K. along a cruise track 
showed continual changes in direction and magnitude, suggesting the 
rotary changes of tidal period observed at lightships. “These currents 
typically had peak values of 15-20 cm/sec and occasionally as high as 
35 cm/sec, the correction factor “K” for the G.E.K. being taken as 
unity. To be contrasted with these are the velocities below 5 cm/sec, 
determined from the dynamic heights. Tidal periods could be found 
in the data by harmonic analysis, but the amplitudes were only about 
one-fifth as great as the observed peaks. Later it was discovered that 
inertial periods were present, with amplitudes of the same magnitude 
or somewhat greater than those of tidal period. The inertial period 
in this area is approximately 16 hours. The harmonic analyses of these 
data were interpreted with some reservations due to the fact that the 
ship was rapidly changing position and to the evident existence of ap- 
parently random fluctuations of considerable magnitude. 


590 EIGHTH PACIFIC SCIENCE CONGRESS 


In order to derive the residual non-fluctuating currents in this 
situation, the data have been calculated as 48-hour running means, 48 
hours being the least common multiple of 16 and 12 hours. If tidal 
and inertial constituents are present, they should disappear in the 
averages together with the greater part of those of shorter and random 
periods. This is admittedly a rather brutal treatment, as any fluctua- 
tions in the residual current are severely smoothed thereby. However, 
it has served for the preliminary investigations. 

A serious disadvantage is the fact that the ends of a continuous 
series of observations may be approached within only 24 hours by aver- 
aged results, and hence any lengthy break in continuity of the data 
may leave large gaps in the results. “Twenty-four hour groupings also 
have been tried and are found to remove most of the fluctuations and 
leave smaller gaps. It is preferred to use 48-hour means where possible, 
however, since the results will be less ambiguous. 

The results of such a treatment to the data of Cruise No. 7 are 
shown in Figure 9. The large gap in the data on the northern leg of 
the cruise is due to the break in continuity occasioned by a short storm. 
Twenty-four hour means, however, show the residual currents setting 
south to southwest throughout most of the northern leg, with velocities 
of the order of 5 to 8 cm/sec. A comparison with Figure 8 shows some 
similarity of G.E.K. means to the dynamic heights along 48°-30’N but 
none whatsoever along 50°-30’N. ‘The current pattern is also internally 
inconsistent, requiring the existence of a region of convergence within 
the area surveyed, an improbable situation. It appears evident therefore 
that the G.E.K., in this region, does not always measure the long-term 
average flows associated with the distribution of mass. ‘The converse 
might be true in regions where stronger currents are found. 

It is postulated therefore that the currents measured are shallow 
wind-driven currents of short duration. To test this hypothesis, average 
wind vectors have been plotted along the course. ‘There is reasonable 
correspondence along 48°-30’, assuming the resulting flow to be 45° 
to the right of the wind and lagging it by a few hours. In the northwest 
corner of the survey, there appears to be an inconsistency. However, 
the northwest storm which appeared two days later at about 130°W 
longitude may already have been driving water well ahead of it. Along 
50°-30’, the agreement with 24-hour average currents (not shown) is 
good. 

These results showed the necessity of making time studies with the 
G.E.K. The first studies begun in June 1952, were about one day in 
length and were made by steaming back and forth over an 8-to-16-mile 
course, obtaining G.E.K. fixes enroute. Hydrographic stations to 1,000 


CIRCULATION NEAR THE WASHINGTON COAST 591 


meters of depth were occupied at intervals of 2 to 12 hours in the 
several experiments in an attempt to correlate the results with the 
dynamic heights. Rotary changes in current direction were readily 
demonstrated, but twenty-four-hour periods are too short for effective 
harmonic analysis. “Two experiments of 3 to 4 days’ duration were 
therefore made in June and August 1953, Cruises No. 29 and 31, re- 
spectively. 

In Cruise No. 29, the ship steamed backward and forward two 
hours’ run on reciprocal headings, taking G.E.K. fixes every hour to- 
gether with other data. Positions were fixed frequently by loran, and 
hydrographic stations were occupied about every 12 hours. Some fail- 
ures in equipment being used for corollary measurements caused several 
undesirably large gaps in the data, but the results are only a little less 
consistent than those to be presented below. 

In Cruise No. 31 the cruising plan was modified, as suggested by 
Mr. Joseph Reid of Scripps Institution of Oceanography, so that the 
ship steamed squares on the cardinal compass headings, each side being 
approximately 7 minutes’ run. Thus a fix is obtained every 7 minutes, 
there being some interdependence in the measurements because each 
datum enters into two fixes and two zero determinations. Reid has 
directed experiments of this type in which he has simultaneously fol- 
lowed a freely drifting buoy (personal communication). An attempt 
to do this with an improvised buoy and drag was abandoned after the 
buoy lost its drag and was itself nearly lost at night during a radar 
failure. 

The results of this experiment have been expressed as north and 
east components of velocity and are presented in Figure 10. K has been 
assumed to be unity and corrections have been made for electrode 
droop. The results are surprisingly consistent and have given rise to 
a renewed belief in the reality of G.E.K. measurements. ‘The 16-hour 
imertial period is evident by visual inspection. Much of the distortion 
is due to other components, principally the semidiurnal. Some smooth- 
ing has been practiced but there is difficulty in deciding which fluctua- 
tions may be real and which due to experimental uncertainty. Due to 
the interdependence of separate fixes, errors often appear symmetrically 
in alternate or adjacent points. Moreover, in some cases the record 
can not be interpreted more accurately than several tenths of a millivolt. 

In correlation with this experiment, an anchor station was occupied 
for the preceding three and one-half days atop Cobb Seamount (see 
Fig. 8). Here currents were measured at a depth of 20 meters with 
an Ekman current meter every 30 minutes, and temperature structures 
were measured hourly by bathythermograph. Bathythermograms were 


592 EIGHTH PACIFIC SCIENCE CONGRESS 


also obtained hourly during the time study with the G.E.K. Three 
hydrographic stations were occupied at corners of a 30-mile square about 
the seamount to obtain dynamic heights for comparison. The time 
study with the G.E.K. was performed in depths ranging from 1,500 to 
600 fathoms and between 30 and 15 miles northwest of the seamount. 
The ship drifted south during the period. 

The direct current measurements also show rotary changes contain- 
ing tidal and inertial components. The basic periods are less well 
defined because of the motions of the ship, but these motions are small 
compared to those of a ship anchored in deep water. It is assumed in 
these two experiments that there should be some similarity in the cur- 
rents on a sharp isolated seamount to those in the adjacent deep water. 
On the other hand, considerable distortion near the seamount would 
not be surprising. 

The results of harmonic analysis are given in Table I, for both 
the direct measurements and the G.E.K. Only the 16- and 12-hour com- 
ponents are considered of primary importance, but the higher har- 
monics are presented to suggest the magnitude of the amplitudes which 
could result from random data in a series of this length. The contribu- 
tion of each constituent is assumed to be expressed in the form 

V, = V, cos (6 — x3) 

Ue = V..cos (6 — x2) 
where v, and v, are the instantaneous values of the north and east com- 
ponents of velocity, V, and V, are the corresponding amplitudes, @ is 
the time angle of the constituent and «x, and «x, are the local epochs, 
the negative of the conventional phase angle, the origin of time being 
the time of local lunar transit on the first day of the anchor station. 

If x2-x, expressed as an angle less than 180° is positive, rotation 
of the current vector with time is clockwise. In particular, 1f «.-«, 
= 96° and V, = V,, the current hodogram for the constituent is a 
circle. Theoretically, circular changes are to be expected in the inertial 
component and generally elliptical changes in the tidal component. 

It is evident that most of the motion is accounted for by inertial 
and semidiurnal constituents, the former preponderating. The diurnal 
constituent is probably of significant magnitude, but the others are 
questionable. The phase difference between north and east components 
in these three constituents corresponds to clockwise rotations, as would 
be expected from the deflecting force of the earth’s rotation. In the 
inertial constituent, it is very nearly 90° for both the direct measure- 
ments and the G.E.K. In the G.E.K. results, the two amplitudes are es- 
sentially the same, which satisfies the condition for circular rotation. 
Further deductions from the phase relations will be attempted at a 


CIRCULATION NEAR THE WASHINGTON COAST 593 


later date. The amplitude of the semidiurnal constituent on Cobb Sea- 
mount is about 15 per cent less than the G.E.K. results, which is the 
same as the change in the mean tidal range at Astoria during the two 
periods. The change in the inertial component may arise from an in- 
crease in average wind velocity from about 8 to 20 knots over the same 
period. 

The results of the time study in June 1953, are shown in Table 
I]. Although the amplitudes are smaller, the relative importance of the 
16- and 12-hour constituents is supported. This experiment was carried 
cut at 48°-02’N, 130°-29’W; and by chance during the time study, the 
ship drifted over and charted a new seamount rising to a least depth of 
280 fathoms. This shallowing of the water may have had some effect 
upon the G.E.K. 

The possibility exists that internal waves of tidal and inertial period 
give rise to the currents or effects measured by the G.E.K. This has 
been investigated by a study of the bathythermograms taken to a depth 
of 450 feet during the time study of Cruise No. 31. Internal waves oc- 
cur with amplitudes of the order of 25 feet but with periods poorly 
defined. Visual examination suggests six-hour and two-hour periods 
rather than those of twelve or sixteen hours. It is felt therefore that 
these internal waves are not a determining influence on the G.E.K. 
results, but that they possibly account for some of the aberrations and 
short-period constituents. 

In Table III, the average residual current calculated from the three 
time studies is compared with the dynamic topographies and with the 
approximate drift of the ship as determined by deviations from the 
courses run, measured by loran fixes. In Cruise No. 29, the G.E.K. com- 
pares well with the drift of the ship but not with the dynamic topo- 
graphies. This was in a period of light winds in which the ship might 
be expected to move with the water. In Cruise No. 31, there is little 
agreement, possibly because the winds averaged 20 knots from the north. 
However, the direct current measurements compare favorably with the 
dynamic topographies close to the seamount. Farther away, the velocity 
and direction derived from the topographies are extremely uncertain 
and are not shown. It seems well established therefore that the rotary 
changes observed by the G.E.K. in deep water have their counterpart in 
the direct measurements of currents. 


CONCLUSIONS AND SUMMARY 
The water circulation off the coasts of Vancouver Island, Washing- 
ton and Oregon in late spring and summer has been studied by means 
of dynamic topographies and the G.E.K. A picture is presented which 


594 EIGHTH PACIFIC SCIENCE CONGRESS 


fills a previously existing gap in the information for the central area. 
The relatively flat dynamic topography is especially sensitive to transient 
conditions and experimental error. Nevertheless, the topographies con- 
sistently show a weak northeasterly circulation at 5 cm/sec or less, part 
of which is deflected southward off Vancouver Island to continue along 
the coast past 45° North. ‘This circulation pattern is consistent with 
previous work in the adjoining areas, and with the assumed divergence 
of the Aleutian Current beginning well offshore around 45° North. 

The G.E.K. has been shown to measure apparent currents which 
rotate in direction and fluctuate in intensity. ‘The peak flows are of 
the order of 20-35 cm/sec which is several times greater than the net 
flows. The rotations contain semidiurnal and inertial constituents, the 
latter predominating. 

A time study in direct measurement of currents on Cobb Sea- 
mount, 270 miles offshore, has been compared with a similar time study 
with the G.E.K. in the adjoining deep water. Harmonic analysis of the 
North and East components of velocity has produced amplitudes of 
7-11 cm/sec for the semidiurnal constituents. The differences could be 
almost completely accounted for by the change in phase of the moon 
during the period of the measurements. The amplitudes of the inertial 
constituent were 9 and 13 cm/sec in one case and 22.5 cm/sec in the 
other, a difference ascribed to an abrupt change in wind velocity. 
Another time study with the G.E.K. showed similar results, but smaller 
amplitudes. The combined results suggest that the currents being mea- 
sured by the G.E.K. are real. This conclusion is supported by the pub- 
lished results of current measurements at several deep-sea anchor stations 
which show similar variations. 

The net currents obtained by averaging the G.E.K. results show 
little correspondence with those indicated by dynamic topographies. ‘The 
former probably represent short-term surface currents due to the wind, 
whereas the dynamic topographies represent integrated effects over 
longer periods. 

in conclusion, it is suggested that progress in the interpretation 
of currents in this area requires a better insight into the cause and 
nature of the transient currents. The G.E.K. should be useful in these 
studies, but must be further evaluated in terms of direct measurements. 


LITERATURE CITED 


DEFANT, A. 1982. “Die Gezeiten und innern Gezeitenwellen des Atlantischen 
Ozeans,” Wiss. Ergebn. der Deutschen Atlant. Expedit. auf dem ‘Meteor’ 
1925-1927 7 Teil I. 


CIRCULATION NEAR THE WASHINGTON COAST 595 


DEFANT, A. 1940. “Die ozeanographischen Verhaltnisse wahrend der Anker- 
station des ‘Altair’ am Nordrand des Hauptstromstriches des Golfstromes 
nordlich der Azoren,” Ann. der Hydrog., Nov.-Betheft. 

Dor, L. A. E. 1952. “Oceanographic Studies off the Canadian Pacific Coast, 
1951,” Unpublished report of Pacific Oceanographic Group, Nanaimo, B. 
C., August 1952. 

EKMAN, V. W. 1953. “Studies on Ocean Currents. Results of a Cruise on 
Board the ‘Armauer Hansen’ in 1930 under the Leadership of Bjorn 
Helland-Hansen,” Geofysiske Publikasjoner 19 No. 1. 

FLEMING, J. A. et al. 1945. “Scientific Results of Cruise VII of the ‘Carnegie’ 
during 1928-1929 under Command of Captain J. P. Ault,” Carnegie Inst. 
Wash. Pub. 545, Vol. I-B. 

GOODMAN, J. and T. G. THOMPSON. 1940. “Characteristics of the Waters 
in Sections from Dutch Harbor, Alaska to the Strait of Juan de Fuca 
and from the Strait of Juan de Fuca to Hawaii,” Univ. of Wash. Pub. 
in Oceanography 3, No. 3 (1940). 

GUSTAFSON, T. and B. KULLENBERG. 1936. “Untersuchungen der Traigheits- 
strémungen in der Ostsee,” Sv. Hydrograf. Biolog. Komm. Skrifter, Ny 
Ser. Hydr. 13, 28 pp. (1936). 

HELLAND-HANSEN, B. 19380. Physical Oceanography cand Meteorology. Re- 
port of the Scientific Researches of the ‘Michael Sars’ North Atlantic 
Deep Sea Expedition. 

Marmer, H. A. 1926. U.S. Coast and Geodetic Survey Spec. Pub. 121, 
63-77 (1926). 

Pituspury, J. E. 1891. U.S. Coast and Geodetic Survey Report, 1890. 

SANDS, WALTER C. 1937. “Hydrodynamical Investigations off the Pacific 
Coast of North America,” B. 8. Thesis, University of Washington (1937). 

SVERDRUP, H. U., M. W. JOHNSON and R. H. FLEMING. 1946. The Oceans, 
N. Y., Prentice-Hall (1946). 

THOMPSON, W. F. and R. VAN CLEVE. 1936. “Life History of the Pacific 
Halibut,” Report of the International Fisheries Commission 9 (1936). 

TULLY, J. P. 1938. ‘Some Relations between Meteorology and Coast Gradient 
Currents off the Pacific Coast of North America,” Trans. Am. Geophys. 
Union 19, 177-182 (1988). 

-——-——— 1941. “Surface Non-Tidal Currents in the Approaches of Juan 
de Fuca Strait,” J. Fish. Res. Bd. Can. 5, 398-409 (1942). 


EIGHTH PACIFIC SCIENCE CONGRESS 


596 


“MINUIIXeUL UIN}I{SUOD 


JO aut} 94} 0} YsNBny F UO 4IsUeI} AeUN] [e2O, JO aI}, OY} WOAZ pornseow alsue SaryIsod oy} St ¥ puB ‘soUlsOod sv passeIdxXe o1B sjUeNzI}sUOD EYL, x 


yet | 69 | Let | 82 

sre | eet) Gor) 26a 

ieseOe | Boe sO 

s0 | 60 | 9% | ST 

“we'd Load >: ic 2) LogUia 
ag 29 


ver 
O<GT 

9% 

1515 i 


bp: tc Gr) 


8 


_2it || ss |_ ree | Zot 
SOS S| Se 
BUG POO Gs | ices 
ve |on. | 89 | rz 
LOGI b> Gc tr) Loauia ap; GiC td) 
aa 9T 


SG6L ySnSNY TI-P 


“duton 


‘a 
‘NI 


89 | 648 | 962 |"dutoD 
__ 888_ Z6L eis ‘dulog “*N 
ie Sse iaic = 
9ST | O's Ge LL) 
LOaYIG ep: Gic i) LOGUIa 

a 


qauvdWOD “Y'q'D) GNV SINSWANNASVAW Lowi 
SLNGTYUND JO SASAIVNY OINOWAVE 


IT WIaVi 


Seelsop Ul 
x4 ‘Yoodq [eoo'y, 


des/Ud 
epnyy[dury 


sunoH uvios ‘aciyid 


CIRCULATION NEAR THE WASHINGTON COAST 597 


TABLE II 


HARMONIC ANALYSES OF CURRENTS BY G.E.K. 
7-10 June 1953 


PeRiop, Sorar Hours 24 16 | 12 
Amplitude ~-|-N. Comp. 2.3 6.4 4.9 
is aca | er | ae aes 
~~ Local Epoch,* *, in. |N.Comp. | 171 | 164 | 245 
ae ben | 8 Cl Mat | on 


* The constituents are expressed as cosines, and « is the positive angie measured from the 
time of local lunar transit on 7 June to the time of constituent maximum. 


TABLE III 


COMPARISON OF NET VELOCITIES BY DIRECT MEASUREMENT, G.E.K., AND 
DYNAMIC TOPOGRAPHIES 


ee 
Cruise No. 29 ae ae 

G.E.K. 6.6 130 

seynamcptonoszaphy Mae fy @ oer ol) Mags 
Deilis Ot Sip I) I nT 
Cruise No. 31 ; | Pe risk 

Direct Measurement 4.5 095 
plane | Cobb Seamount (SATO oe | 

G.E.K. Position ? g 

es Sel a hae 


ny 
. 
4 
im 
L i i 
ND 
f 
iy 
1 
{al 
i 
nell 
t 
i} y 


hue 
We torn 


i ; ; ; i iN 


San Soni es 


599 


CIRCULATION NEAR THE WASHINGTON COAST 


GQ3I0NLS V3AYV ONIMOHS 
NVW390 O151DVd HLYON 


SHL JO LYVHO 
T gunols 


WL : 


o02i 


©OZl 


KIGHTH PACIFIC SCIENCE CONGRESS 


600 


Jo SeNIVeSdWSaL 39V4SeNS 
NOILNGIYLSIG TWLNOZIYOH 


€S6l AVWO! — 11YdvV OF 
92 ON 3SINYOD YV3E NMONS 


601 


CIRCULATION NEAR THE WASHINGTON COAST 


°°% ALINIIVS S9VSYNS 
NOILNEINLSIG TWLNOZIYOH 

€S6l AVAO! — WYdvV OF 
92°ON 3SINYD YVIE NMOS 


602 EIGHTH PACIFIC SCIENCE 


51°30 


124° 


2-13 JULY 1952 


138° 


140° 


CONGRESS 


46° 


> 
a 


. 
AS flow 


44° 30° 


FORM UW-OL-OS-! 


605 


THE WASHINGTON COAST 


EAR 


TION N 


RCULA 


Cl 


-$0:10-MN WHO 
OF eh ==, —— ! uOs 


= 


| 


°%. ALINIIVS 3DVAYNS 
NOILNGIYLSIG WLINOZIYOH 


2S6l AN €l-2 
Z2°ON 3SINYD YV38 NMONE 


OE ol 


2O€! : eecl. eb cl 29El 2BCl Prey | 


604 EIGHTH PACIFIC SCIENCE CONGRESS 


FIGURE 6 
BROWN BEAR CRUISE NO. 33 
2-13 SEPTEMBER 1953 
HORIZONTAL DISTRIBUTION 
SURFACE TEMPERATURE °C 


Columbia River 


CIRCULATION NEAR THE WASHINGTON COAST 605 


Columbia "Vel Y , 


FIGURE 7 
BROWN BEAR CRUISE NO.33 
Zao. Se RE MBER M953 


44°- HORIZONTAL DISTRIBUTION 
SURFACE SALINITY %o 


EIGHTH PACIFIC SCIENCE CONGRESS 


506 


O€ eb b 


I- SO-10-MN WHO4 


Wee 


———E 


o9v- 


SY 
VEYS NS IQS 
— 


XN 
~ N 
TAN 
ts 
i & 


, €S61~cS6l (8b LV) ALIOOISA 


SNOILIONOD YSNWNS IN3SYYND 
WYVYXODVIC JSLISODNOD 93S /W) 
SYVEIDSG OOO! YSAO O es & Gl © 
sae SSINVWONV LHOISH DINVNAG 3 ; 
@ wuNolZ i OeA 


Gd" | 


SYNOLNOD N33IML398 JONVISIC 


‘e) 
N 


eel obEl 79! ee! Ov! 


607 


CIRCULATION NEAR THE WASHINGTON COAST 


OF evb 1-SO-10-MN WHOS 


‘Wao Ag 
S3ILIQOTSA LNIYUND LIN 
SNV3W ONINNNY UNOH-er 
zgel Aine 91-2 
MERE GARI 2°ON 3SINYO uVag NMOUE 


(9e6/w3| = qsoqg yong) | 
ALIDOISA YSLVM NVYAW O—« 


ON3937 


50 eS Hole 39EI El oO%l 


EIGHTH PACIFIC SCIENCE CONGRESS 


7.4) 


£961 isnenv ti-@ 
1€ ‘ON 2SINYD YVZG NACE 
SLNANOdWOD 1SV3 GNV HLYON 
‘W329 AG SINZYYND JO NONLVINVA JAIL 
OT FUNDA 


S4NOH 


ANINODHOD 16Va —- 
ANBNOGWOS HIYON -e- 
On3931 


AjjQ0j2Q jusuodwod 


9903/9 


U. S. NAVY CONTRIBUTIONS TO THE STUDY OF 
PACIFIC CIRCULATION 


By JoHn LyMaAn 
Division of Oceanography 
U.S. Navy Hydrographic Office, Washington, D.C., U.S.A. 


The U. S. Navy has participated in several different ways in the 
study of Pacific circulation. The Hydrographic Office, serving as the 
national repository of information submitted by cooperating observers 
on merchant vessels of many different nationalities, has for half a cen- 
tury collected the current observations of navigators, obtained by com- 
parison of celestial fixes with dead-reckoning positions. These obser- 
vations up to the year 1935, reduced to punched cards, have served as 
the basic materials for the preparation of Hydrographic Office Publica- 
tions Nos. 568, 569, and 570. Figure 1 is a sample of the data presented 
in H. O. Pubs. No. 569 and 570, which give not only vector resultant 
currents for each month for each 1° quadrangle but also the frequency 
distribution of set and predominant drift for somewhat larger sub- 
divisions. 

Observations from 1935 to 1945 have been tabulated and are on 
file at the Hydrographic Office, while records since 1945 are awaiting 
punching. 

Cooperating mariners in the Pacific also participate in current 
studies by throwing over bottle papers (Fig. 2). Captain E. R. Johanson 
of the Matson Navigation Company of San Francisco has taken an 
especial interest in this subject in recent years, and his name appears 
frequently in the lists of recoveries, which have been regularly reparted 
in the weekly Hydrographic Bulletin. These bottle drifts, while of 
course they yield no direct evidence as to the precise route travelled by 
a drifting object between the points of release and recovery, -never- 
theless are valuable in giving general circulation patterns and minimum 
values of the set of surface currents. They are particularly useful in 
forecasting drifts of wreckage and floating mines. 

A study of local circulation at Guam in 1949 made by naval 
authorities for planning sewer outfall locations by releasing a number 
of drift bottles, yielded unexpected results when several bottles turned 
up at Talaud and others in the Philippines and Japan (Hydro. Bulletin 
of 7 April 1951). 


609 


610 EIGHTH PACIFIC SCIENCE CONGRESS 


During the 1930’s the U. S. Navy occupied oceanographic stations 
over a wide range of the eastern North Pacific, in connection with its 
hydrographic surveying program. Although the immediate objective 
was to obtain temperature and salinity values that could be used in 
computing the speed of sound to correct sonic soundings, the data also 
yield information on the dynamic topography. Observers from Scripps 
Institution of Oceanography and from the Oceanographic Laboratories 
of the University of Washington participated in most of this work, and 
the data were worked up at those respective institutions. ‘Table I lists 
the vessels engaged in this work. 

Part of the HANNIBAL, GANNET, OGLALA, and BUSHNELL data 
have been published (H. O. Pub. No. 212; Barnes and Thompson, 
1938; Goodman and Thompson, 1940; Sverdrup and Staff, 1943). 

During World War II the oceanographic investigations of the U. S. 
Navy in the Pacific were more concerned with studies of underwater 
sound than with circulation. ‘The atomic bomb tests at Bikini in 1946, 
however, imposed requirements for the prediction and tracing of the 
movements of radioactive water. Included in the broad oceanographic 
and geophysical program of Operation CROSSROADS under the direction 
of Cdr. R. R. Revelle, USNR, therefore, were several series of oceano- 
graphic stations taken by a group of oceanographers under Cdr. C. A. 
Barnes, USCGR, in the USS BOWDITCH and BLISH, and by another 
group directed by Mr. D. F. Bumpus and LCdr. John Lyman, USNR, 
in several units of Destroyer Squadron 7. ‘These results have been 
discussed by Barnes, Bumpus, and Lyman (1948), and in more detail 
by Han-Lee Mao and Kozo Yoshida in a forthcoming U. S. Geological 
Survey professional paper. 

During 1946, also, three administrative actions within the U. S. 
Navy produced results of significance to the study of Pacific circulation. 
One was the establishment in the Hydrographic Office of a Division 
of Oceanography, headed first by Dr. R. H. Fleming, Director, and 
Dr. C. A. Barnes, Deputy Director. ‘These positions are now occupied 
by John Lyman and Dr. C. C. Bates, respectively. Another was the 
creation of the Office of Naval Research, including an Earth Sciences 
Division, headed first by Cdr. R. R. Revelle, and later by Dr. J. N. 
Adkins. ‘Through contracts administered by the Office of Naval Re- 
search, considerable financial support has been given to oceanographic 
survey programs in the Pacific. “The SPENCER F. BAIRD, a former Army 
tug, converted in 1947 to an oceanographic research vessel for use in 
the Philippines Fisheries program and transferred to the U. S. Navy in 
1952, is operated by Scripps Institution of Oceanography, with funds 
provided by the Bureau of Ships and the Office of Naval Research. 
The Navy has also helped support operations of the Scripps vessel 


CONTRIBUTIONS TO THE STUDY OF PACIFIC CIRCULATION 611 


HORIZON in such expeditions as Mid-Pac (1950), Northern Holiday 
(1951), Shellback (1952), and Capricorn (1952-53), and of the Univer- 
sity of Washington research vessel BROWN BEAR. 

The third action to be mentioned was the establishment of an 
oceanographic unit under Mr. E. C. LaFond at the U. S. Navy Elec- 
tronics Laboratory (LaFond, 1949). In addition to studies of the Pacific 
with the immediate objective of defining the sound channels or Sofar, 
LaFond’s group has participated in surveys in the Antarctic (Dietz, 
1948) and in the Bering Sea (LaFond, e¢ al., 1948, 1952), cooperating 
in the latter area with Canadian authorities (Lesser and Buffington, 
1950). Sofar cruises have been performed by the USS FIEBERLING 
(Holtsmark, 1949) and SERRANO (Anderson, 1950); and the EPCE(R) 
854 has also carried out similar work. 

In addition to the data contained in the publications already cited, 
most of the observations made by the vessels mentioned have been 
punched onto cards (Fig. 3) as described by Lyman (1953). H.O. Pub. 
No. 242 lists the cruises which have been so punched, and H. QO. Pub. 
No. 238 is a comprehensive bibliography of the physical oceanography 
of the Western Pacific. 


REFERENCES 


ANDERSON, ERNEST R., Distribution of sound velocity in a section of the east- 
ern North Pacific, Trans. Amer. Geophys. Union, v. 31, pp. 221-228, 1950. 

BARNES, C. A., D. F. BUMPUS, and JOHN LYMAN, Ocean circulation in Mar- 
shall Islands area, Trans. Amer. Geophys. Union, v. 29, pp. 871-876, 1948. 

BARNES, C. A., and T. G. THOMPSON, Physical and chemical investigations in 
Bering Sea and portions of the North Pacific Ocean, Univ. Wash. Publ. 
Ocean, v. 3, pp. 35-79 and appendix, pp. 1-164, 1938. 

BRYAN, G. S., Oceanographic activities of the Hydrographic Office and the 
United States Navy during 1939, Trans. Amer. Geophys. Union, v. 21, 
pp. 333-339, 1940. 

Dietz, R. S., Some oceanographic observations on Operation Highjump, 
USNEL Rept. No. 55, 97 pp., San Diego, 1948. 

GHERARDI, W. R., The oceanographic activities of the Hydrographic Office 
and the United States Navy during April 1933 to April 1934, Trans. 
Amer. Geophys. Union, v. 15, pp. 188-200, 1934. 

The work of the Hydrographic Office of the United States Navy 
during April 1934 to April 1935 in the field of oceanography, Trans. 
Amer. Geophys. Union, v. 16, pp. 200-214, 1935. 

GOODMAN, Jor, and T. G. THOMPSON, Characteristics of the waters in sections 
from Dutch Harbor, Alaska, to the Strait of Juan de Fuca and from 
the Strait of Juan de Fuca to Hawaii, Univ. Wash. Publ. Ocean., v. 3, 
pp. 81-103, and appendix, pp. 1-47, 1940. 

HOLTSMARK, B. E., The Sofar project: Hawaiian oceanographic survey U.S.S. 
FIEBERLING, Feb.-July 1947, next Rept. No. 139, 58 pp., San Diego, 1949. 


612 KIGHTH PACIFIC SCIENCE CONGRESS 


Kays, H. E., The oceanographic work of the Hydrographic Office and the 
United States Navy from April 1936 to April 1937, Trans. Amer. Geophys. 
Union, v. 18, pp. 194-201, 1937. 

LAFonpD, E. C., Oceanographic research at the U. 8. Navy Electronics Labo- 
ratory, Trans. Amer. Geophys. Union, v. 30, pp. 894-896, 1949. 

LAFOonpD, E. C., R. S. DiETzZ and D. W. PRITCHARD, Oceanographic measure- 
ments from U.S.S. Nereus on Arctic cruise 1947, usNnEL Rept. No. 91, 
San Diego, 1948. 

LAFonp, E. C. and D, W. PRITCHARD, Physical oceanographic investigations 
in the eastern Bering and Chukchi Seas during the summer of 1947, Jour. 
Mar. Research, v. 11, pp. 69-86, 1952. 

Leany, L. R., The oceanographic activities of the Hydrographic Office and 
the United States Navy during April 1935 to April 1986, Trans. Amer. 
Geophys. Union, v. 17, pp. 194-205, 1936. 

Lesser, R. M. and G. L. BUFFINGTON, Oceanographic cruise to the Bering 
and Chukchi Seas: summer 1949, Part 2: currents, nzz Rept. No. 211, 
San Diego, 1950. 

LYMAN, JOHN, Oceanographic activities of the Hydrographic Office, 1946- 
1952, Trans. Amer. Geophys. Union, v. 34, pp. 122-124, 1953. 

SVERDRUP, H. U. and Staff, Oceanographic observations on the U.S.S. BUSH- 
NELL in 1939, Records Obs. Scripps Inst. Ocean., v. 1, pp. 66, 123-128, 
1943. 

U.S. Hydrographic Office, Pub. No. 212, Dynamic oceanographic data for the 
central eastern Pacific Ocean, pp. 1-38, Washington, D.C., 1934. 

U.S. Hydrographic Office, Pub. No. 238, References on the physical ocean- 
ography of the Western Pacific Ocean, 174 pp., Washington, D.C., 1953. 

U.S. Hydrographic Office, Pub. No. 242, Vessel and source listing of oceano- 
graphic data, Washington, D.C., (mimeographed) 1952. 

U.S. Hydrographic Office, Pub. No. 568, Atlas of surface currents, South- 
western Pacific Ocean, Washington, D.C., 1954. 

U.S. Hydrographic Office, Pub. No. 569, Atlas of surface currents, North- 
western Pacific Ocean, Washington, D.C., 1950. 

U.S. Hydrographic Office, Pub. No. 570, Atlas of surface currents, North- 
eastern Pacific Ocean, Washington, D.C., 1947. 


3 


618 


IFIC CIRCULATION 


4 
/ 


CONTRIBUTIONS TO THE STUDY OF PAC 


OFGL ‘UBAIg 


LE6T ‘sAvy 
“ec 


geo, ‘AyveT 
GS6T ‘Iprereyy 
VS6L ‘Ipre1eyy 
9g6T ‘AyvoTy 
GS6L ‘Tprereyy 
PS6L ‘Tprvsceyy 


DONGAAIA YY 


6 N[N[OUOH{ 0} OSsiqG UBS 6861 
puowey “OD “Ht 6 BIULOFI[ED OMOT 07 vurvurg 686 
TIYISIO(T a I OOSTOUBIY, UBS OF TIBAVETT 9861 
pue 
S1OQOW “D aJ OT NBMBET 0} Sajaduy sory 9661 
odin T x] la’ WeMepy 07 Aroqye_y odep 
See { | ai A1oq7eL yy odeQ 07 suernopy G86r 
Ureuqie) a Lf 
ep rona se oe PL SuBI}NELy 
S)UMSORSES aE eS ST emery 0} Ssuvrqnoly Ve6l 
Soule “VW “OD oV SUBIINE[ VY SE6T 
a een 96 BolToULy [C1}Ue) SE6T 
DSi re oe aa or BILIOULY [v14ueD) FE6L 
SUIT, “HW 9ST vuueued JO JIN) SE6L 
UAAUASIO SNOILVYLIS dO ‘ON Vary Suvay 


6S6T-SS6L ‘HOMO CINdVUDOUGAH AAVN ‘S “ GHEE dO SATAUNS OIHAIVYDONVODG 
I WIaVvib 


TIINHSi8 
TIGNHSOAS 
COV ATTA 


TITIASINOT 


VWIVIDO 


TIWNHSNd 
LUNNVO 
IVEINNVH 
IWdINNVH 
JTIVEINNVA 


wictc 7,4 


CONTRIBUTIONS TO THE STUDY OF PACIFIC CIRCULATION 615 


igo 
Fala, 


Iho” 


5 Pang 


5 
oS 


0 ee A 2.0 |19.0 
AE r a Ny | a 
Fe) ee “SS VW x 4 ai 
23.1 |26.9 |15.6 op ‘lene =F, 19.2 | 
iS 
3 14.4 14.9 28.8 | 


pees 
22.8 
& i S 
SSS << SSS 
1.2 34 1.8 
GS ES ES 3 SS BS SS ee GG Gs BS ee Se (PE a BD 


170° 160° 


FIGURE 1 


616 EIGHTH PACIFIC SCIENCE CONGRESS 


PRNC-NHO 84 


BOTTLE PAPER 


U.S. NAVY 
HYDROGRAPHIC OFFICE 


WASHINGTON 25, D.C. 
u. gs. A. 


(PLEASE USE LEAD PENCIL) 
Thrown overboard by (Give name of master and observer): 


IMGSLEP eR Ilr ene eel aera Me cites 
CONF TOA, aigew eal oe oo ee Gero anes AOreer a anart a ae 
Viesselrih deieaceinicne mene) deat ie 
IDPs inh st ale TEN GI i aioe iD te anaes re rs Oo 
TeatitUd CMe er pee eee yay cuMteeo etary 
Zong ytd es cane ata ln es ney Oa 204 aati ategalrae tees 


INSTRUCTIONS TO FINDER 


Trouvé par (indiquer le nom, date et lieu). 

Gefunden von (man gebe Namen, Datum und Ort an). 
Gevonden door (men geve naam, dagteekening en plaats op). 
Trovato da (dare il nome, data e luogo). 

Hallado por (dar el nombre, fecha y paraje). 

Achado por (dar o nome, date e paragem). 

Trovita de (skribu nomon, daton, k, lokon). 


ID) Le Ne hey laste eee ote mam nL ei Mya eS oes 


The finder of this will please send it to any United States Consul, or 
forward it direct to the U.S. Navy Hydrographic Office, Washington 25, 
D.C. 

La pergonne qui trouvera ce papier est priée de l’envoyer a un consul 
quelconque des Etats-Unis, ou de le faire parvenir directement & la 
section d’hydrographie du ministere de la marine a Washington 25, D.C. 

Der Finder Dieses wird ersucht es irgend einem Konsul der Vereinig- 
ten Staaten zuzusenden, oder es dem hydrographischen Amte des 


Marineministeriums in Washington 25, D. C., direkt zugehen zu lassen. 


De vinder van dit papier wordt verzocht, het tot een Consul dér 
Vereenigde Staten, of rechtstreeka naar het Hydrographische Ambt 
ces Departements van Marine te Washington 25, D.C., te zenden. 

Chiunque trovi questo  pregato d’inviarlo a qualche Console degli 
Stati Uniti d’America, o di farlo pervenire direttamente alla Sezione 
d’Idrografia del Ministero della Marina a Washington 25, D.C, 

Se suplica d la persona que hallar esto que lo envfe 4 algun Cénsul de 
los Estados Unidos de América, 6 que lo remita directamente 4 la 
Seccion de Hidrografia del Departamento de Marina en Washington 
25, D.C. 

Roga-se a pessoa que achar isto o favor de o enviar a um dos Consules 
dos Estados Unidos da America, ou de o encaminhar directamente 4 
Secg&o de Hydrographia da Reparticio da Marinha em Washington 
26, D.C. 

Oni petas ka la trovanto sendu la paperon al iu Amerika Konsulo, ai 
rekte al U.S. Navy Hydrographic Office, Washington 25, D. C,, U.S. A. 


This form should be placed in a strony 
bottle. The cork should be driven in flush 
with the rim and covered, preferably with 
sealing wax. 


If the finder of this paper will return it to 
the U.S. Navy Hydrographic Office, Wash- 
ington 25, D. C., direct, or through any United 
States Consul, he will thereby assist in the 
verification of the circulation of ocean currents. 


His services will be very much appreciated by 
all mariners. 


There are no funds available for paying 
rewards to the finders. 


FIGURE 2 


617 


CIRCULATION 


x 
J 


CONTRIBUTIONS TO THE STUDY OF PACIFIC 


U.S. NAVY HYDROGRAPHIC OFFICE 


OCEANOGRAPHIC D 


(@)@ AMADI YY 


OS)GLSL LC\GL SL|bL EL|ZLLL [OL G9/8S|L5 99S9ItSIe9 Z9 5 6l6l6 Glb\6 GG GIG 6 vy BYLd ItSh DENT LyjOd BEIGE LE STISE PEIEE ZE LE OL GZ 82 LZ\9z SZ HZ[E7IZz 1202 GL 


AREA EE CHER CE TREE SE SGA CREE CHICHI EC RCI CHC CURE Re ame cece Ro etcake 
alo/s ale als olslg|s glals sjals|e aja ajale ale|a ala ala e/a als ala alaje ale alc s ela ale e.g 8laje ajo g gialg glo ole aja. c gle gle glee sais acs 
AYL|e AVC fe QYe|e|e ejefe Lyejeye eje efc]c fee Che aye Lhe efe ofc Cfeje ej fee fe Clee oC] fe cfc eye Aye fe CYC ee fe Je ee eee 
7/9|9|9 919 9}9 9}9/9/9 9}919 9}9)9)9 9}9 9/9|9 9]9|9 g19 9]9 919 919 919 g1gi9 9/9 919 9 G19 99 9 9 gi9)9 g19 9 Sia} g19 9/9 919 9 gig gig gig gg g19 999 9 
48]5/6 S)5 S|6 s)sjaje sisjs siaicis sic sis}s cisis gio gis SigGis gio cicig sig cic sciggig cg gicic gig sigigais giggiggciggig gicgecicgs s ¢ 
SU a Ca a 
clele ele ele elejele ejele ejereie eye elele cele cle cle cle cle cle ejele cle gle cele ele ee Elele elec eicie ele cle cle cele cle clecececcee 
cleje 22 zie zye|zle 2lele zyc|zle aye cizle clele ale zie ele cle ele alee ele cle 2 ele 2ye 2 2 elele ele z cyele ele cle ale & cle ele cece cle ccc 


Hae afe Yu O}u}aye nofe ayayaye ape ae efe|t af ele ape ae eft ofan eye aye a aft ae ee afeye ape a ofa ape af ee aft ae ele eae te ee 


O8S/GL|BL LLISL GLIDL ELIZL)ILIOL 69/89jL9 99/S9/P9/E9 Cj19 O9\GS BS LGI9S GS HSIES ZSIIS OSIGY BbILb OvIGH VHICHIZh Lb OY GEIBE LE 9EISC HElee ZE LE OL\G2|BZ Lzj9Z SZ HZiezIZz LZ/OZ Gh Gl LSI Si HLIEl Zijue OLLG B L9IGS bez 1 


Be) Pere BRQE ROE (Er a AS qe ie man{worios TS] a |e [ef + [> [en [uvas [avalon | saannn 
XVH 


YaLVM |S]7139mMs} was |Gnol9 BuNLveadw3L| Obve pigiaa 9NO7 NOLLWLS 


asinyo 
SON3Y3434Y 


U3HLV3A 
ALIGIHOH 


= Ta 
3MO0 LVHA 


w313W 
Osea 


OINI HLA 
SMOD AVIAN 


TIdAVS 
xen 


WOLLOB 
OL Hid30 


nN, SGALILV A Fine aI nce 43U-dIHS 


dYVO — YsLSVW 


EIGHTH PACIFIC SCIENCE CONGRESS 


618 


US NAVY HYDROGRAPHIC OFFICE 


(q)¢ 


CCIGHCE LL GLIGL BE ELIZL LLIOL 69,89 BaISI9gCS AB 09,6985 26 ae pojegizs 
ob16)6 6 6/6 6 616 GIS 6,6 ASO OG Ea 6 Bal | 6 


i 


(heeded aosbibusbaall ade 
zl af sla pfeil la aaa sil soc 
see sls fs ssi sa ssjestes sls sss sles ses 


| 
aU 
eycye € Ere celecle cll tele ele eele cee cle cele eee 
| { 
dele ae ace oe cll ale ae eee eee lee eee eae cee 
| 1) t 1 | | | 


LU a ed La te Letts CPE VIDE GAYE UOTE LULA AMAL Ui 


OCEANOGRAPHIC DATA CARD 


Bjodiad CL SLISL CL ELIZL WL10L 69.BS 119 99!39 valeg zg ia oslecles cg sols sciectzs uslaslen e» cob voy zolty ope aclze gelce ve € 2E LE Of 67/82 


aazus|yia] a | € N39 | Hid3a 
: ‘ON | N-FON : © Jaunnvs] wat 
El | anzaeino [ANY pono ac ae 


N39AX0 ed dai 


ud 


[| OT annoys 


5 


AY ODT 
+9508 wel 
ROY Se BE LEE abve CCCeMLe.OE)6 82 L752 $2 o aed ZZ A202 Gi Sh LUSt St HU EL Zi CHE 8 iP 9) (Seba farcenl 
6 616 6/6 66 6/6 GG GIGIG GE 6 G/6)6 6/6 GIG 6/6 6 6/6 GIG 6/666 G66 666 
| 
| 
2 8's Oo git e]e 8 8 ojola gs 8 sla) gia ola gla 8 ole sia slag 8 alaeaee 


dae cle ate chee calle dec elec ce de ceccecedeecgeccce 


! | | 
9/9 919 9}9 alg 9/9 9 9 glale gis 9 giale gia 
oe 
| 
2 a vv oly yy obey rb bey 


3/9 9/99 9/9 9/9 91899999999 
ESS S55 oS 6 Sieg ag sagiggcegsasscsicgacs 
ctleeeeleee cele aeestlecledeaedecedereaseces 
eee aleve cle eeepc ae 2 oojeae ae lez ce ae ole cz cle 2222 
vatvaheateafeccalifis 


a= 
g=— 
— 
— 
°° — 
a =— 


NOWVLS 3S1MYQ- 198 — diHS 


QYVO WVLI9 


ON THE VARIATION OF THE KUROSHIO NEAR 
THE JAPAN ISLANDS 


By D. SHoji and K. Supa 
Hydrographie Office, Tokyo, Japan 


INTRODUCTION 


There have been many investigations concerning the nature of the 
Kuroshio, but the study on its variation is yet very rare, and the hourly 
variations of its pass and strength may be said to be almost unknown. 
In recent years, as the results of oceanographic observations gradually 
piled up, it was made clear that the ocean currents which have been 
thought rather stationary, made a comparatively violent variation. But 
the observations are very poor compared with other scientific fields, for 
example, with meteorology. The cause or the mechanism of variation 
of ocean current can not be cleared at the present time. We intended, 
therefore, in the following only to describe some example of the ob- 
served variation of the Kuroshio. 


1) A Cotp WATER Mass OFF THE SOUTH Coast or Honsuu 

It was first reported by fishermen in 1934 that a large cold water 
mass of a diameter of about 100 sea miles appeared off the south 
coast of Honshu and that the Kuroshio flowed around this cold water 
mass. According to this report the Hydrographic Office, the Meteor- 
ological Observatory and the Fisheries Research Institute of Japan 
made many oceanographic observations in this area (Figs. 1-5). At first 
this cold water mass (the water temp. at 200 meters was about 10°C in 
it and the opposite side of Kuroshio about 18°C) was off the Kii Penin- 
sula, and then moved eastward a little and its existence was confirmed 
until 1944. Owing to the War the observation was interrupted, and 
when reopened in 1946 the cold water mass was much contradicted, and 
then disappeared. Hereafter, the cold water mass appeared in winter 
of 1946-47, 1950-51 and 1952-53 in this area, but it did not so devel- 
op, and the appearance of this cold water mass seems to be a seasonal 
phenomenon in recent years. It is clear from the T-S diagram and other 
evidences that this cold water mass is a consequence of the upwelling 
of the cold intermediate water. But why this upwelling happens so 
extensively and why the Kuroshio runs around this, departing from the 
Japanese coast, has not been satisfactorily shown. It is true that the 


619 


620 EIGHTH PACIFIC SCIENCE CONGRESS 


bottom configuration of this area is suitable for an upwelling. Dr. 
Uda and Dr. Koenuma explained this phenomenon as follows: When 
the North Pacific High Salinity Water (Kuroshio Water) weakened 
and the strength of the Subarctic intermediate water (Oyashio Water) 
increased, this cold water mass appeared. He pointed out that prior 
to the appearance of the cold water mass in 1934, cold water off the 
coast of Sanriku prevailed so intensively that the northeastern part 
of Japan had suffered a very cold summer in 1934-35. It may be ex- 
plained that the weakening on the Kuroshio in recent years has caused 
the appearance of a cold water mass in winter. 

Before the appearance of the cold water mass in 1934, the famous 
Muroto typhoon had passed the central part of Japan, and in recent 
years the cold water mass appeared after a strong typhoon passed near 
this area. The effect of typhoon may be one of the causes of the up- 
welling of cold water mass. 

Summarizing the above observations, the strengthening and weaken- 
ing of the Kuroshio and Oyashio is the major cause of the appearance 
of the cold water mass and the bottom configuration and typhoons have 
much effect on it. 


2) A VIOLENT VARIATION OF OCEANOGRAPHIC CONDITION 
OFF THE Boso PENINSULA 


It is well known by fishermen that ocean currents change their 
course and other oceanographic conditions vary in a very short time. 
But the oceanographic observation is seldom carried out in so short an 
interval that there are few examples for these variations in the record 
of observations. 

In this paragraph we intend to describe an example in which sev- 
eral observations were carried out in a short interval in the same area, 
and a large variation of oceanographic condition was observed. But in 
this example, too, the shortest interval of observation was 10 days, and 
from the variation of observed water temperature, etc., this is not suf- 
ficient to make clear the detailed variation which was taking place in 
the ocean. 

Figure 6 shows the sectional distribution of water temperature ob- 
served by the Hydrographic Office from March to May, i944, off the 
Boso Peninsula. ‘These five observations were carried out on an almost 
similar line (Fig. 7). As in this area the Kuroshio deflects eastwards 
departing from the Japan Islands and the Oyashio reaches to the north 
of the Kuroshio, the oceanographic condition in this area is very varia- 
ble. 

Between 3 and 25 March, the water temperature lowered to about 
3-4°C in the whole region, and on 11 April there appeared a minimum 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 621 


of very low temperature (and very low salinity) of 3-4°C at 200-meter 
layer near the coast. (This temperature minimum is a very rare phe- 
nomenon as this appeared so far south.) These results indicate that the 
Oyashio came down farther south than usual. On 22 April, 11 days aft- 
er the former observation, the temperature minimum disappeared com- 
pletely and the isotherms inclined so sharp that this indicated that there 
was a strong northeasterly current, that is the Kuroshio was flowing in 
this area. From the observation of 9 May, the temperature rose gen- 
erally and warm water occupied this area. 

The variation of the sea water has close connection with the me- 
teorological conditions. So we examined the wind observed at the Chosi 
Weather Station. From 13 March to 11 April northern winds prevailed. 
On 18 and 28 March and 8 April the wind velocity exceeded 20 m/s 
(wind direction N or NNE) and on 18 March and 8 April winds of 
more than 10 m/s continued more than 24 hours. After 11 April it 
was generally calm and the wind direction was variable. From these 
data it may be concluded that the southward flow of cold water from 
March to April was caused by the strong north wind of the same period. 


3) ‘THE TRANSLATION OF THE KUROSHIO AND ITS PERIODIC CHARACTER 
AS OBSERVED BY THE MEAN SEA LEVEL 

Due to La Fond the variation of water level observed at tidal 
stations (the effect of tide eliminated by taking suitable mean values) 
is almost the same as the variation of dynamic height of the neigh- 
bouring sea surface. 

The difference in the dynamic height on both sides of an ocean 
current like the Kuroshio reaches as much as about 100 cm. There- 
fore if water level is observed at an island situated in the stream of 
the Kuroshio, we can know the translation of the Kuroshio continuously. 
For this purpose we put a tidal station at Hachijo-sima, and observed 
the variation of water level, and at the same time the record of three 
tidal stations on the coast of Honshu were also examined. As the va- 
riation of the current was very sharp in some cases, we used daily mean 
sea level (25-hour mean); and to eliminate the barometric effect, cor- 
rection was performed assuming 1 mmb. of air pressure corresponds to 
1 em. of water level. Air pressure was taken from the record of the 
nearest weather stations. 

At first it is necessary to examine whether the mean sea level varies 
parallel with the dynamic depth or not. Figure 8 shows the correlation 
between the dynamic depth obtained from oceanographic observations 
and the sea level. As both values have error of a few centimeters, we 
can conclude that proportionality exists fairly well between these values. 


622 EIGHTH PACIFIC SCIENCE CONGRESS 


The observation of mean sea level at Hachijo-sima has been con- 
tinued since May 1951. Figure 9 shows the results from September 1951 
to September 1952, with the values of Kushimoto, Ito and Mera Tidal 
Stations (Central Meteorological Observatory). ‘The position of the 
tidal stations is shown in Figure 10. 

(i) The range of variation of mean sea level at Hachijo-sima was 
very large compared with other tidal station. While the differences 
between maximum and minimum were about 50 cm. at other stations, 
the difference at Hachijo-sima reached to 140 cm. This was caused 
by the translation of the Kuroshio. To demonstrate this we shall com- 
pare the variation of sea level with the oceanographic observations car- 
ried out in the same period. The water level at Hachijo-sima was be- 
tween 250 cm. and 260 cm. until September 1951. Then it lowered 
greatly from the middle of October and from November 1951 to April 
1952 (December 1951-February 1952 observation lacked) it remained 
between 170 and 220 cm. At the beginning of May, it rose suddenly 
about 50 cm. and then continued to rise slowly until September 1952. 
According to the oceanographic observations, in May-August 1951, the 
Kuroshio was obviously to the north of Hachijo-sima, in September—De- 
cember, as there was no observation, the condition was not clear, but 
from the Ten-day Marine Report of the Central Meteorological Obser- 
vatory, there appeared a cold water mass in this area. In February 1952 
a cold water mass was situated in Enshu-nada and the Kuroshio run 
around this and Hachijo-sima was situated at the north boundary of 
the Kuroshio (Fig. 5). In April the Kuroshio was flowing near Miyake- 
sima. ‘These facts were well coincided with the variation of sea level, 
and we can conclude that by the observation of sea level, it is possible 
to pursue the translation of the Kuroshio. 

The slope of sea surface at the strong current of the Kuroshio can 
be assumed to be about 10-15 cm/10 miles. Therefore, that the sharp 
rise of the sea level at the beginning of May was a rate of about 10 
cm/day, indicated that the velocity of translation of the Kuroshio was 
5-10 miles/day, namely 0.2-0.4 knots. 

This cold water mass was much smaller in scale and continued in 
shorter time than the one mentioned in the preceding paragraph. Ii 
is interesting to note that before the appearance of this cold water mass 
a strong typhoon, Ruth, had swept over our country on 15 October, 

(ii) It was made clear that the variation of mean sea level at Ha 
chijo-sima had close connection with the translation of the Kuroshio. 
The most interesting point in the variation is that there appear some 
remarkable periodic changes and this may indicate that there are cor- 
responding meanderings of the Kuroshio. 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 623 


The most distinguished one was seen from March to April, 1952. 
The period was 20-30 days and the wave height was 30-50 cm. As the 
number of waves is only a few, it can not be decided whether this is a 
durable phenomenon or not. But it is clear that this is due to the trans- 
lation of the Kuroshio from the large range of variations. 

From May to September 1952, there appeared a periodic change of 
sea level of much smaller amplitude than the former one. Figure 12 
shows the 5-day moving average of mean sea level. “The mean of wave 
height was 5 cm. over a period of 14 days. As the amplitude of this 
wave is rather small, it is not possible to conclude that this is due to the 
oscillation of the Kuroshio. But it may not be the wave of astronomical 
origin, for if it is one of the astronomical tide, it must appear in every 
time and place. Whether this wave is progressive or not, and also its 
wave length and velocity, can not be decided on account of lack of ma- 
terials. 

(ui) In September 1951 and 1952 the Kuroshio was to the north of 
Hachijo-sima in both cases. But the monthly mean level was higher 
about 34 cm. in 1952 than in 1951, and the difference between Hachijo- 
sima and Ito was 27 cm. in two cases. ‘The difference of sea levels on 
both sides of the Kuroshio is proportional to the mean velocity of the 
Kuroshio. ‘Therefore, this means that the Kuroshio was stronger in 
September 1952 than in 1951. In fact, from the observation, the Kuro- 
shio was very strong in the summer of 1952 as compared with usual 
years. Hachijo-sima is not the most suitable position to know the 
strength of the Kuroshio, for it often comes out of the stream. 

It may be very important for oceanography to know the annual 
and secular variation of the Kuroshio by observation of sea level at 
some adequate places. 


(CONCLUSION 


We have described some example of variation of the Kuroshio, but 
the variation of the Kuroshio can not be cleared up without the co- 
operation of the scientists of all nations around the Pacific, for the 
Kuroshio is only a fraction of the great circulation of the Pacific Ocean. 


REFERENCES 


M. UpaA. On the Correlated Fluctuation of the Kuroshio Current and the 
Cold Water Mass. 

C. O’D. ISELIN. Preliminary Report on Long Period Variations in the Trans- 
port of the Gulf Stream System. Papers in Phys. Oceanogr. and Meteor. 
Vol. VIII, No. 1. 

E. C. LA Fonb. Variations of Sea Level on the Pacific Coast of the United 
States. Jour. Marine Research. Vol, 2. 1939, 


EIGHTH PACIFIC SCIENCE CONGRESS 


se 


(SE6T ISNSNY) “Gp ONS OF OANL[oY oowfing jo Ayderscdoy, s1weudkAq—T ‘DIyT 


vl Gl ofl Vel 
= BS | eS fa 


DLU/ 0{ 


ey 
Ve 
w 


a 


NaS 


Bulg OAZ12%H 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 625 


(SE6T Jsnsny) 
“TOABT UL QOS WV atnqzeloduay Jo uorNqLysiq [eyUoZ.Loy—zZ SGT 


vel 


EN 
Dung okzi4 Hew 
Sy 


DUWID Duiny ify 
L 
vers ay 2h) “Dy 


PACIFIC SCIENCE CONGRESS 


IGHTI 


PI 
Lay 


626 


(€ré6t adv) “qp 008 0} cAV[ey evjang Jo Aydv 


Orr pe! 


058 Sic okz 94)" 
ov GL 


pc gle 
WAS a 


LYPS Ov °g 


“i ihe 


<j 
<p 


« 


oF El 


oI Fl 


160d0.f, ITU 


u 


A 


Geeks 


vet 


vel ¢ 


JI 


al 


627 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 


04 


(146L AP) “GP 008 oF CAREY oovFing Fo Aydutcodoy, sweusg—p “yf 


Cl oe 


KIGHTH PACIFIC SCIENCE CONGRESS 


628 


(ZG6T Atenaqea 7) “qP ON 0} OAIZV[OY eovjang fo Aydeisodoy, s1umeuUuAq-—'G “DIY 
OF! of &| oe) tl (vel 


ace 


DUTO okzi701y eS 
SS D 


ore 


unis ay vKyy 


e 


629 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 


UE” 0O,FF 05° 


(PRET ‘ABIN-UYotey) ‘oingetodway 19yV AQ JO SUOTZNQIA4SIq [BUOTJIVgG—"y 
DE OFPE 0S 


L0F 08,6 0S OF Ob 0S 


eG 


NON Zza Nee 
Cpa. nS 


pid PuZe [oy Y8// YW YASE 


‘OT 


g DE DFE 05° 
Se i 


Yrs? Y7E/ 


EIGHTH PACIFIC SCIENCE CONGRESS 


Or) 
vo 


(PPE ‘ABW -YOIVYL) “SUOT}VIG WoOlyeATosqO—L “OT 
alld Pe ea OG See 3 bel 


kon, 6 
“dy puge 
vy 4/1 
‘AO YIEZ 
yy ¥2E1 


ok 


vIdnnjoy 


‘Ua 090 


a ee 20 08 Gel 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 631 


006 


‘vus-oftyoepy ye yydag outeukg pur [edcT Bog Ua UdoA Jog UWOTVVIMOQ—g “Olof 


(uyeuhp) \\ydaq Dok] 


089 OF OF 06 O008LL 028 , 008 LL 


Dull OAZ/ AVF] 
ce oS We (CNe soe 


02 


0€ 


OV 


Janay vas Uva 


(lL) 


EIGHTH PACIFIC SCIENCE CONGRESS 


632 


pes temas POG 0.9 8 Wm a Gus i Se Ge See 
oe/ ™~ 

" we 2 
on oe | DH 
wa qy dy 
fe a ve \ ye J 
091 DRAG be hp e \ i Ar 
ee yas a8 a Ol] 

: se Lh 
ee ee AS \ se Be Fe a aN 
fe 5 \ Af! 
ON ee Ay 
aN WAN Ses 

wy 091 w: aN 


, a ae 
loo CN mi es 


vu OAZIYIO HY 


ey Sree 


WAG Ik A 
Oe 


5 

" : 
S 2 % ‘ 2 bes ae if , r 
: ¥ a W i es, “2 4 y x 
2 @O © © OTE) @* @*® 2) ee @ a @ @ & co 4B = la 


viah) (027 ‘pouisny ‘oul avohiy ‘rune odziol| yo sfene] v2¢ uvep) fo Suoljoum\ 6 814 OF UTIDEERDAS OS ey He) We SAS BMIOM 6 # 


633 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS 


02! 


CE] 


‘dag 


“Bay We Aine UL aune. w9 Avy) as dy Ur YY Ye 


OM Hc Bo cog Bese Bog Bars Boccs Bove Zour Woe B an Qh coeSesc ee ar Ber oes Bhar Soran cea Meese er ble Seer Bars ar Bese dlablc SoBe Biker 
vlafy 
PR IPR AR dy 
DIA ne SN ee 
ag 4 . * 007 
DN? ey 
02] a lore 
m% 6} ie I AG 


W 09/ 


# 08) 


ae oN OO! 0&2 
fh Str ee 


O)OWISNSY 


DuI9 OAZI2DLY 
cl Sa Ml 


Ose 


NP 


wus 0AZz220HY 


022 ‘a 
Oz 
x 
abe 
i 062 
Wt 
Cee 092 
ae © Nhe 
¥ 
EI 082 
= 
ee e aya 
PINS 
yy pore SS) ‘ a ’ ’ ’ 4 e00 0 ’ a eve 
Seen oe igo ea : 
‘5 o Sua mf 6 1) ©@ ® @ f 
2 © @ OL ONO” aor 
ayy Ca] Goainy “erg ayo) ug alznAY Jo s/2Ha] vee uoay fo suogDliA 6 84 ROTVEDHAS HEY WE) Ve BBE BIO 6 


HLIGHTH PACIFIC SCIENCE CONGRESS 


634 


,O0l 


"SUOIqUIS 


[eplL Jo. suotyIsog— ol ‘DI 
oGEl o¢l 


OZOWISN\Y 
po = 


a fe) 


NASNOH 


o8 Cl 25 


VARIATION OF THE KUROSHIO NEAR THE JAPAN ISLANDS aD 


Feb. 6th ~ 13th, /952 Apr. /7th~ 22nd, 1952 


136 138° 140° 136 138 140° 


5 ——————— ° 
Ne = 
/ SS 


136° 138° 140° 


Fic, 11.—Horizontal Distribution of Water Temperature at 200 m Layer. 
(Feb._May, 1952) 


EIGHTH PACIFIC SCIENCE CONGRESS 


636 


H 8 
St 


“BULLS 


oftysey ye [eae] veg uve Apleq fo uonjvlaeA oIpotaag—zy Oi i 


“Apne wi, aun’ yg 
Ge Se sea (6) 9 a Ee Ve OY A 9 P 


2 


ee 2 


SEDIMENTATION IN THE DEEP SEA 


By HANs PETTERSSON 
Oceanografisca Institutet 
Goteborg 4, Sweden 


A new era in submarine geology was opened through the develop- 
ment of the new technique first used from the Swedish Deep-Sea Expe- 
dition with the “Albatross” in 1947-48. Cores of unprecedented length 
approaching 20 metres were raised from great depths by means of the 
Nullenberg piston-core sampler. The thickness of the sediment layers 
in the open oceans was for the first time measured by means of Wei- 
bull’s seismic reflexion method. The water-layers immediately above 
the deep-sea bottom were sampled by F. Koczy and their content of 
suspended particles studied by Jerlov, whereas detailed achograms of the 
bottom configuration down to depths of about 7000 metres were re- 
gistered by a new kind of echograph, revealing the microstructure of 
the ocean floor. Finally, the first values were obtained of the geothermal 
gradient in the deep-sea deposits by means of a geothermometer plunged 
into the bottom to a depth of over 10 metres. My short summary to be 
given here of the new aspects obtained through this and through fol- 
lowing expeditions (Danish, British and American) will be limited to 
sedimentation in the deep sea, as revealed mainly through the study 
of the long “Albatross” cores, especially through work by Gustaf Ar- 
rhenius, geologist to our expedition, for a number of E. Pacific cores. 

The 200 and odd “Albatross” cores were taken along a course of 
over 40,000 nautical miles in all three oceans. Mainly for technical 
reasons, the course was laid near the Equator. Our studies have prin- 
cipally been directed towards stratification, rate of sedimentation, total 
thickness, radioactivity and, to a certain extent also, diagenetic altera- 
tions, sources and transportation. 

Our long cores revealed that stratification of the sediments, earlier 
considered as rather exceptional, is on the contrary very common, es- 
pecially near the equator, where the equatorial current system gives 
rise to zones of divergence with upwelling deep water, rich in nutrient 
salts and consequently also in plankton-vegetation and -population. 
Highly spectacular cases of abrupt changes in the composition of the 
sediment, especially transitions from Red Clay to Calcareous Ooze and 
vice versa, were often found. From his study of the S. Pacific cores 
Arrhenius has been able to draw conclusions regarding the paleocli- 


637 


638 EIGHTH PACIFIC SCIENCE CONGRESS 


matic conditions and the stability of the surface current system during 
the Quaternary Age. On the other hand, cores of apparently homo- 
genous Red Clay, up to 15 meters long, have been raised both from the 
Atlantic and especially from the Pacific depths, the lowest strata of which 
were formed during late Tertiary Time. ‘This first evidence of Red Clay 
of Tertiary age has forced us to a revision of our earlier views on the 
formation of this sediment, largely based on the hypothesis of the lime- 
dissolving power of the ice-cold Antarctic bottom current. This ex- 
planation cannot well hold for the formation of Red Clay in the Ter- 
tiary age. I suggest that the lime-dissolving power of magmatic volatiles 
from the substratum affords a more general explanation. As regards 
the rate of sedimentation there are at present three ways of obtaining 
at least approximate values. One is through biological analyses of the 
foram tests which, through the work of Schott in Hannover, Phleger 
and his co-workers at Scripps Institute, Ovey and Wiseman in London 
a.o., have yielded unmistakable proofs of past climatic changes, which 
have been brought into relationship with paleoclimatic variations, es- 
pecially the cold ice stages and the warm interglacial stages during Qua- 
ternary Time. A clear-cut time relationship has so far not been estab- 
lished, but recent work by Wiseman in London seems to open promis- 
ing prospects to this direction. Another method, especially by Arrhe- 
nius, is based on the assumption of a constant rate of accumulation of 
titantum from the “‘lutite veil” settling on the ocean floor. Recent 
work by Correns a.o. have, however, raised doubts on the general ap- 
plicability of titanium-age determinations. 

A third method which we have developed and pursued in Goteborg 
in collaboration with specialists in Vienna and in Brussels, makes use 
of radioactive age-determinations. ‘The surprisingly high radium con- 
tent of abyssal sediments, especially of Red Clay and of Radiolarian 
Ooze, first discovered by Joly of Dublin nearly half a century ago, re- 
mained unexplained, until a team of workers from Scandinavia and 
Vienna took up the problem 20 years ago. ‘The results proved that 
the scarcity of radium in sea-water, about one sixth to one seventh of 
the equilibrium value dissolved uranium, was due to a precipitation 
of the intervening element ionium on the deep-sea floor, where it gives 
rise to radium. This opens a possibility of age-determinations from the 
known rate of decay of ionium, viz. to 4 in 83,000 years to 4 in 
166,000 years, etc. A chronology of the last 300,000 to 400,000 years 
appeared possible from radium measurements in layers at given dis- 
tances from the sediment surface. Early attempts according to this 
method made by Piggot & Urry appeared to conform with theory. Later 
measurements by Kroll in Géteborg on a much more extensive material 
from the “Albatross” cores, have proved the distribution to be much 


SEDIMENTATION IN THE DEEP SEA 639 


more complicated, possibly due to radium leaving its mother element 
ionium through a diffusion process. Anyhow approximative age-deter- 
minations, based on the radium content near the sediment surface have 
given rates of sedimentation as low as ] mm. or even less in 1,000 years 
for the central Pacific Ocean. 

A perfected method for uranium determinations, elaborated by 
Hecht in Vienna in collaboration with Kroll, has shown that the high 
radium concentration found in the surface of Pacific Red Clay, up to 
50 units of the 12th decimal place, cannot be explained as due to ura- 
nium-supported radium, The uranium content is rarely more than a 
few units of the 6th decimal place corresponding to only 1 unit of the 
12th decimal place for radium. 

Thanks to the recent work by E. Picciotto in Brussels, adopting 
the photographic method, it has for the first time become possible to 
measure the concentration of ioniwm and of its isotope thorium in deep- 
sea deposits, a technique which may open a more certain way towards 
radioactive age-determinations. 

Summing up the results found from these different methods, we 
may say that the sedimentation rate in the equatorial Pacific Ocean 
is of the order 1 to a few mms in 1,000 years for Red Clay, and twice 
to four or even five times higher for calcareous ooze. One of our longest 
Red Clay cores from the central Pacific Ocean of 15 meters should, 
therefore, with its lowest strata carry us back 15 to 20 million years in 
time. 

However, studies of the East Pacific cores by Arrhenius and of the 
Radiolarians in the deep-sea sediments by Riedel have proved that there 
are cases when the rate of accumulation of sediment assumes negative 
values, owing to the upper layers having been carried away by eroding 
bottom currents laying bare older sediments.* This also may lead to 
radiolarians of Tertiary age becoming mixed in the same layer with 
more recent ones. 

The most surprising results from the soundings of the sediment 
thickness made by Weibull’s reflexion method, was the small thickness 
of the sediment layer found in the Pacific and the Indian Oceans, rarely 
over a few hundred metres, whereas in the Atlantic Ocean between Ma- 
deira and the Midatlantic Ridge Weibull found a maximum thick- 
ness of over 3,400 metres. The low values from the other oceans have 
recently been confirmed through measurements by the refraction meth- 
od, carried out from American and British expeditions. These surpris- 
ingly low values are only a fraction of the theoretical thickness com- 
puted by Kuenen and others. For this large discrepancy no satisfactory 
explanation has so far been advanced. 


* Already reported from the NW Atlantic Ocean by M. Ewing & Co-workers. 


640 EIGHTH PACIFIC SCIENCE CONGRESS 


Owing to a faulty construction of the clockwork used with the 
“Albatross” geothermometer only two dependable values were obtained 
for the geothermal gradient, both from the equatorial Pacific Ocean, 
viz. an increase of 1°C in 22 and in 26 metres, i.e., considerably higher 
than the average value for the continents, whereas for general reasons 
one would have expected a lower value. A third value found in the 
beginning of 1948 in the E. Indian Ocean, which at that time appeared 
suspiciously high, was 1° in 4 metres. 

High values of the geothermal gradient in deep-sea sediments have 
recently been found also by Revelle on the “Capricorn” Expedition, 
where a thermo-electric geothermometer of smaller depth range, due 
to Bullard, was used. The high values for the geothermal current com- 
puted from these measurements is highly puzzling. It may possibly be 
explained through a wide-spread although latent volcanism of the deep- 
sea floor, for which much independent evidence exists. 

Regarding diagenetic changes in the deep-sea sediments Arrhenius 
has proved induration due to silica, diffusing from dissolving silica- 
skeletons to occur in cores from the Eastern Pacific. Also the diffusion 
of manganese may lead to a formation of surface crusts, as has been 
observed already from the Challenger Expedition. That a consider- 
able vertical migration of various components in the sediment takes 
place is evident. Special interest adheres to the cases of deep-sea sand, 
such as we from the “‘Albatross’”’ found in great depths, especially in the 
Romanche Deep in the equatorial region of the Atlantic Ocean. ‘There 
coarse sand, consisting of angular fragments of mafic rocks, testified to 
a contribution to the sediments from the substratum. ‘The great rug- 
gedness of the deep-sea floor indicates that tectonic forces are active, 
leading to differential movements at which a crushing or mylonisation 
of the rock material may well occur. Other instance of deep-sea sand 
obtained in cores taken further west in the same ocean indicate a quite 
different origin, viz. from the coastal plateau of a continent or of a 
large island. Also a displaced shallow-water benthonic fauna and frag- 
ments of vegetation remains speak for a continental or island origin. 
The great distance of the place of the find, some 500 nautical miles 
from the coast of S. America, makes the transportation problem highly 
puzzling. 

These few instances of the results found from extensive investiga- 
tions of the ‘“‘Albatross’’ cores prove how extremely rich in promising 
results is the new science of deep-sea geology in the development of 
which American and British investigators, like Ewing, olstay, She- 
pard, Phleger, Bullard a.o., have taken such a prominent part. Here 
obviously is a field for international cooperation like that established 
half a century ago with the International Council for the study of the 


SEDIMENTATION IN THE DEEP SEA 641 


shallow and economically important parts of the seas round NW Europe. 
It is to be hoped that the “Joint Commission of Oceanography” set up 
by the UNESCO at the Brussels meeting in 1951, aided by the new 
founded “Deep Sea Journal,” will lead to such an organization of the 
work in great depths. The Pacific Ocean is at the same time the vastest 
and the most interesting field of such research. It is my hope that this 
congress will adopt a resolution recommending international coopera- 
tion in this vast new field of scientific research. 


pad 
(ore Ae, 
Oe halal : adi bi 


i ft 
rt 
NO oes si 


‘ 


won i oe 
TEN ae pT P MG ty Wider pl ie ta teal ya Ap eg RD en Sed RO, eae ek oe i seieup: i i mics 
wy Svea ies ; ’ Pi 
TARR FALE ete! nn tne 


base Aiea fy ‘witke onpeniiaae 


pee Dh Dei ¥ c 
} eth ae) or Tag ; 
ny ah, Ne pt | 


Lec: he ; rae yo cy 
‘pPaMey: cia Wagede) EY ; 
onl?) 

vaethe rea 
aorta tee 
a, % Leer s 


a whith she pha yen caer 


va), ve) : 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 


By Joun P. TuLity 
Pacific Oceanographic Group 
Nanaimo, B.C., Canada 


INTRODUCTION 

Recent examination of nearly two thousand serial observations in 
oceanic and coastal waters of the northeast Pacific Ocean has revealed 
several general characteristics in the structure of the water in these 
seas. Sea water occurs in zones of appreciable thickness with respect to 
each property, and within each zone the measure of the property tends 
to be a simple function of the logarithm of depth. 

These concepts of structure are illustrated in Figure 1 with simple 
examples of salinity and temperature data. These have been plotted 
in the usual way as natural functions of depth (natural-plot) and as 
functions of the logarithm of depth (log-plot). These illustrate the 
nature of the transformation. It is evident that there are two water 
masses represented by the more homogeneous layers. ‘These may be 
designated as the upper and lower zones, which are separated by a tran- 
sition or boundary zone. It is also evident that within each zone the 
values of the properties are linear functions of the logarithm of depth 
(logarithmic gradients). 


EXAMINATION OF OCEANOGRAPHIC DATA 


The properties of the water may be observed at a series of depths 
from the surface downwards (serial observation). From such data the 
vertical structure is usually illustrated by plotting the values of the 
properties as a function of depth and interpolating a smooth curve 
through the points. This procedure is becoming more precise as instru- 
ments, such as the bathythermograph, are being developed to make 
continuous records while being lowered in the sea. The distribution 
of properties in a locality is observed by making serial observations at 
a number of positions in as short a time as possible (synoptic survey). 
From these data plans and vertical sections are drawn, showing inter- 
polated isometers of the sea water properties. 

In this analysis of the data from serial observations, the values of 
the properties were plotted as functions of the depth on semi-logarith- 
mic graph paper, and the points were joined by straight lines. In gen- 
eral, small deviations were ignored and the best straight line was drawn 

Ti 


643 


644 EIGHTH PACIFIC SCIENCE CONGRESS 


through groups of points. It was usual to examine the deep zone first, 
since it was the easiest to interpret. Then the upper zone was located. 
The remaining points fell in the boundary zone, which was interpreted 
in one or more segments as indicated by the data. Although this proce- 
dure is extremely simple, there are opportunities for differences of opin- 
ion, as in any method of interpretation. Therefore, it is necessary to 
adopt certain conventions to insure uniformity. 

The surface observation was plotted at unit depth (0.1, I, or 10). 
This is justified because the surface sample in a serial observation is 
invariably taken at some depth ranging from one-tenth to ten meters. 
Simple Structure 

Simple structure occurs when there is a regular alteration of water 
masses and transition layers. These appear as nearly homogeneous 
zones and boundary zones.- There is a considerable variety of these sim- 
ple structures including the types shown in Figure 2. Although most 
of the data indicated that there were three zones present, there were 
cases where either the upper or deep zones were absent or had become 
homogeneous. However, all of these examples indicate a simple struc- 
ture involving a single water mass, or one well-defined mass overlying 
another. This is the basic structure, and all others are modifications 
or derivatives of it. 

In the case of the temperature no distinction is made in the classi- 
fication between a negative gradient (temperature decreasing with 
depth) and a positive gradient (temperature increasing with depth). 
Complex Structure 

Certain complex structures such as those shown in Figure 3 cannot 
be reduced by approximation to simple structures. In these there are 
two or more segments in the boundary zone in which the successive 
gradients of properties continue to increase, or decrease, rather than 
alternate in slope. In the limit, where there are many such segments, 
the log-plot appears as a curve, and the straight line rule cannot be 
readily applied. However, in the majority of cases, there are no more 
than two or three such segments, and the interpretation is obvious. 
Conventions 

There were instances, particularly in the boundary zones, where the 
data could be interpreted in several ways, as shown in Figure 4. Where 
three or more points fall on a straight line, as shown in the boundary 
zone in structure A, there is no doubt about the interpretation. Simi- 
larly the two points in the boundary zone of structure B define the 
position and slope of the boundary but are no guarantee that it is a 
logarithmic gradient. ‘The boundary zone in structure C may be in- 
terpreted as having three points, as shown by the solid line, or as having 
only one point, as indicated by the dashed lines. Evidently the true 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 645 


structure is between these limits and cannot be better defined from the 
data. Structure D illustrates another indeterminate boundary that may 
be interpreted as having two or one point. In structure E it is evident 
that there is a boundary because of the discontinuity between the upper 
and lower zones. However, since data in the zone are lacking, it may 
be interpreted by any gradient between the limits of the dashed lines. 
The conventional interpretations are indicated by the solid boun- 
dary zones in the figure, and the data are divided into two groups. The 
first includes all zones such as A and C where the gradient is defined 
by three or more points, and the probable error can be determined from 
their scatter. The suitability of the concept of logarithmic gradients is 
based on such data. Secondly, all zones defined by two points or less 
are grouped together because the plot cannot be analyzed statistically, 
and there is usually some doubt about the interpretation. These two- 
point zones provide no proof of the validity of the concept. They may 


be regarded as supporting evidence because they afford no contradic- 
tions. 


Probable Error of the Log-Plot 


TABLE I 
SUMMARY OF THE EXPERIENCE OF FITTING THE LOG-PLOT TO SERIAL 
OCEANOGRAPHIC DATA 


ZONES 

UPPER BOUNDARY LOWER TOTAL 
TEMPERATURE ie 
Zones examined 225 436 207 878 
Zones defined by three or more points; 111 a 286 7463 ae 424 jj 
Probable Error (T°C) es Oy | eae 

Zones defined by two points or less | 114 “so (Nia 454 

SALINITY 

Zones examined 244 | 384 | 209 837 

\|Zones defined by three or more points “144 | 191 | 196 ddl 
Probable Error (S°/,,.) ~ 0.07 | 0.08 | 0.04 | | 
|Zones defined by two points or less. | 100 i 1030 soos 306 | 


A summary of the general experience is shown in Table I. Blocks 
of winter and summer data were taken from serial observations in the 
ocean, well offshore, and from Georgia Strait, which is an enclosed sea 
dominated by a large river. This analysis includes only a small part 
of the data that have been studied by this log-plot method. 


646 EIGHTH PACIFIC SCIENCE CONGRESS 


The number of points in each structure is limited by the intervals 
of the serial observation, and could always be fitted by a plausible log- 
plot. More data could be taken from bathythermograph observations 
and in the majority of cases confirmed the log-piot interpretation. How- 
ever, further examination of bathythermograph data, as summarized 
in Table II showed that there was a small proportion of structures that 
were not logarithmic. Generally these plots appeared as long curves, 
somewhat similar to an inverse function of the depth. As will be dis- 
cussed later, these are probably immature gradients which eventually 
will become logarithmic. 


TABLE Ii 
SUMMARY OF THE EXPERIENCE OF FITTING THE LOG-PLOT To BATHY- 
-THERMOGRAPH DATA 


———— 


eine | =e paar ZONc een | 
UPPER BOUNDARY =| WER | 
Zones examined 598 1329 | 543 
Logarithmic gradients _ 590 “1169 = 515 | 
Proportion (%) 88.2 | ono : 


Step Structure 

Considerably more than half the zones were defined by three or 
more points. In the deep zone the log-plot is the best representation 
of the data within the limits of error of the observations. ‘The scatter 
of points increases towards the surface, in the boundary and upper 
zones, to something more than twice this limit of error. 

The reason for this increasing scatter towards the surface was 
sought in an examination of continuous data records from the salinity- 
temperature-depth recorder and the bathythermograph. These revealed 
step-structure as illustrated in Figure 5. The structure within each zone 
consists of a number of small, nearly homogeneous layers, separated 
by narrow boundary zones. ‘The mean slope through this step structure 
is the logarithmic gradient defining the major zone. 

The same situation observed in the usual way with sea water sam- 
pling bottles at discrete depths would indicate a random scatter along 
the mean gradient. Such serial observations do not define the structure 
completely, and the only possible interpretation is the logarithmic gra- 
dient most nearly approximating the general slope in the zone, as de- 
fined by the dashed line in the figure. 

This interpretation stresses the principal structure, ignores the small 
variations, and accepts the error implied in the scatter of the points. 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 647 


However, in most cases, there is considerable short-term fluctuation in 
the fine structure and even in the dimensions of the boundary and up- 
per zones. Examination of several series of hourly bathythermograph 
observations, such as illustrated in Figure 6, indicated that this fine 
structure was transient, that the thickness and depth of the major zones 
varied with time, but the principal characteristics such as the gradient 
and range of values of the properties in the major zones were constant. 
It is evident that the fine detail is not significant, within the limits of 
the usual serial observation, and that the structure is adequately de- 
fined by the simplest interpretation. 

From these considerations it may be concluded that a zone is a 
layer of water in the sea where the gradient of a property is a single 
linear function of the logarithm of depth, within small limits of error. 


Structure of Independent Properties 

Figure 7 illustrates the temperature, salinity, density (c,,,,), and 
dissolved oxygen structure from a single serial observation, which is 
representative of the general experience. The structure with respect 
to each property is readily interpreted by the log-plot technique but 
the structure do not coincide. 


TABLE III 


SUMMARY OF EXPERIENCE OF FITTING THE LOG-PLOT TO SERIAL 
OCEANOGRAPHIC OBSERVATIONS IN THE DEEP ZONES OF THE 
NORTHEAST PACIFIC OCEAN 


ie ZONES EXAMINED PROBABLE ERROR | 
! Fess oa, 
| Temperature | 400 | +0.047 | 
| Salinity | 400 ea eeOO15 (i tas | 
i Density (¢,,,) | 400 | 0.018 | 


Sufficient examinations, as shown in Table IH, have been made 
to prove that the log-plot fits the density structure as well or better than 
it fits the temperature or salinity structure, but as shown in Figure 7, 
the structure is a combination of these. The distribution of dissolved 
oxygen is also found to be logarithmic, but the structure is distinct from 
these others. Similar conclusions were indicated by the cursory exam- 
ination of some dissolved phosphate data. 

Evidently the structure with respect to each independent property 
is unique. The limits of the temperature zones are different trom the 
limits of the salinity zones, and the dissolved oxygen structure is dif- 
ferent from both. This is reasonable since the advection and dissipation 
of these properties are independent functions. 


648 EIGHTH PACIFIC SCIENCE CONGRESS 


Formulation of Structure 
This experience indicates that the value (P) of a property at a 
depth (z) in the sea may be expressed by 
P =k ilogz+ec (1) 
where k and c are constants within the limits (z, and z,) of a particular 
zone. However, there is some variation in the data and other curves 
of similar form were examined to determine if as good a fit could be 
obtained. Curves of the forms 
Te LOPE (Zoi tan 
log P = kz '¢ 
log P = k logz +e 
logeP) = «h (logz, —-ylog z;)) +c 
loge) ki) a) 2a ene 


log Ro) ky) lop Gar az) tac 
oR 
Pie cachet 
Po iG 
k 
pene 
ee 
Fea em SSP Se a, 
Zo hy 
na k 
Bo esate asic 
jee SR, TN 
Za uae a 


were examined. However, only Equation | provided a simple relation, 
and subject to further discussion, it is accepted as the most plausible 
expression of the facts. 

The slope of the gradient (k) may be evaluated from the data as 


P, — P 
Fe eta la (2) 


where the subscripts refer to the values at the upper and lower limits 
of the zones. 


The constant (c) may be evaluated by setting z = 1 in Equation 1. 
whence 
Gere (3) 
where P’ is the abscissa of the gradient extrapolated to unit depth. 


CHARACTERISTICS OF THE LoG-PLoT 


It is important to realize that the log-plot is a technique for inter- 
preting the sea water structure from serial observations. It is realistic 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 649 


because it represents the actual structure of the sea as observed. It has 
many advantages in the study of regime and mechanism in oceano- 
graphic systems, because it emphasizes many phenomena which are 
readily overlooked in a natural-plot. 


Linear Interpolation of Data 

When data from serial observations are plotted on a natural depth 
scale, the gradients are usually interpreted by a free-hand continuous 
curve as shown in Figure 1. In many cases this is subject to dispute, 
and in any case it does not define the limits of the zones. Furthermore, 
the structure in the zones near the surface is lost in the small depth 
scale, which is necessary to include the deep zones where very little 
structure is evident. 

The log-plot provides a conventional interpretation of serial oceano- 
graphic data which is realistic, and acceptable. The linear interpola- 
tion between the elements of data, and the unmistakable definition oi 
the zones are ideals which have long been sought. Furthermore, the 
display of the data coincides with the degree of interest in most oceano- 
graphic studies, because it emphasizes the structure in the zones near 
the surface, while retaining the definition of the deep zones, and the 
continuity of the whole structure. 


Demarkation of Zones 

In the log-plot the limits of each zone are sharply defined by the 
intersections of the straight lines. This characteristic allows a more 
critical examination of the data than any other technique of interpreta- 
tion. Furthermore, it is not necessary to have continuously recorded 
data to determine the limits of a zone; it is only necessary to have 
enough observations to define the gradients of the properties. 

The intersection of the gradients at the limits of the zones suggests 
that the structure is discontinuous at these points. There is some doubt 
whether these limits are real discontinuities or not. ‘There is some 
lag inherent in the S.T.D. and bathythermograph, which are the best 
recording instruments available, so that the slight rounding of the cor- 
ners shown in their records are not altogether reliable. Most records 
show a small step at the limits of the zone, such as illustrated in Figure 
5, but the significance of this has not been determined. 


Index Salinity 

In the examination of these data it has been noted that the salinity 
at the upper limit of the more homogeneous zones and sub-zones tends 
“to remain constant along the line of flow. For this reason, it is termed 
the index salinity. However, the salinity at the upper limit of the 
boundary zone is not constant. On examination of the data in Georgia 


~ 


650 EIGHTH PACIFIC SCIENCE CONGRESS 


Strait, as shown in Figure 8, it was noted that the index salinity re 
curred within 0.2°/,, S at the upper limit of the zone at every station 
in the vicinity of the Fraser River. The plan and cross-sections of the 
data were interpreted by contours of depth of this index. This illus- 
trates the structure of the region much more realistically than the usual 
contours of arbitrary salinity values. 


Indication of Errors 

In the course of plotting the data occasional lone points were found 
that deviated from the log-plot defined by other points above and 
below. On checking the calculations and data, errors were found, or 
were possible, in practically all cases. The accumulation of such expe- 
rience has led to the policy of discarding single observations that do 
not coincide with the log-plot. 


Calculation of Dynamic Height 

The calculation of dynamic height requires the mean density 
through the column of water defined by a serial observation. ‘The 
usual procedure is to compute the mean density of each sample and 
integrate with respect to depth. Having established the validity of the 
log-plot as the best representation of the data, it is permissible to reduce 
the labour by calculating the mean density in each whole zone. 

Where the limits of the zone from the surface downwards are 2, 
and z, the mean density (c) in a zone may be written 


fg ] Z3 
OP) = ae i oz (4) 


where o is the density in situ of the water at the limits z,, 2, etc., ex- 
pressed as (p — 1)1000.. But it has been shown that 

o = klogzte (1) 
Setting this in Equation 4 


a k Z3 
Ces (log z - c)dz 


k c Cc 
= * [a dog 2, + > —1) 4 (og + [| 


in which k and ¢ may be evaluated in terms of the data as shown in 
Equations 2 and 3. Whence the expression becomes 


(9) 


oo fee SS eee 
logy 2 eiloe es k k 


Coma Cr 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 651 


It is not necessary to calculate o at every observation, rather the 
mean values of temperature and salinity may be evaluated similarly to 
Equation 5, and the mean value of ¢ computed from them in the usual 
way. Having evaluated g in each zone, these may be treated in the 
usual manner to discover the dynamic height. 

This procedure reduces the number of calculations and is probably 
more accurate than the usual computations based on linear interpola- 
tion between observations. 


DEDUCTIONS REGARDING MECHANISM AND STRUCTURE 


Origin and Behaviour of Water Masses 

It has long been recognized that sea water occurs as masses, each 
having characteristic values of temperature, salinity or other properties. 
Usually these water masses are generated in some locality such as the 
Arctic, the Tropics, estuaries, etc. As they move out from the sources 
they over-ride the more dense, or under-run the lighter waters that are 
encountered enroute. 

It is supposed that a water mass must be subject to internal turbu- 
Jence if it is moving at an appreciable rate, since the Reynold’s Num- 
ber in all natural flows far exceeds the threshold of turbulence. Each 
water mass tends to pursue its own course and speed and so is inde- 
pendent to some extent. Consequently, there is a region of boundary 
turbulence resulting from the shear between water masses. 

Turbulence, regardless of its course or location, may be regarded 
as the random exchange of fluid elements normal to the plane of mo- 
tion. In the vertical direction it is statistically similar to diffusion, and 
results in exchange of properties through a zone. 

This is indicated by the derivatives of the observed relation (Equa- 
tion 1) 


= : (6) 


where z refers to the total depth from the surface. This implies that 
the limit of every zone is virtually at the sea surface. 

The slope constant (k), as shown in Equation 2, depends only on 
the thickness of a zone, and the difference of the values of the properties 
at the upper and lower limits. It describes the physical character of 
the zone at the instant of observation, and is not, by itself, indicative 
of the mechanism by which the zone is created. It is possible to ima- 
gine a situation where there were two water masses with identical turbu- 
Jence (energy) characteristics. An upper, boundary, and lower zone 
would be formed, each having a different gradient of properties. ‘] he 
mechanism of mixing is revealed by the form of the relation, and the 
source of the exchange is truly at the surface. 


oP k 


652 EIGHTH PACIFIC SCIENCE CONGRESS 


On further consideration, it is evident that in any case the source 
(or sink) of the property may always be referred to the surface, since 
the process of mixing is continuous at all depths, even though the rate 
may vary. 

There is a temptation to associate each zone with a region of a 
particular degree of turbulence. For example, the nearly homogeneous 
zones might represent the region of internal turbulence in a water mass, 
while the boundary zone would represent the extent of the added tur- 
bulence induced by the shear between water masses. However, this 
would imply that the structure at a single position was an expression 
of the energy characteristics of the system. ‘The structure reveals the 
mechanism, and is surely a result of the energy characteristics, but the 
energy distribution can only be expressed by the difference between 
structures. Furthermore, there is no quantity of time in the definition 
of the structure (Equation 1) and finally it has been shown that the 
slope of the gradient can be readily explained by the dimensions and 
distribution of the water masses. 

It is concluded that each zone is an independent structure, be- 
haves as if it were the only zone present, and as. though its source or 
sink were at the surface. This concept is implied in the evaluation of 
the constant (c) in Equation 3. It is supposed that there is a surface 
layer of unit thickness, and of constant properties (P) and that it is con- 
tinually being renewed, so that it acts as an inexhaustible source, or 
sink. 

In the simple case where the water masses are not affected by ex- 
ternal factors such as insolation or precipitation, the structure in each 
zone tends towards homogeneity. But at the same time the conditions 
at the limits of the zones are being renewed by transfer of water from 
elsewhere. Each zone is a source and sink for its neighbours, so that 
one zone cannot become homogeneous while the character of its neigh- 
bours remains unchanged. Rather the gradients in the several zones 
tend to become congruous, and then the whole structure tends to degen- 
erate towards homogeneity. ‘This process is well illustrated by the se- 
quence of salinity observations shown in Figure 8. ‘The step structure 
is very apparent near the mouth of the Fraser River, but with increasing 
distance the steps become less and less apparent as the structure becomes 
mature. 

The tendency towards homogeneity can only be opposed by the 
introduction of new sources of properties. For example, the surface 
water may be heated diurnally so that a gradient of temperature, as 
shown in Figure 9A, is formed. During the night the surface is cooled, 
or the zone is mixed to homogeneity by the wind so that a single step 
structure is formed as in Figure 9B. ‘The effect of further heating and 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 653 


homogenizing is indicated in structures C and D. Eventually a step 
structure such as E may result. It is important to realize that each 
advection must tend toward congruity as it becomes deeper, and more 
mature, because once removed from the source at the surface no further 
advection can take place, and the homogenizing tendency proceeds un- 
checked. ‘Thus step structure degenerates towards a simple logarithmic 
gradient at maturity. Obviously step structure with respect to any 
property can occur at any depth or zone where a new source of sink is 
provided. Excellent examples of such deep phenomena occur in the 
margins, and confluences of the great ocean currents. 


The Meaning of Structure 

Studies now in progress indicate that each structure is a historical 
record of the influences and processes which the water masses have 
experienced in the sea. ‘These are too extensive for general discussion 
here, but one simple example may be cited for illustration. 

The origin of the minimum temperature zone in the northeast Paci- 
fic Ocean has been made apparent by the seasonal sequence of structures 
shown in Figure 10. In March, towards the end of winter the upper 
zone waters are isothermal and at a minimum temperature, somewhat 
colder than the top of the deep zone. As the season advances the sur- 
face waters are warmed by vernal heating. This process may be re- 
garded as the accumulation of heat from successive afternoon effects 
and wind mixing, as illustrated in the sequence of structures in Figure 9. 
The warm upper zone continues to increase through the summer to 
mid-September. However, in the autumn the surface cools and the 
violent winter storms mix the waters. In this process the upper zone 
cools but continues to become deeper. Eventually its boundary inter- 
cepts the remnants of the previous winter boundary, and finally the 
characteristic late winter structure is formed. 


CONCLUSION 


It is evident from these remarks that the concepts of zones and 
logarithmic structure are at least plausible, and the consequent tech- 
nique of the log-plot affords a new and powerful oceanographic tool. 
The present examinations have been limited to the coastal and oceanic 
waters of the northeast Pacific Ocean, but it appears that the principles 
involved should be general. However, such a conclusion must await 
study of data from other places, and examination of the ideas by other 
oceanographers. It is hoped that such studies will enrich the present 
experience. 


654 


FIG. 


Fic. 


Fic. 3 


FIG. 


FIG. 


FIG. 


FIG. 


Fic. 


Fic. 


Fie. 


EIGHTH PACIFIC SCIENCE CONGRESS 


ILLUSTRATIONS 


1.—Idealized examples of simple salinity and temperature structures 
showing the characteristics of the natural-plots and log-plots. 

2.—Types of simple temperature and salinity structure. There is an 

upper and lower zone separated by a boundary zone. LHither the 

upper or lower zone may be absent or they may be congruous. 

—Types of complex structure where the successive gradients of pro- 

perties in the boundary zone continue to increase or decrease from 

segment to segment. 

4.—Method of analysis of the logarithmic gradient in the boundary zone. 
The conventional. interpretation is indicated by the solid lines. Other 
possible interpretations are indicated by the dashed lines. 

5.—Bathythermograph, Latitude 50° 24’N, Longitude 131° 34’W, 0304, 
7 August, 1951. This illustrates step structure whose mean gradient 
approximates a logarithmic gradient within small limits of error. 
The circled points represent the standard depths that would have 
been observed in a serial observation. 

6.—Log-plot from a series of half-hourly BT observations in Juan de 
Fuca Strait, Latitude 48° 13.8’N, Longitude 124° 09’W, 4 July, 1952. 
These demonstrate that the hourly variation in the fine structure, 
and in the depth and magnitude of the boundary zone, are greater 
than the deviation from the best straight line through the points. 

7.—Log-plots of the serial observations at Latitude 54°21’ N, Longitude 
140°05’ W, on 0730, 10 August, 1950. These show that the structure 
with respect to each independent property is unique. 

8.—Application of the concept of index salinity in logarithmic structure 
to the illustration of oceanographic data. 

9.—Idealized temperature structures illustrating the formation and de- 
generation of step structure due to diurnal heating and cooling in 
the upper zone. 

10.—Idealized sequence of structures illustrating the annual temperature 
cycle in the upper zone in the northeast Pacific Ocean. (Reference 

. DOE) 


3. 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 655 


4 SALINITY 
26 Yo 30 34 26 “eo 30 34 
=i = 


meters 


1000 
TEMPERATURE 
20 0 °C 


meters 


500 


= 1000 = 1000 


NATURAL PLOT LOG - PLOT 


FIGURE 1 


H1d3a 


656 


KIGHTH PACIFIC SCIENCE CONGRESS 


SALINITY (S%o) 


TEMPERATURE (°C) 


FIGURE 2 


Hid3jQ 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 657 


SALINITY (S%c) 
30 


30 “oo 30 


BOUNDARY 


TEMPERATURE (°C) 
5 10 is) 


10 


FIGURE 38 


658 EIGHTH PACIFIC SCIENCE CONGRESS 


TEMPERATURE (°C) 


! 10 
Sf ale) oneall | 200 
Points | Points | Points 
Sey ae r i0o 
1006 


FIGURE 4 


TEMPERATURE (°F) 


40 °F 50 60 40 °F 50 60 

feet feet 
F100 
= 200 

{00 
300 
400 

NATURAL PLOT LOG - PLOT 


FIGURE 5 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 659 


TEMPERATURE (°F ) 


45 °F 50 


FIGURE 6 
TEMPERATURE SALINITY DENSITY DISSOLVED 
OXYGEN 
XG S%oo Ostp mg /| 


5 10 32 33 34 24 26 28 30 8 9 10 


100 


1000 


FIGURE 7 


660 EIGHTH PACIFIC SCIENCE CONGRESS 


oeere'123° 30' W Ng 


fF 
amt Yas 09 


Depth (feet) of index salinity (29.4%) in Georgio Strait 


20 


May 15—22,1950 


Index S alinity 
29.4 Ya 


100 


Salinity Zone Structure in Georgia Strait 


FIGURE 8 


SOME CHARACTERISTICS OF SEA WATER STRUCTURE 661 


TEMPERATURE (°C) 


FIGURE 9 


TEMPERATURE (°C) 


Summer 
Boundary 
Cs? 


Winter Boundary a 


MARCH JULY SEPT. NOV, DEC. MARCH 


ey TING ——| Ea COOLING ——>| 


FIGURE 10 


100 


1000 


meters 


100 


1000 


ON THE CIRCULATION IN THE NORTH PACIFIC IN 
RELATION TO PELAGIC FISHERIES 


By MicwitTaka UpA 
Tokyo University of Fisheries 
Kurihama, Yokosuka City, Japan 


On the charts plotted by the author, the semi-permanent boundaries 
of the water masses (fronts) in the Northwest Pacific adjacent to 
Japan, i.e. the Coastal Fronts, Oyashio Front (Polar Front or Subarctic 
Convergence), Kuroshio Front, Warm and Cold Fronts in the Japan 
Sea, Subtropical Convergence, Equatorial Counter Front, Continental! 
Front are shown in relation to pelagic fisheries grounds of tuna, skip- 
jack, Pacific saury and whales (Fig. 1). Briefly we can summarize the 
following three types of pelagic fishing grounds on the above hydro- 
logical point of view: 

(1) Those produced by the planktonic livings and fishes in the 
compressed zone of the optimum water temperature due to mere con- 
vergence (e.g. the skipjack fishing grounds in the northern boundary 
zone of Kuroshio and the Pacific saury fishing grounds near the Oya- 
shio Front), 

(2) Those produced by marine organisms due to the upwelling 
of the water of rich nutrients in the deeper layer obeying Nathansohn’s 
theory (e.g. the fishing grounds of sardine, squid, yellow-tail, bluefin 
tuna, mackerel, etc., or some varieties of this type), indicating dense 
“ concentrations near the coastal front and the fishing grounds on the 
eddies around the islands or capes (mackerel, flying fish, etc.) and 
around banks (skipjack, tuna and mackerel, etc.). 

(3) The combined fishing grounds of (1) and (2) types (eg. 
the marginal convergence of the upwelling area at the front of the 
cold water such as the fishing grounds of the albacore, whales, Pacific 
saury, etc.). 

Further we will inspect the oceanographic structure in the North 
Pacitic by means of the nucleus method. ‘The depth of the inter- 
mediate water S min. and the value of that depth during the period 
1931-41 were plotted in Figures 2, 3 and 4. 

The intermediate water in the Northwest Pacific may be con- 
sidered as the carrier of the rich nutrients which are produced in the seas 
of high latitudes and fertilizer resulting in the high production in the 
seas of lower latitudes. The prevalence of the cold water circulation, 


663 


664 EIGHTH PACIFIC SCIENCE CONGRESS 


i.e. the prevalence of the intermediate water, was associated with the 
anomalous Kuroshio conditions in recent years (1935-47). 

The northern intermediate water appears to extend conspicuously 
to south along the Japan Trench and invades in the sea basin south 
to Japan. Going south further, it descends to its deepest layer beneath 
the depth of 800 m. in the sea-region at about 34-24°N. with the sal- 
inity of 34.0-34.2 °/,, and rises again gradually up to the depth of 200 m. 
at about 5°N., showing the increase of salinity to 34.5 °/oo. 

The northern and southern intermediate waters collide with exch 
other in the zonal region of the latitudes of 12°-2°N., lying at about 
the depth of 200 m. for the former (the Northern Intermediate Water) 
and at about the depth of 800 m. (600-1000 m. depth) for the latter 
(the Southern Intermediate Water). 

Accordingly in that region the vertical distribution of salinity shows 
the double minimum which is produced by the stratification of the 
southern intermediate water beneath the northern intermediate water. 

The distribution of the depth and the value of the maximum 
salinity Sax: In the subsurface tropical water mass (Fig. 5) in- 
dicates obviously in the deepest layer (100-200 m. depth). Sax, lies 
in the regions of the North Equatorial Current (latitudes 20°-10°N.) 
and in the Kuroshio area. It lies in the shallowest layer (0-100 m. 
depth) in the western part of the North Pacific Saline Water (Salinity 
more than 35 °/,.), having its axis along the line of Subtropical Converg- 
ence (water temperature in the upper layer above the 100 m. depth in- 
creases suddenly in the south over this Convergence). 

In the Equatorial Counter Current area the depth of S,,,,. again 
rises to its shallowest (depth almost less than 100 m.) above the opti- 
mum angling depth of tuna with the salinity of about 34.8 °/,, or less, 
which corresponds to the belt of the cold water (water temperature 
less than those in the surrounding north and south). 

Beyond it to the south (latitudes 3°N.-3°S.), again the S,,,,. layer 
sinks beneath 100-200 m. depth with the high salinity of 35.0-35.7 °/o9, 
which corresponds to the water of the South Equatorial Current. 

The distribution of surface salinity in winter and summer during 
the period 1931-35 (Fig. 6) shows the expansion of the North Pacific 
Central Saline Water mass in winter, lying in the zone of lat. 20°-30°N. 
around the axis of 22°-26°N., 165°-180°E., and the shrinkage in sum- 
mer season in the period of 1931-35. 

The water mass of low surface salinity (34.0-34.3 °/,.) lying in the 
zone of the Equatorial Counter Current (lat. 5°-12°N.) which cor- 
responds to the Equatorial Calm or Equatorial Rainy zone, and also 


CIRCULATION IN RELATION TO PELAGIC FISHERIES 665 


to the belt of the cold water at the depth 100 m. appearing more re- 
markable in winter than in summer. 

In the region south from the lat. 4°N. to 3°S. we meet again the 
saline water mass of the Central South Pacific (salinity 34.5-35.2 °/,,). 

The northern and southern boundary lines of the Equatorial 
Counter Current (Equatorial Counter Front) lie at about 12°N. and 
4°N., corresponding to the theoretical results obtained by Dr. K. Yo- 
shida and others (1953). 


(ap) 
(orp) 
fos) 


EIGHTH PACIFIC SCIENCE CONGRESS 


ILLUSTRATIONS 


Fic. 1.—Principal Watermasses and the Fronts in the NW Pacific. Explana- 
tion of Notations: LC—Liman Current, NKC—North Korean Cold 
Current, JCC—Central Cold Current in the Japan Sea, EKC—East 
Korean Warm Current, TC—Tsushima Current, CCC—Continent 
Coastal Current, ConF—Continental Front, CF-—Cold Front in the 
Japan Sea, WF—Warm Front in the Japan Sea, KC—Kuroshio Cur- 
rent, OC—-Oyashio Current, ESC—East Saghalin Cold Current, OF— 
Oyashio Front, KF—Kuroshio Front, STC—-Subtropical Convergence, 
NEC—North Equatorial Current, ECF,, ECF,—Equatorial Counter 
Front, SEC—South Equatorial Current, ECC—Equatorial Counter 
Current, CoF-—Coastal Front. 

Fic. 2.—Smie. (°/99) and its Depth during 1931-1935. (Shaded area 
means the zone ot Double Smin.). 

Fig. 3.—Smin. (8/95) and its Depth during 1935-1938. (Shaded area 
means the zone of Double Smin,). 

Fic. 4.—Smin. (9/5) and its Depth during 1988-1941. (Shaded area 
means the zone of Double Smin.). 

FiG. 5.—Smax. (9/99) and its Depth during 1931-1938. 

FIG. 6.—Som. (°/,,) in Winter (Real line) and in Summer (Dotted line) 

1931-19385. 


CIRCULATION IN RELATION TO PELAGIC FISHERIES 667 


/30° /40° 150° 160° 


Fishing Locabsties : | \) ‘\ gC 
@ Albacore 5 i) 
© Yellowfin tiema is Ja v 


@ Btuefin tena 
O Skippack 

A Pacckc Saury 
S Sardcne 

We) FRY ing fuse 


q Soudd 
m Sgue Ge 
ye 


fm Mackere 
Oz 


Uiee 


FIGURE 1 


685 


EIGHTH PACIFIC SCIENCE CONGRESS 


FIGURE 2 


669 


CIRCULATION IN RELATION TO PELAGIC FISHERIES 


§ GY 


EIGHTH PACIFIC SCIENCE CONGRESS 


670 


y ANNDI Ky 


671 


CIRCULATION IN RELATION TO PELAGIC FISHERIES 


G WMNDIY 


9 GUND 


<a 4 
Diets 


jl JAE \} 


EIGHTH PACIFIC SCIENCE CONGRESS 


* 
‘ 
. 


‘ 
. 


ne corre 


672 


THE TOPOGRAPHY OF THE SEA SURFACE IN THE 
REGION OF THE PHILIPPINES 


By Hersert W. GRAHAM? 
U.S. Fish and Wildlife Service 
Woods Hole, Massachusetts, U.S.A. 


INTRODUCTION 


Under the Philippine Fishery Program the Fish and Wildlife Ser- 
vice conducted hydrographic surveys of all Philippine waters during 
the period 1947 to 1949. The Spencer F. Baird, one of the research 
vessels engaged in this program, made intensive observations of tem- 
perature, salinity, dissolved oxygen, and plant nutrients at the surface 
and subsurface levels during each of the two seasons characteristic of 
this area. Presented here are the charts showing the dynamic topography 
at the surface for each season. 


METHODS 
Twenty-eight cruises (twenty of them hydrographic cruises) were 
made during the survey. Composite charts were drawn so that each 
chart combined data from all cruises in a particular season and year. 
The cruise numbers with dates are indicated on the charts. On chart I 
are presented the results of four cruises made during the period Jan- 
uary to June 1949. This is during the season of the northeast mon- 
soon when the winds are predominantly from the northeast. Chart 2 
presents the results of three cruises taken from July to October, 1949. 
The two cruises taken during the period July to September are de- 
finitely during the southwest monsoon. ‘The October cruise occurred 
during the beginning of the northeast monsoon of the winter of 1949- 
1950, but the current pattern at that time of year can be expected to 

represent that of the preceding season. 


DISCUSSION 


The deduction of ocean currents from dynamic computations is 
beset with many uncertainties particularly in areas where the effect of 
internal waves are pronounced (Sverdrup, et al., 1946, p. 453). In the 
present work no account has been taken of internal waves and the usual 


} Publishe} with the permission of the Director, United States Fish and Wildlife Service- 


673 


674 KIGHTH PACIFIC SCIENCE CONGRESS 


assumptions of no acceleration and no frictional forces, of course, were 
accepted. 

However, the general current pattern indicated by the dynamic 
computations in these studies is considered reasonably correct. In areas 
where surveys were repeated during the same season but in different 
years, very similar patterns were obtained. Indeed, the most prominent 
basic features were found throughout the year. 

The Pacific Ocean. The surveys on the eastern side of the Philip- 
pines in the open Pacific extended almost 300 miles offshore. It was 
hoped, when the station pattern for these surveys was laid out, that 
sections could be obtained across the northward deflection of the North 
Equatorial Current as it impinges upon the Philippines. However, our 
charts of dynamic topography show very little of this water movement. 
Evidently the main northward deflection of the North Equatorial Cur- 
rent occurs farther offshore. In the chart for the northeast monsoon 
there is a wide area of practically no motion off the island of Samar. 
Only at the outermost stations is there any indication of the northward 
deflected Equatorial Current. 

There is a very strong northward close inshore along the coast of 
northern Luzon, but this flow does not appear to be part of the de- 
flected North Equatorial Current but rather is the western side of a 
good clockwise eddy. To the northeast of this eddy there is a strong 
flow with a northwest set which probably represents the edge of the 
deflected equatorial water as it sweeps toward the island of Formosa. 
Whether the great eddy east of northern Luzon is permanent or not 
cannot be determined by our investigations as the October survey in the 
Pacific did not extend this far north. This survey as far as it goes shows 
no general northward movement within 300 miles of the coast. 

The southward deflected water of the North Equatorial Current 
flows much closer inshore than that of the northern branch of that 
current. Schott (1939) indicated a line of divergence between the two 
branches at about latitude 11° to 12° north at longitude 130° east. 
From this point the line of divergence turned northward to end at San 
Bernardino Strait between the islands of Luzon and Samar. In his 
charts this line of divergence is approximately the same during winter 
and summer. 

Our calculated currents are in line with those of Schott. In the 
northeast monsoon survey the line of divergence at longitude 130° east 
is at latitude 12° north. South of this the water flows toward the island 
of Mindanao and turns sharply south. Part of this water hugs the 
coast of Mindanao and flows as a strong current into the Celebes Sea. 
However, all along the eastern edge of this current water is deflected 
back to join the Equatorial Counter Current. From latitude 8° north 


TOPOGRAPHY OF THE SEA SURFACE IN THE PHILIPPINES 675 


to latitude 5° north (the southernmost observation) there is a strong 
development of eastward flowing water consisting the origin of the 
counter current. The observations indicate that there is a strong flow 
of water northward from the region of Halmahera and that this turns 
eastward as the counter current in the area of observation. 

According to Schott there is an extreme seasonal change in the 
water movements north of New Guinea with southeastward set in the 
northern winter and a northwestward set in the northern summer. One 
would deduce from his charts that the Counter Current is composed of 
quite different water in different seasons of the year. During the north- 
ern winter the eastward flow is composed largely of water which has 
been cetlected from ithe North Equatorial Current, while during the 
northern summer it is composed largely of water which is carried north- 
westward from New Guinea and northeastward from the East Indies 
region. However, at the southeasternmost part of our area of observa- 
tion, namely, at latitude 5° north and longitude 130° east, the direction 
of flow is always to the east. “The Counter Equatorial Current is well 
developed at this point the year around even though the origin of the 
water may vary with the seasons. 

Our observations during the southwest monsoon, which corresponds 
to the northern summer (Chart II), do not extend far enough south to 
reveal the fate of the southward deflected waters during that survey. 

South China Sea. Surveys west of the Philippines covered the waters 
‘along the west coast of Palawan and to the north of this area off the 
coast of the island of Luzon. Along northern Luzon stations were oc- 
cupied to a distance of 150 miles offshore. A line of stations extended 
across Luzon Strait to Taiwan (Formosa). 

Two main features of the circulation in these areas seem to be main- 
tained throughout the year. The first is a southwestward flow of water 
along the west coast of Palawan; the second is a large well developed 
eddy northwest of Luzon. In this huge eddy the water flows counter 
clockwise with movement to the north near the coast. The eddy was 
closer inshore in April than during the summer and the inshore current 
was much more highly developed in April. 

Luzon Strait between northern Luzon and southern Taiwan (For- 
mosa) is a region of swift and variable currents. It is in effect a region 
where the China Sea eddy to the west of Luzon borders the Pacific eddy 
to the east of Luzon. During April and May there was a strong flow of 
water through the Strait from the Pacific to the South China Sea in a 
northwestward direction (Chart I). - During August there was a deilec- 
tion of this water within the Strait itself. The strong flow of Pacific 
water into the China Sea in the southern half of the Strait was deflected 


676 EIGHTH PACIFIC SCIENCE CONGRESS 


back into the Pacific in the northern half of the Strait joined by waters 
from the China Sea eddy. 

Sulu Sea. During the investigations of Philippine waters four sur- 
veys of the Sulu Sea were made: two during the northeast monsoon and 
two during the southwest monsoon. ‘The circulation patterns found 
during the first two surveys (one in each season) have already been re- 
ported (Graham, 1952). The present charts present the results of two 
more surveys, one in each season. 

Comparing the results of the second northeast monsoon survey 
(Chart I) with those of the first northeast monsoon survey (Chart II; 
Graham, 1952), we find that the general current pattern is similar al- 
though apparently somewhat simpler. There is the same indication of 
westward flow from the Mindanao Sea. Within the Sulu Sea the general 
pattern is that of a large.counter clockwise eddy. This eddy probably 
corresponds to the “South Central Eddy” found during the first survey 
of this Sea in October and December, 1947. 

The currents indicated by the second southwest monsoon survey 
conducted in March and April 1949 (Chart II) also compare well with 
those found during the first survey made during the southwest monsoon 
made in June and July 1948 (Chart V, Graham, 1952). In 1948 the out- 
standing feature of the surface currents in the Sulu Sea was a flow of 
water from the South China Sea between Palawan and Borneo. This 
water flowed northeastward along the east coast of Palawan in a direc- 
tion opposite to the flow characteristic of the northeast monsoon. The 
results of the 1949 survey (Chart II) show this same movement of water 
in that area of the Sulu Sea. In 1948 some of the water flowing in from 
the China Sea turned southward. This same movement was found in 
1949 although more of it was deflected westward to form a small eddy. 
In 1949 the North Central Eddy dominated the central area of this Sea 
while in the 1948 survey both of the major eddies were well developed. 


REFERENCES 


GRAHAM, Herpert W. 1952. A contribution to the oceanography of the Sulu 
Sea. Proc. Seventh Pacific Science Congress, v. 3, 225-266. 

ScHoTT, G. 1939. Die “Aaquatorien Strémunger des westlicken Stillen 
Ozeans. Ann. d. Hydrogr. u. Mar. Meterol. v. 67, 247-257. 

SVERDRUP, H. U., M. W. JOHNSON and R. H. FLEMING. 194. The oceans. 
1,087 pp. New York. iss 


TOPOGRAPHY OF THE SEA SURFACE IN THE PHILIPPINES 677 


130° 
CRUISES 16,17,19,20,21 AND} 22 


| DYNAMIC HEIGHT ANOMALIES |(DYN.M) 
AT SURFACE 
SULU SEA-O OVER 800 DCBS. 
SOUTH CHINA SAND PACIFIC OC. 
© OVER 2000 DCBS 


CONTOUR INTERVAL-O0.02M 


. 


20 


HALMAHERA « 
6 > oO. 


° 


Fic. 1—Surface topography during northeast monsoon. 


EIGHTH PACIFIC SCIENCE CONGRESS 


130° 
CRUISES 23,24,25 AND 26 


DYNAMIC HEIGHT ANOMALIES |(DYN. M) 
AT SURFACE 
SULU SEA- 0 OVER 800 DCBS 
SOUTH CHINA S. AND PACIFIC OC. 
O OVER 2000 DCBS. 


CONTOUR INTERVAL - 0.02M 


cAuIse 26 90 
ocY. 12-23,1968 


cruise ep ® 


WULY 1@- aue ui, ay 
oe 
e 


HALMAHERA eo 


Fic. 2.—Surface topography during southwest monsoon. 


RECENT OCEANOGRAPHIC EXPLORATION IN THE NORTH 
AND EQUATORIAL PACIFIC OCEAN 


By WARREN S. WOOSTER 


Scripps Institution of Oceanography 
La Jolla, California, U.S.A. 


The exploration of the Pacific Ocean may be divided into three 
major phases. The first phase, that of geographical discovery, was ini- 
tiated by Magellan and reached its climax in the voyages of James Cook. 
Karly in the nineteenth century the general outline of the shores and 
the locations of most island groups of the Pacific had been fairly well 
established. Yet the early explorers were not oceanographers, and in 
their travels they discovered little about the sea. 

The second phase of Pacific exploration and the science of deep-sea 
oceanography were both opened by the cruise of HMS CHALLENGER 
in 1873 to 1876. For the first time a major expedition was devoted to 
a study of the ocean itself, the physics and chemistry of its waters, the 
character of its bottom and the nature of its denizens. Expeditions in 
the great tradition of the CHALLENGER have continued up to the pre- 
sent day, notable among them being the cruises of the DANA and the 
CARNEGIE in 1929 and the recent voyages of the ALBATROSS and the 
GALATHEA, Such studies lead to a general description of the major 
characteristics of the Pacific Ocean from the physical, chemical, biolo- 
gical and geological points of view. 

The third phase of exploration can be described as the detailed 
~ study of the spatial and temporal changes in conservative and non-con- 
servative concentrations. The ocean is considered as a dynamic system, 
and the goal of this phase is the description and understanding of the 
processes bringing about changes in this system. Much work of this 
sort has been done already by scientists on both sides of the Pacific, 
using the classical tools of oceanography. ‘The successful prosecution 
of this phase, however, requires eventually the development and appli- 
cation of new tools (such as the bathythermograph, geomagnetic electro- 
kinetograph or high-speed plankton samplers) which can be used from 
a moving ship. 

Although the five post-war expeditions of the Scripps Institution 
of Oceanography have made use of such new tools, their results belong 
properly to the second phase of exploration. The two expeditions in 
which the author did not participate differed in purpose from the others 


679 


580 EIGHTH PACIFIC SCIENCE CONGRESS 


and will be mentioned only briefly here. The MID-PACIFIC Expedition 
of 1950 in the eastern North Pacific, and the CAPRICORN Expedition 
of 1952-1953 in the Central Pacific were principally geological and 
geophysical in intent, studying the shape of the sea floor with the echo- 
sounder, the character and depth of bottom sediments with bottom 
samplers and by seismic refraction methods, and the transport of heat 
through the sea floor with the bottom temperature probe. 

The NORTHERN HOLIDAY Expedition of 1951 in the eastern 
North Pacific, the SHELLBACK Expedition of 1952 in the eastern Equa- 
torial Pacific, and the TRANS-PACIFIC Expedition of 1953 in the deep 
Bering Sea and the western and central North Pacific, were similar in 
basic purpose. In each case the course was laid out to cross the major 
current systems and to sample the principal water masses of the area. 
In each case the major work of the expedition was a series of hydrogra- 
phic stations at 60- to 90- mile intervals where temperature and salinity 
were measured down to considerable depths, chemical analyses of water 
samples made, and quantitative plankton tows carried out. Between 
stations observations were made with the bathythermograph, geomagnetic 
electro-kinetograph, echo-sounder and midwater trawl. Geological and 
meteorological observations were also made on each expedition. 

An effort was made to cross the major circulation features at ap- 
proximate right angles to facilitate velocity and transport computa- 
tions. By means of water mass and isentropic analysis it will be possi- 
ble to map out the distribution of water types and to study their origin 
and subsequent transformation. In particular, the distribution of pro- 
perties in deep water may cast some light on the little known inter- 
mediate and deep circulation of the Pacific. The distributions of dis- 
solved oxygen, phosphate and silicate and of planktonic species are 
closely related to the distributions of conservative concentrations, and 
the results of these expeditions will make possible a careful study ot 
this relationship. 

In summary, the results of these five expeditions should contribute 
substantially to our knowledge of the major circulation and the distri- 
butions of properties and organisms in the Pacific Ocean. An under- 
standing of time and space variations in this general picture must await 
the extension of phase three methods to deep-sea oceanography. 


EXPLORATION OF THE NORTH AND EQUATORIAL PACIFIC OCEAN 681 


PACIFIC OCEAN 


T 40° 
% 
rey 
. 
“3 «1951 
\7 woulOPe -- "ss = 
-- 
avco® 
oh 08? 
2 4. Howaiian Is 5 
20° DTT : & 20° 
EE & 
: ; 
RY 
” Marshall Is 
g to) 


20° 4 2 Tahiti ~ 20° 
aN Tonga Is 
SOUTH PACIFIC OCEAN 
vA in 


UNIVERSITY OF CALIFORNIA 
SCRIPPS INSTITUTION OF OCEANOGRAPHY 


EXPEDITION TRACK CHART 


rowinselr 


EIGHTH PACIFIC SCIENCE CONGRESS 


682 


£S6l 
€S61-2S6l 
eS6l 

IS6I 


DISIOWd-SNVYL * 
NY¥YODIedYD " 
WMOVETIZHS ° 

AVQINOH NYSHLYON ° 
D1d1NVd -CIN * 


=) ES 


Ei 


Se 


"St NVILNG 


SNOILVDITENd DIKDVHSONYIIO AB Ob MING 
———— 


EXPLORATION OF THE NORTH AND EQUATORIAL PACIFIC OCEAN 683 


AYVHD HOVYL BAILVINAL 


NOILIOSdX3 DISIOSVd-SNVYL 


AHdVHSONVIDO JO NONMLILSNT Sddiads 
VINYOSIIWD JO ALISYIAINNA 


| 
| 
+ 
| 


ADMDIW 


vais 


ved 


Se) 


wi 
7 (ahon. 


+f ae 


BASIN WATERS OF SOUTHERN CALIFORNIA 
By K. O. EMERY 


Allan Hancock Foundation 
University of Southern California 
Los Angeles, California, U.S.A. 


ABSTRACT 


Off the coast of southern California are 14 basins that are separated 
by submerged ridges. ‘The sills of the basins are 475 to 1900 meters 
deep and from 150 to 880 meters above the basin floors. In general, 
the basins that are located farthest south have the deepest sills. Water 
below sill depth in the basins is isothermal at the same temperature 
that was found in the earliest measurements in 1931]. It is also isohaline 
except for effects of diagenesis near the bottom. A close relationship 
between temperature and sill depth exists,—such that the northern basins 
with their shallow sills contain the warmest water. It is evident that 
the water in the basins comes from adjoining basins or from the open 
sea at a depth which is within 200 meters above to 40 meters below 
sill depth. This relationship makes possible the tracing of basin waters, 
which were found to flow northwesterly, in contrast to the general 
southeasterly moving surface currents. 


685 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND * 


By Ciirrorp A, BARNES, JOHN H. Lincotn and Maurice Rattray, Jr. 


Department of Oceanography, University of Washington 
Seattle, Washington, U.S.A. 


INTRODUCTION 


Oceanographic observations must be made in great numbers and 
extend over long periods, in many cases years, in order to obtain a re- 
latively complete understanding of the conditions existing in even a 
small estuary or bay. Resolution of the mass of data to provide the 
desired information is further complicated by the fact that none can 
be obtained under controlled conditions. Data obtained at different 
times are not directly comparable since the natural conditions neither 
remain constant nor precisely repeat. Thus a synoptic picture of the 
oceanography of an area may be considered only in general terms at 
best, and as the size of the area is increased the generalities must of 
necessity become broader. 

In treating an area as large and complex as Puget Sound, the prob- 
lems of obtaining a complete understanding of the over-all oceanogra- 
phy, under either normal or extreme conditions, from field observations 
alone are almost insurmountable. In recent years, hydraulic models of 
tidal estuaries have been used in increasing numbers as a guide in in- 
terpreting the conditions within the prototype. It is recognized that 
it is impossible to construct a reduced scale model rigorous of the pro- 
totype and that distortion and scale effects may easily lead to misin- 
terpretation. Nevertheless, these small-scale models are useful in clari- 
fying the nature of existing conditions and in planning more efficient 
field programs. Observations may be made under controlled conditions 
and, of utmost importance, a particular set of conditions may be set 
up in the model and repeated at will until all pertinent information 
is collected. 


DESCRIPTION OF THE AREA 


Puget Sound (Fig. 1) branches to the south from the eastern ter- 
minus of the Strait of Juan de Fuca, between the Olympic and Cascade 
mountains of Washington. Its various arms, averaging less than 3 miles 
wide, have a total area of 767 square nautical miles at mean high water. 

* Contribution numler 195 from the Department of Oceanography of the University of 


Washington. Technical Report No. 19, University of Washington and Office of Naval Re- 
search, Contract NSonr-520/III, Project 083-012. 


686 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 687 


The entire system lies within an area of about 40 by 90 nautical miles. 
It may be subdivided into four general sections which are partly isolated 
by vertical or lateral constrictions. "The main basin extends from a 
40-fathom threshold sill at the confluence of Admiralty Inlet with the 
Strait of Juan de Fuca, south to a 26-fathom sill at the Tacoma Nar- 
rows. ‘The section south of the Narrows consists of a 100-fathom pri- 
mary basin with many branching channels and inlets. Hood Canal, 
averaging about 2 miles wide and having a depth of 100 fathoms, ex- 
tends about 50 miles southwest from Admiralty Inlet and is partly 
separated from it by a 30-fathom sill. The fourth section extends with 
diminishing depth from Possession Sound, about 25 miles from the 
entrance to Admiralty Inlet, north through Skagit Bay to Decention 
Pass. This pass is a very restricted channel about 150 yards wide and 
16 fathoms in depth connecting with the Strait of Tuan de Fuca. Pu- 
get Sound is relatively deep in comparison with other inshore waters 
of the United States with a maximum depth of 155 fathoms and with 
50 per cent of its total volume lying below 25 fathoms. 

The tides of Puget Sound are of the mixed type characterized by 
marked differences in the successive heights of low waters. Consider- 
able changes in the tide with respect to character, range, and time 
occur within the area. Periodically, the tide near the mouth at Port 
Townsend loses its mixed characteristics and for several days each month 
becomes virtually diurnal. This effect does not extend into the sys- 
tem for any great distance and the tides are semidiurnal over the rest 
of the system at all times. The tidal range generally becomes progres- 
sively greater landward from the entrance. Port Townsend has a diur- 
nal range of 8 feet while the inlets at the southern extremities have 
15 feet. The rate of progression of the tidal wave into the Sound is 
altered by the topographic characteristics, particularly at the Tacoma 
Narrows, a narrow constriction between two of the larger basins, and 
changes with the character of the mixed tides. 

The tidal currents also are subject to wide local variations and 
are dependent upon the tide range. The maximum velocities occur in 
constricted channels and may reach about 7 knots. The tidal prism in 
Puget Sound amounts to about 5 per cent of the volume below mean 
lower low water. 

Numerous rivers and small streams feed into Puget Sound from a 
drainage basin of about 11,300 square miles within which precipitation 
varies locally from 20 to over 100 inches per year. The eleven largest 
rivers, having a combined mean yearly runoff of about 40,000 second- 
feet, account for about 80 per cent of the total fresh water influx, the 
Skagit alone contributing about one third. The peaking characteristics 


688 EIGHTH PACIFIC SCIENCE CONGRESS 


of the rivers are governed by the major water sources. Lowland rivers 
peak during the winter from rainfall. Those rivers having mountainous 
areas as their principal watershed peak during the late spring from 
snow melt. Others may have both peaks. Hydroelectric developments 
on some rivers tend to flatten the peaks and maintain a more uniform 
runoff. Discharge varies greatly with flood stages being as much as 150 
to 200 times the minimum flow. 

The population of the area is over 1.5 million, the principal sea- 
board cities being Seattle, ‘Tacoma, Bremerton, Port Townsend, Everett, 
Olympia, and Shelton. Virtually all sewage from the municipal systems 
is discharged untreated into the Sound. While industrialization of the 
area is not heavy, some industries, particularly those manufacturing 
pulp and paper, are potential pollution hazards because of the large 
volume and high oxygen demand of the wastes. 


CONSTRUCTION OF THE MODEL 


It is common practice to make tidal models as large as is consistent 
with space and facilities available and cost. The horizontal scale is or- 
dinarily determined by these empirical] factors. The vertical scale 
is governed by the practical requirements for suitable time scale and 
water depth in critical areas and by the theories of dynamic and kine- 
matic similitude. Space available limited the present model to a hori- 
zontal scale of 1:40,000. The vertical scale selected was 1:1,152 or 
1/16-inch per fathom, giving a distortion of 34.6:1. With these scales, 
the model is approximately 7 feet by 15 feet and has a maximum water 
depth of 10 inches with 1-14 to 2 inches over the critical sills. As a 
consequence of the distortion, some channels are deeper than they are 
wide. The time scale from the Froude modeling law is 1:1,178 or 3.05 
seconds per hour, permitting a year’s tides to be observed in 7.4 hours. 
With this choice of scales, the Reynold’s number in the model will be 
in the turbulent region over the critical sills, for most of the tidal 
cycle. ‘That the motion is actually turbulent is easily verified by in- 
serting dye into the model and watching its rapid diffusion. The ap- 
propriate criterion for turbulence in a fluid with stable stratification 
is given by the Richardson number g mites = With Froude modeling, 
the salinity scale must be unity to ene the same Richardson number 
in model and prototype. With a reduced salinity scale, the mixing in 
the model could be expected to be increased. 

The customary method of constructing model basins consists of 
moulding the contours to conform to templates fixed in position within 
the model area. This technique was found unsatisfactory for reproduc- 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 689 


ing the fine detailing of contours required by the small scale and the 
complex system of narrow deep channels. A method was developed for 
casting the model basin in concrete from accurately-contoured hand- 
carved wood patterns. The contours used, established from the Hydro- 
graphic Charts of the area, were the elevations of mean high water, 
75 feet, and 150 feet, and successive ten-fathom depth intervals below 
mean lower low water. The area was divided into 25 sections for con- 
venience in preparing the patterns. The contours of each were trans- 
ferred to white pine lumber planed to the thickness of the contour in- 
terval. The sections were then cut along the contour line and laminated 
in exact position. Excess wood was removed and the patterns brought 
to precise shape by careful hand-carving and sanding with constant re- 
ference to the charts for soundings between the contour intervals. Small 
basins were provided upstream from the river mouth for introduction of 
the river discharge. ‘The wood was brought to a very smooth surface, 
sealed and varnished (Fig. 2). 

The individual patterns were assembled in an inverted position 
upon a strongly supported platform 8 by 20 feet, constructed as a base 
for the model (Fig. 3). Forms were built around the assembled pat- 
terns with sheet metal separators between the pattern sections to form 
easily handled blocks. Copper tubing was placed from the outside of 
the forms to the river basins to carry the fresh water. ‘The patterns 
were oiled to prevent sticking to the concrete. When the steel reinforc- 
ing was placed, a coating of smooth cement grouting was applied to the 
patterns. The forms were then filled to a uniform depth of 15 inches 
with a standard quick-setting concrete. “Twenty-four hours after the 
concrete was poured, the forms were removed, and the blocks separated 
and inverted. The patterns were sprung out of the concrete by a meth- 
od analogous to removing a tightly fitting stopper from a bottle. 

The blocks were reassembled to form the model basin. A bitumas- 
tic compound was used to seal the joints between blocks. Surveying 
methods, combined with a latitude-longitude grid on the platform af- 
forded accurate positioning of the patterns and of the completed sections. 
The method used insured precise fitting together of the blocks. The 
joints between the blocks and the minor defects which occurred during 
the casting were smoothed with plaster of Paris. The basin was finished 
with several coats of a vinyl resin paint (Fig. 4). 


TIDE-GENERATING MACHINE 
The requirements for the tide-generating machine were that it 
closely reproduce natural tides and that it be adaptable to any model 
of regional waters that might be constructed at these Laboratories. it 


690 EIGHTH PACIFIC SCIENCE CONGRESS 


was desired further that simple repeating tides could be set up and 
that a sequence of natural tides could be conveniently interrupted 
and repeated. 

The tidal harmonic constants computed by the U.S. Coast and 
Geodetic Survey for Seattle and Port Townsend indicated that a mini- 
mum of six constituents would be required to reproduce prototype tides 
within a deviation of +1 foot. These, the diurnal K,, O,, and P,, and 
the semidiurnal M,, N,, and S,, were incorporated in the tide-generat- 
ing machine using many principles of the Coast Survey’s prediction 
machine. Identical gear ratios were used for corresponding constituents. 
A 1/8-horsepower motor was used to drive a line shaft through a 
900: 1 reduction box and spur gears at precisely one revolution in 12 
solar hours, model time. Scotch yokes, driven from the line shaft by 
gear trains at speeds corresponding to the period of each constituent, 
generate cosine functions. ‘These are fed into a summation wire con- 
nected through a suitable pulley and reduction drum arrangement (Fig. 
5) to a plunger located in the model headbox. The changing water 
displacement caused by the motion of the plunger, shaped to correct 
for the tidal prism, produces the rise and fall of the tides. Phase angles 
and amplitudes for any epoch or location are readily set for the dif 
ferent constituents on the calibrated cranks of the Scotch yokes. A sup- 
plementary chain drive is incorporated between the M, and K, const1- 
tuents to provide a means of generating repeating tides of either diur- 
nal, semidiurnal or mixed character. 


RIVER SYSTEM AND SALT WATER ADDITION 

Provision is made for the introduction of fresh water through ele- 
ven major rivers of the area having a yearly mean discharge ranging 
from approximately 400 to 16,000 second-feet. The water flows by 
gravity from a constant head tank, through individual flow meters of 
the expanding bed type, to small basins located a short distance up- 
stream from the river mouths. ‘The rate of flow of the rivers is con- 
trolled manually by means of individual needle valves. Loss of salt 
resulting from river runoff is balanced by a circulation system in the 
headbox. Water is removed from the headbox through a shaped stand- 
pipe and pumped into a reservoir having a capacity of about 125 liters. 
Salt solution is added to the water in the reservoir to maintain the 
desired density. A second pump returns the water from the reservoir 
to the headbox where it is introduced along the bottom at a rate exact- 
ly balancing that of removal. In this way the net surface outflow from 
Puget Sound and the balancing inflow of oceanic water at depth is 
simulated. 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 691 


INSTRUMENTATION 

The design and development of instruments for measuring and re- 
cording tides, tidal currents, and the density structure in the model is 
complicated by the small scales and distortion. The sensing ele- 
ments must be such that they do not significantly alter the properties 
being measured or interfere with the operation of the model. Further, 
because of the short time scale, it is necessary to obtain measurements 
rapidly in order to adequately differentiate conditions during the tidal 
cycle. 

A portable recording tide gauge and an instrument for recording 
the salinity or density structure in the model have been designed and 
constructed. The recording tide gauge will resolve the model tides to 
within about 3 inches or 0.003 inch actual change in water level. The 
gauge is not affected by surface tension or factors other than change 
in the water level in the model. In principle it consists of an inter- 
connected probe and recording arm operated by a synchronous motor. 
The prabe alternately rises and lowers as the recording arm sweeps a 
stylus across electrosensitive paper being moved by a standard recording 
tape puller. As the probe, tipped by a fine platinum wire, contacts the 
surface of the water, an electrical circuit is completed which fires a 
thyrotron tube discharging a condenser. The charge from the condenser 
passes from the stylus through the paper to a second electrode consist- 
ing of a small roller extending across the underside of the paper. The 
discharge causes a small spark to burn a fine hole in the paper making 
a permanent black dot. ‘The probe operates at a frequency of once per 
second. 

The instrument for recording the salinity structure is based upon 
the conductivity of the water. The variations in the conductivity of a 
vertical section are electronically transposed to a plot of conductivity 
versus depth on an oscilloscope which may be photographed for a 
permanent record. The conductivity cell consists of a capillary 0.025 
inch in diameter and 3/4-inch long, having electrodes at each end 
forming an integral part of the capillary. A maximum potential of 
about 50 volts at 10,000 cycles may be applied across the cell. Alter- 
nating current is used to reduce the effects of polarization of the elec- 
trodes. Water is drawn through the cell at a rate equivalent to the rate 
of displacement of water by the cell and tube to which it is attached, 
as it is lowered through the water. It has been found that measure- 
ments must be made while lowering the probe since some mixing and 
turbulence occur when the probe is raised, leading to fictitious values. 
Response is fast because of the rapid flushing of the cell. 


692 EIGHTH PACIFIC SCIENCE CONGRESS 


Probing rate and depth of sampling may be adjusted as desired and 
operation is automatic. Camera operation is manual at present but 
may easily be adapted to automatic operation if desired. 


CuRRENT METER 


Since the velocities and distances in the model are both very small 
compared to those in the prototype, it has proven impossible to use 
small-scale standard current measuring devices. The present method of 
current measurement consists of introducing small vortex rings of dye 
into the water at fixed time intervals and then to photograph their re- 
lative positions. This method has proved satisfactory and has the addi- 
tional advantage of measuring both components of horizontal velocity 
simultaneously. The equipment consists of a glass capillary connected 
to a dye reservoir through a T section. A rubber bulb, connected to the 
other junction, is tapped at one second intervals by a hammer driven 
by a synchronous motor to emit a vortex of dye from the capillary tip. 


TIDE AND CURRENT STUDIES 


A comparison of the tidal action in the model with that of the 
prototype was one of the first detailed studies undertaken as a part of 
the validation. The phase and amplitude changes between Port Town- 
send and key locations within the Sound were determined for each in- 
dividual tidal constituent and compared with corresponding values for 
the prototype. Within the main basin, the time lag error was of the 
order of 6 minutes, or 0.3 second actual time greater than the Coast 
Survey values. Amplitude ratios agreed within 10 per cent. Beyond 
the constrictions of the Tacoma Narrows and those leading to Bremer- 
ton, the deviations were approximately double these values. A mari- 
gram of the six constituents for the first half of 1951 at Seattle was 
drawn by means of the tide machine using the Coast Survey tidal con- 
stants. “The model tides at Seattle for the same period, generated by 
the tide machine adjusted to produce the correct tides at Port Townsend, 
were recorded. Portions of the recorded tides were compared with cor- 
responding portions of the prepared marigram and with the tide table 
predictions (Fig. 6). The average deviation of the recorded tidal 
heights from the marigram was less than +0.5 foot. Measurement of 
the deviation in time lag was not obtained. 

Quantitative measurement of the tidal currents and patterns of 
circulation have not been completed. Visual observations indicate that 
the model is giving good representation of prototype circulation, current 
patterns, and velocities, and the eddy patterns appear to follow quite 
well. 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 693 


DENSITY STRUCTURE 


In the past, most tidal model studies have been concerned with 
silting in an estuary or harbor rather than the processes involved in and 
resulting from a variable density structure. Little work on the dy- 
namics of an inhomogeneous system resulting from the interchange of 
oceanic water and river discharge in tidal models has been reported in 
the literature, and the theoretical requirements for similitude in this 
respect are not well resolved. It is thus necessary to determine the ef- 
fects and interrelationships of the variable parameters in a model before 
representation of the prototype may be achieved. A series of studies 
was initiated to investigate the density structure as it is one of the ma- 
jor factors influencing the oceanography of Puget Sound. When the 
model structure under various conditions is known, it can be correlated 
with nature to establish any major differences and demonstrate possi- 
ble corrective measures. For the purpose of this work, the salinity 
structure in each of the four main sections of Puget Sound was typified 
by measurements at Point Jefferson, Camano Head, Green Point, and 
Hood Point, (Fig. 7), under controlled conditions of tide, river run- 
off, and source salinity. (Repeating tides with an average range and 
diurnal inequality were used throughout this series of studies.) 

In the first experiment, the equilibrium situation was obtained for 
mean river flow with a source salinity of 16°/,., which, for the purpose 
of simplifying comparisons, has been related to a prototype salinity of 
32°/49. The results (Fig. 8) in general show a fresher surface layer 
with sharp gradients to a depth of 10-30 meters, below which there is 
a practically homogeneous more saline layer extending to the bottom. 
At first, it might appear that the homogeneous bottom layers were due 
to a lack of mixing of fresh water down from the surface; but that 
this is not the case is shown when the salinity of this bottom water is 
compared with that of the source water. At Point Jefferson and Ca- 
mano Head, the bottom saiinity is about 1°/,, less than the source, 
while for Green Point the difference is about 1.5°/,,, which com- 
pares favorably with the differences obtained in nature. It must be 
that the mixing in these lower layers is sufficient to destroy any initial 
gradient. 

The influence of the fresh water runoff on the salinity structure 
is best seen from the results of raising the flow of the Skagit River to 
the normal flood discharge rate of 50,000 c.f.s. (Fig. 8). After 1,000 
consecutive days of flood, the effect of fresh water was noticed only to 
a depth of 80 meters at Point Jefferson although the surface layer had 
definitely freshened and deepened. At Camano Head, on the other hand, 
the deep water had freshened somewhat with no perceptible change in 


694 EIGHTH PACIFIC SCIENCE CONGRESS 


the surface layers. Since the mechanism of these changes is not im- 
mediately clear, it will be a subject for further investigation. Off Green 
Point, the whole water column was freshened as would be expected since 
strong mixing occurs in that region and its water source is mainly the 
surface layers of the main basin. Thus even under these extremely 
extended conditions of flood, a noticeable gradient can not be main- 
tained beneath the surface layers and another mechanism must be 
found to simulate the gradients which occur in nature. 

Since in nature the source water of the Strait of Juan de Fuca 
does not hold a constant salinity throughout the year, the effects of a 
change in source salinity was investigated in the model. In order to 
make results clear-cut. a sudden decrease of salinity of 10°/,., was main- 
tained for 166 days and then increased back to its original value. 

The decrease in source salinity (Fig. 9) was first noticed at Point 
Jelterson. A uniform gradient to a depth of 100 meters developed 
within 45 days. Subsequent mixing of these waters produced a homo- 
geneous salinity to this depth with a sharp interface separating it from 
the more saline bottom water by 101 days. Mixing then gradually low- 
ered the interface. The changes in salinity below 100 meters were 
minor during the first 101 days. As would be expected from the proxi- 
mity and lack of sill between Camano Head and Point Jefferson, the 
sequence of events was very similar for the two stations. At Green Point, 
the salinity decrease was later at the surface, but when it did occur 
it was felt almost to the very bottom. After 166 days, the salinity was 
homogeneous in the bottom layer. At Hood Point, the fresher water 
was only noticed to a depth of 50 meters after 45 days, and only to 
about 70 meters after 166 days with very little change in the salinity 
of the bottom waters. Correspondingly, in nature the bottom water in 
Hood Canal has a tendency to stagnate. 

An increase in source salinity produces a series of density gradients 
markedly different than above in both shape and rate of change (Fig. 
10). Within 24 days, there was a considerable increase in salinity of 
the bottom water at Point Jefferson with the appearance of an almost 
constant gradient between the depths of 30 and 150 meters. After 38 
days, the surface gradient was increased to a depth of 50 meters and 
decreased below that depth. This pattern continued until equilibrium 
conditions were reached after 89 days. At Camano Head, the salinity 
structure went through the same sequence although the mixing ap- 
peared to be faster between 20 and 70 meters. At Green Point, the 
increase in salinity was not great for the first 24 days, but thereafter 
there was a marked increase of salinity at all levels but never with ap- 
preciable gradients below the surface layer. At Hood Point, the heavier 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 695 


water appeared to flow into a bottom layer below 100 meters before 
there was any effect above that level. After 38 days, however, there 
was more saline water at all layers with a relatively uniform gradient 
existing between 10 and 80 meters. At this time, the salinity below 100 
meters had practically attained its maximum value. Equilibrium con- 
ditions were closely approached by the end of 89 days. 

It is seen from these results that, with the exception of Green Point, 
significant salinity gradients will appear at all depths for appreciable 
lengths of time following a change in source salinity; whereas a change 
in river runoff will only have a minor and local effect. Qualitatively, 
these results are borne out in the prototype. Characteristically, the Pu- 
get Sound basins flush most rapidly in the fall when the Strait of Juan 
de Fuca water, the salinity source, is of its greatest annual density, and 
not during periods of maximum local runoff. 


MopEt APPLICATIONS 


The model has been operated for groups of engineers interested in 
sewage disposal and pollution studies with good success. The insertion 
of dye at present or proposed sewage outfalls gives a clear and rapid pic- 
ture of the pollution likely to occur at various localities. The value 
of a tidal model for this type of study may readily be appreciated when 
the ease with which a particular mass or type of water may be “tagged”’ 
by a suitable dye is seen. The transport and rate of dispersion of the 
water mass may be observed directly and continuously followed over 
large areas for the equivalent of long periods in the prototype. 

The model has proven useful support of a fisheries-biology study 
concerned with the drift of fish eggs. “The drift of dye in the model 
correlated with field observations clarified the movement of the eggs, 
location of the hatching areas, and distribution of the larvae. Con- 
tinuous observations were made for a period representing many days in 
the prototype. Thus a detailed picture could be obtained from field 
observations which were somewhat scattered with respect to both loca- 
tion and time. 

In planning field work, the model can be set to operate for the 
anticipated period of the cruise. The probable water structure and 
movement can be observed, and locations selected for most efficiently 
collecting the desired information. In an area of mixed tides, a tidal 
model which can be set to duplicate tides for a specific calendar period 
is a distinct advantage. 

The model has proven to be a valuable teaching aid. The processes 
occurring in nature over a large area are readily observable, and a 
clear synoptic picture of their interrelations is thus obtained. Examples 


696 EIGHTH PACIFIC SCIENCE CONGRESS 


of various features of inshore circulation can be pointed out and ex- 
plained simply and easily. ‘The student can use the model to obtain 
data corresponding to field measurements, and then work it up in the 
usual manner. 


SUMMARY AND CONCLUSIONS 


An hydraulic model of Puget Sound has been built and tested under 
various conditions. Equipment for controlling and measuring the 
oceanographic variables has been designed and put into satisfactory 
operation. Prototype tide and current are well represented by those in 
the model. It has been demonstrated that density structure similar to 
that in nature can be obtained by proper control of operating condi- 
tions, but no detailed comparison has been made between prototype 
and model structure under corresponding conditions. 


697 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 


2 Duckabush 


oe om 


omen ae 


: 
ve #40 AOA 


a 
Fiber 
& 
% 


i 
3 


H. 


~Feckany 


ong? 
iT OB a Ry 
she Beerivenns rears 


Fic. 1.—Puget Sound Area. 


695 EIGHTH PACIFIC SCIENCE CONGRESS 


Rccenis 


ose 


# 


of ise 


pie 


sedate NUE 


Fic. 3.—Assembled patterns. 


Tey 


AN OCEANOGRAPHIC MODEL OF PUGET 


SOUND 


699 


Ita. 4.—Completed model basin. 


700 


ee oe 


‘unip woronp 
-O1 pUB OTT LoryeuUAS ‘seyoA YoJoog SuTMoYsS jeued supose epry,— 


G 


aya | 


701 


OCEANOGRAPHIC MODEL OF PUGET SOUND 


A 


“SEE ON AST) BY OS IME COMED UNOnas WkPi aN cE NAN 
MOT puv YSIPZ Fo SzZYStoy Surpuodsetiod pue szuouoduioy xis uO 
peseq punog joend je seply, [epom pue odAjoj01g Jo Uostiedwopj— 9 “Diyy 


a: ees 


ag 
Re oo a 


SOQ 9SN AG SNOILIIGSdd YALVM MOT GNV HOIK © 
SNOILOIGAUd LNSNOdWO9 9 WOUYS SNOIWWIAAG TAGOW --—— 
SJaqiL LNANOdWOO 9 Q3ALIIGIYd 


By 
SYNOH NI 3Wid 


eo a 


LHOISH 


JUelz\s) Nil 


pos 
i> 
bo 


EIGHTH PACIFIC SCIENCE CONGRESS 


oats Sheep 


se oer ad 
= Bares i 
Pe. %, 
ta, 4 
eee ae ; 
5 oats 4 
oA C4, ¥ 
2 ; 
> f 
Rt is A 
os: : eo Cosh 2 
3 Gin St ees t7 Se 
cos — : See 
eS 3 


: _ ofoms sh 


. a Co + estes 2. aoe 


. es aS % 30" en 
\ i — ep re 
: ae : % : Vega tee 


RRO RE ON 


ere geprcksoa 


ete 
eA 
pat 


‘ ae Ps 


poe 


ixivsar 


A 


Fic. 7.—Location of sampling stations for salinity study. 


Depth tn Meters 


Depth in Meters 


Salinity %o 26 32 26 32 26 32 


50 


AN OCEANOGRAPHIC MODEL OF PUGET SOUND 7038 


Comparison of Equilibrium Salinity Structures 


Average river flows 
Skagit river flooding at 50,000 cfs, -------- 


PT, JEFFERSON CAMANO HEAD GREEN POINT 


100 
1SO 
200 
FIGURE 8 
Change in Salinity Structure Resulting from 
DECREASE 
in Source Salinity 
ELAPSED TIME 
(1) Start (2) 45 Days (3) 101 Days (4.) 166 Days 
PT JEFFERSON CAMANO HEAD GREEN POINT HOOD PCINT 
Salinity %o 20 30 20 30 20 30 20 30 
i] 
50 
100 
150 
200 


FIGURE 9 


EIGHTH PACIFIC SCIENCE CONGRESS 


704 


OT aunyryt 


€ \ v |j€ ait | |€ \2 t 
O€ Oe o¢ Oe o€ oye o¢€ 
1NIOd GOOH 4NIOd N33¥9 GV3H ONVAVS 


skogee (bv) skoage (¢) skoave (2) 4404S) 
3Wil a3sdv13 


AyiuijoS a94nog ut 
SSV3SYONI 


wos BuNINSaY aanpoONsyS Ayiuijog ul abun) 


002 


Os! 


oo! 


0s 


‘3 
OQ 


02 °% Ayiuijos 


NOSY3I33f Id 


ssasaw ut yydag 


DAILY SEAWATER OBSERVATIONS ON THE PACIFIC 
COAST OF CANADA 


By H. J. HOL.isTER 


Pacific Oceanographic Group 
Nanaimo, B.C., Canada 


A programme of daily observations of surface seawater temperatures 
and salinities has been in progress on the Pacific Coast of Canada since 
1933. Fourteen sampling stations are located at strategic positions (Fig. 
1) along the extensive coastline so that each station monitors the condi- 
tions in a natural region. The majority of the stations are located at 
lighthouses (Fig. 2) where the lightkeeper carries out the duties of 
water sampling in addition to his regular duties. 

The procedure and apparatus are quite simple. The observer takes 
the daily sample during the last hour of the rising tide occurring in the 
daytime. A two-ounce medicine bottle is inserted in clips attached to 
a wooden rod and lowered to a depth of three feet. The bottle is stop- 
pered with a rubber cork on the end of a guided brass rod, and the sam- 
ple is obtained by pulling out the stopper. Fastened alongside of the 
bottle clips is a brass protective case containing a mercury Fahrenheit 
thermometer. The whole apparatus is left immersed in the sea for two 
minutes, then the stopper is replaced in the bottle and the rod raised. 
The observer immediately reads the temperature and records it on a 
dated label already placed on the sample bottle, which he then seals 
with a wax-impregnated cork. Date, time of sampling and water tem- 
perature observed are also recorded on a data record sheet. 

The bottles are packed in cases of one hundred, and are shipped 
to the central laboratory where the salinities are determined by a modi- 
fied Mohr titration. The water temperatures and salinities are pub- 
lished in annual volumes entitled, “Observations of Seawater Tempera- 
ture and Salinity on the Pacific Coast of Canada.” ‘These data provide 
a continuous record of the changes occurring in the marine climate of 
the waters surrounding each station, and provide a backlog of informa- 
tion which can be used to illustrate the year to year fluctuations in the 
overall coastal oceanographic conditions. ‘These data might provide 
the only clue in determining why the fishery in a certain coastal region 
changed in volume from one year to the next. 


705 


706 EIGHTH PACIFIC SCIENCE CONGRESS 


CLIMATE IN THE SEA 


Seasons can be defined in the sea (Fig. 3) just as they are in the 
atmosphere. Summer is that period when water temperatures are at a 
maximum, which in the northern hemisphere occurs in the month of 
August. Winter is the season when they are at a minimum, usually 
December and January. Spring and autumn are the transition periods 
from these two extremes. “The extremes and durations of these marine 
seasons differ from year to year due to changing atmospheric conditions. 
That is why these daily seawater records are so valuable. It is only by 
reference to these records that the scientist is able to measure just how 
great the annual variation has been. The daily seawater records will 
show these annual changes more clearly than meteorological data be- 
cause they reflect the combined effect of the varying atmospheric factors 
of solar insolation, wind, rainfall, and land drainage. 

Along such an extensive coastline as British Columbia, there are 
several different types of oceanic regions. The locations of the water 
sampling stations have been chosen so that the various types of regions 
are all being recorded by daily surface observations. The annual range 
of seawater temperature varies from station to station and this differ- 
ence in annual temperature range is a criterion to the type of region 
being observed. For instance, in Figure 4, Langara shows an annual 
temperature range of 10°F, typical of an exposed open ocean region; 
Kains shows a slightly higher annual range of 11°F, typical of an exposed 
coastal region; Entrance shows a high annual range of 18°F, typical of 
a protected coastal region; and Race Rocks shows a low annual range 
of 6°F, typical of a region of great turbulence. 

The annual salinity cycles observed at the various seawater sampling 
stations (Fig. 4) are typical of three climatic regions. Summer salinity 
maxima (Kains) are due to coastal upwelling and low summer precipi- 
tation with little subsequent fresh water runoff. “The degree of coastal 
upwelling is governed chiefly by the force and duration of winds blow- 
ing offshore during the summer. In these latitudes, the winds are never 
in a continuous steady state, and assessment of the degree of upwelling 
from wind data alone would be quite difficult. Observation of the ef- 
fect of these winds as indicated by the surface salinities is a much easier 
matter. 

Fresh water runoff from the many large rivers that drain into the 
Canadian Pacific area is at a maximum in the summer because of the 
melting of snow at the sources of the rivers far inland. This effect is 
demonstrated by a summer salinity minimum at all the sampling sta- 
tions situated near the mainland coast, such as Entrance Island. Here 
again, measurement of the combined effect of the various atmospheric 


SEAWATER OBSERVATIONS ON THE PACIFIC COAST OF CANADA 707 


factors creating this summer freshet, such as solar insolation, previous 
winter snowfall, and wind, is easily monitored by the simple observation 
of the changes in seawater salinity. 

The third type of marine climatic region is that where the annual 
salinity variation is very slight. On the Canadian Pacific Coast, this 
can be further divided into two sub-classes, one where the station is 
exposed to the deep open ocean (Langara) and the other where the 
station is located in a turbulent water-way (Race Rocks). There is very 
little annual salinity variation at Langara, but the records will demon- 
strate the year to year changes caused by major alterations in the system 
of offshore circulation (Figs. 6 and 7). To measure these large scale 
circulation patterns is a major oceanographic undertaking, and is some- 
times not possible owing to lack of facilities. But an idea of the extent 
of the change in unsurveyed periods can be estimated from surface sea- 
water observations made at the exposed ocean stations. 

The annual salinity changes observed in turbulent sea-ways serve 
to measure the extent of mixing of the more saline deep waters with 
the less saline surface waters. “The Fraser River flows into Georgia 
Strait and is eventually discharged to the ocean past Race Rocks in the 
Juan de Fuca Strait. It may be noted that there is a slight drop in sa- 
linity at Race Rocks during the month of August, following a large 
decrease in salinity during June and July at Entrance Island, further 
north in the Strait of Georgia. Comparison of the records in these two 
stations which are subject to the influence of the one major river, shows 
the difference of the degree of this influence in adjacent and connecting 
regions. 

Combining both water temperatures and salinity records, it is pos- 
sible to measure the annual seasonal fluctuations in the oceanic climate. 
This is a simpler method than trying to evaluate the more variable at- 
mospheric phenomena from meteorological records and applying their 
effects on the oceanic state. 


MONITORING OCEANOGRAPHIC CONDITIONS 


The oceanographer determines the changes that occur in the sea 
from year to year and from season to season by conducting detailed 
examinations of the various properties of sea water, chiefly the tempera- 
ture and salinity. On the Pacific Coast of Canada there are several 
general types of oceanic regions, each demonstrating a typical pattern 
of seasonal variation in the properties of temperature and salinity. This 
pattern is similar from year to year, but the extent and duration of the 
change from one season to another varies. The seawater sampling sta- 
tions have been located in such a way that they sample the ocean waters 


708 EIGHTH PACIFIC SCIENCE CONGRESS 


of these typical regions. Once the oceanographic conditions of an area 
have been determined for each season of the year by means of oceano- 
graphic surveys, it is only necessary to refer to the daily seawater records 
to recognize annual changes in the properties of the water. Thus, Lan- 
gara and Cape St. James record the exposed open ocean regions; Triple, 
Sandspit, Ivory, Entrance, Texada, Departure Bay and East Point record 
the protected coastal regions; Kains and Amphitrite record the exposed 
coastal regions; and Pine, Cape Mudge and Race Rocks record the tur- 
bulent sea-ways. ‘The Pacific coastline of Canada is so extensive that 
these typical oceanic regions occur in widely separated locations where 
the determining factors of meteorological conditions, fresh water runoff, 
and tide might be quite different in magnitude. This is especially 
true of the region of Georgia Strait, where the extensive variation in. 
local geographic conditions creates several sub-classes of oceanic regions. 

The oceanography of the Georgia Strait (Fig. 1) is dominated by 
the fresh water discharge from the Fraser River. This fresh water flows 
over the surface of the strait, mixing all the time with the underlying 
salt water as it flows in a northward direction along the eastern shores. 
Once these surface waters reach the vicinity of Cape Mudge they turn 
south and flow along the western shore and finally empty into the Juan 
de Fuca Strait (Figs. 5 and 6). The passage of this brackish upper zone 
of water can be marked by the changes in surface salinities at Entrance 
Island, Cape Mudge, East Point, and finally Race Rocks. The diluting 
effects of the Fraser River discharge and the degree of mixing with the 
deeper salt water can be measured by the salinity changes observed at 
Entrance Island (Fig. 7). A series of oceanographic surveys extended 
over a period of two years have determined the circulation patterns in 
Georgia Strait for every month of the year. It is now only necessary 
to refer to the annual changes in salinity at Entrance Island in order 
to predict the occurrence and duration of any of the seasonal patterns 
previously determined by the oceanographic surveys. 

Another application of these daily seawater observations to observ- 
ing oceanographic conditions is in the “offshore” area. During August 
of 1950 and 1951 oceanographic surveys were made of the northeast 
Pacific Ocean extending to 500 miles offshore. In 1950 (Fig. 8) there 
were three clouds of warm water (60°F) lying in a band parallel to the 
coast with colder water on either side. In 1951 (Fig. 9) the warm water 
covered the southwest part of the area surveyed. ‘The surface water 
temperature increased steadily to seaward and decreased to the north. 
An examination of the August mean surface water temperatures observed 
at four seawater sampling stations located on the coast showed that the 
irregular 1950 ‘“‘offshore” surface conditions were associated with an ir- 


SEAWATER OBSERVATIONS ON THE PACIFIC COAST OF CANADA 709 


regular sequence of monthly mean temperatures at these stations for 
this year (Fig. 10). The more regular 1951 “offshore” conditions were 
associated with a regular decrease of monthly mean temperatures at 
these same stations from Amphitrite in the south to Langara in the north. 
Although the oceanographic surveys were conducted during the months 
of August and July, the sequence of coastal temperatures for each year 
showed the same pattern as that following in August; so it should be 
possible to predict changes in the oceanographic state of the ‘‘offshore”’ 
waters from an examination of the surface temperature trends exhibited 
by these daily seawater stations. 

During the summer of 1950 there was an excellent tuna fishery off 
the Canadian Pacific Coast. In the following summer, 1951, very few 
tuna were caught in the same area. Tuna are a warm water fish and 
their occurrence in Canadian Pacific waters could be due to the warm 
water cloud circulation observed in the August 1950 oceanographic sur- 
vey previously mentioned (Fig. 8). A correlation between the varia- 
ble “offshore” temperature distribution of 1950 and 1951 and the sea- 
water temperatures measured at coastal sampling stations has been pos- 
tulated. ‘The value of this correlation will be immeasurable if it can be 
extended to serve as a means of prediction of the availability of tuna 
to the fisheries in this marginal region. 


DAILY SEAWATER OBSERVATIONS ASSIST FISHERIES INVESTIGATIONS 


Fisheries biologists are finding significant correlations between 
changing ocean conditions and fluctuations in the availability of fish. 
These studies have only been instituted in recent years because of the 
inadequate catch statistics for previous years. Ihe scope of these studies 
covers the effect of ocean environment on spawning populations, juve- 
nile fish and adult migrations. It has been demonstrated that the daily 
seawater observations can be used to monitor the changes in the con- 
ditions of the sea in the several climatic regions on the Pacific Coast. 
It is now only a short step to the next logical phase of using these daily 
observations to assist in the prediction of fish availability. 

Investigations have already been made into the possibilities of a 
correlation between the July sequence of coastal station temperatures 
and the offshore tuna fishery, with quite encouraging results. The tuna 
fishery for 1952 was as unsuccessful as that for 1951, and an examination 
of the July and August mean temperatures for the same four coastal 
stations showed a similar characteristic of a regularly decreasing tem- 
perature from south to north. It was not possible to make an offshore 


710 EIGHTH PACIFIC SCIENCE CONGRESS 


oceanographic survey during the summer of 1952 to determine the tem- 
perature distribution pattern, so these daily records from the coastal 
sampling stations were doubly important because they are the only cri- 
teria of what type of surface temperature distribution must have existed 
in these offshore waters during the summer of 1952. 

Considerable research has been done on the relationship of seawater 
conditions in Hecate Strait, as monitored by Triple Island station, and 
fluctuations in the strength of lemon-sole year classes in the fishery 
in that area. Researchers have found that when the water temperatures 
during January and February are lower than normal there is an in- 
crease in the availability of fish in April and May. Further studies are 
progressing to determine why the relationship exists. 

An association has been found between availability of the cohoe 
salmon in the fishery off the west coast of Vancouver Island and the 
salinities of the coastal waters as observed at Amphitrite and Kains 
sampling stations. It appears that higher than normal inshore salinities 
during the summer months provide better cohoe fishing for the inshore 
boats and poor fishing for the offshore boats. Studies concerning the 
ocean environment of salmon and their feeding habits are being con- 
tinued to determine the reason for this correlation. 


BIBLIOGRAPHY 


HOLLISTER, H. J. Daily sea water observations in Georgia Strait. Fish. Res. 
Bd. Canada, Prog. Rep. Pac., No. 91, December, 1949. 

Daily sea water observations along the west coast of Vancouver 
Island. Jbid., No. 86, April, 1951. 

Daily sea water observations in northern British Columbia wa- 
ters. Ibid., No. 91, June, 1952. 

Daily sea water observations along the central British Columbia 
coast. Ibid., No. 94, March, 19538. 

PIcKARD, G. L. and D. C. McLrEop. Seasonal variation of temperature and 
salinity of the surface waters of the British Columbia coast. J. Fish. 
Res. Bd. Canada, 10, p. 125, 1953. 

TULLY, J. P. Weather and the ocean. Fish. Res. Bd. Canada, Prog. Rep. 
Pac., No. 26, December, 1935. 

Report on dynamic studies off the Canadian Pacific coast, 1936. 
Trans. Amer. Geo. Union, 18, p. 228, 1937. 

Seasons in the sea. Fish. Res. Bd. Canada, Prog. Rep. Pac., 
No. 32, June, 1937. 

Some relations between meteorology and coast gradient currents 
off the Pacific Coast of North America. Trans. Amer. Geo. Union, 19, 
p. 176, 1938. 

—————. Seasonal cycles in the sea. Fish. Res. Bd. Canada, Prog. Rep. 
Pac., No. 85, December, 1950. 


SEAWATER OBSERVATIONS ON THE PACIFIC COAST OF CANADA 711 


TULLY, J. P. Climate in the coastal seas of British Columbia. Jbid., No. 90, 
March, 1952. 

TULLY, J. P. and E. BERTRAM BENNETT. Project “Offshore,” coastal tem- 
peratures and tuma. Ibid., No. 92, October, 1952. 

WALDICHUK, M. Oceanography of the Strait of Georgia. I. Salinity distri- 
bution. Fish. Res. Bd. Canada, Prog. Rep. Pac., No. 93, December, 1952. 

ANONYMOUS. Observations of sea water temperature and salinity on the Paci- 
fic Coast of Canada. Pacific Oceanographic Group, Pacific Biological 
Station, Nanaimo, B.C., Volumes I to XII, 1914 to 1952. 


712 EIGHTH PACIFIC SCIENCE CONGRESS 


ILLUSTRATIONS 


Fic. 1—Chart showing the location of daily seawater stations on the 
Pacifie Coast of Canada. 

Fic. 2.—An aerial photo of Triple Island lightstation. (Photo courtesy 
R.C.A.F.) 

Fic. 3.—Seasonal variations of the water and air temperatures at Kains 
Island, Quatsino Sound, for the year 1935. 

Fic. 4.-Average seawater temperatures and salinities at four typical 
sampling stations for 15 years, 1934-1949. 

Fic. 5.—Distribution of salinity at two yards depth in Georgia Strait. 
February 1950. 

Fic. 6.—Distribution of salinity at two yards depth in Georgia Strait. 
June 1950. 

Fic. 7.—Seasonal variation in Fraser River discharge and surface sali- 
nity at Entrance Island station, 1950. 

Fic. 8.—Surface temperature distribution, north-east Pacific Ocean, 
August 1950. 

Fic. 9.—Surface temperature distribution, north-east Pacific Ocean, 
August 1951. 

Fic. 10.—The sequence of monthly average temperatures along the ocean 
coast of British Columbia. 


SEAWATER OBSERVATIONS ON THE PACIFIC COAST OF CANADA 713 


Long. 126° W 


Cope St. James 


QUEEN 
CHARLOTTE 


SOUND 


Koins:|. 


FIGURE 1 


Location of Stations Making 
Daily Seawater Observations 


Stations ore Underlined 
@.9- Langero L 


COLUMBIA 


. a ads 
Cope Mud: 


EIGHTH PACIFIC SCIENCE CONGRESS 


714 


Z ANNI 


SEAWATER OBSERVATIONS ON THE PACIFIC COAST OF CANADA 715 


JAN FEB MAR APR MAY JUNE JULY AUG SEPT ocT NOV DEC 
Po a Ulnar ae as ea 


\ i : OBSERVERS 
Jo Hy CE.CARVER 
By eka nea se SLNEAVE 60°F 
RSSaG : t Wath AN 
g iE ‘ 
ib ; 
, AL : i 
aw ; AQ 
j y, i Vt 
Na x 
Was Vi & A 
Ig . SUMMER- | ae 
.: : WINTER 


20 ene 


BY 
40° 


QUATSINO STATION 
WEST COAST 
VANCOUVER ISLAND 
'935 


ener 


FIGURE 3 


* LANGARA 


Ww Ut 


PONHDONS 


F M A My Ju vy Au S ON 


oO 

NNN Nw Ww 
On 

Too 


SYN LWY3dW3L 
ALINIAVWS 


RACE ROCKS 


| 
lence oa 
1 


SALINITY 


W 
a 
= 
a 
4 
WW 
a 
= 
WwW 
(SF 


do 


FIGURE 4 


T1é EIGHTH PACIFIC SCIENCE CONGRESS 


(Ss 
w 
w 
re 


OEPTH . 


10 20 


° 
[gee falies ! n ] 


Secele of Olistence 


FIGURE 5 


SEAWATER OBSERVATIONS ON THE PACIFIC COAST OF CANADA 717 


ACIWOnNGe 27 
7 We 
AS 


DEPYW - FEET 


10 zo 


° 
[gee files l 4 ] 


Scale of Distence 


FIGURE 6 


400 


cu.FT./SEC. X 1000 


200 


DISCHARGE 


100 | 


EIGHTH PACIFIC SCIENCE CONGRESS 


30 


FRASER RIVER DISCHARGE 
at 
HOPE , B.C. 


JAN. FEB. MAR. APR. MA 


25 
20 


F244 synoptic surveys 


SALINITY %e 


Y JUNE JULY AUG. SEPT. OCT. 
1950 


NOV. DEC. 


FIGURE 7 


bs —_ 

PROJECT OFFSHORE 
CRUISE | | 

(HG& CEDARWOOD) 


PACIFIC OCEANOGRAPHIC GROUP 
NANAIMO , B.C. 


& S 
0, 
iv) 


AUGUST 


SCALE OF DISTANCE 
qe hwics 60 wo | | 
1 


as" 


1 
‘o7" 


"SURFACE 
"SEAWATER TEMPERATURES (F)___ 


1950 


LOts1SS° WOOT iy 12955 SA ee ae 2 Tee 


FIGURE 8 


OBSERVATIONS ON THE PACIFIC COAST OF CANADA 719 


SEAWATER 


SEAWATER TEMPERATURES (°F) 


PROJECT OFFSHORE 


CRUISE i, 1988 
(KMS CEDARWOOD) 


PACIFIC OCEANOGRAPHIC GROUP 
NANAIMO, BC 


SURFACE 


AUGUST 1951 


SCALE OF DISTANCE 
SEA MILES 30 100 
eee ll 


1 
ws? 


LOMG 133" WEST 


FIGURE 9 
1950 JULY 1951 
50°F 55 50 55 60 
Langora 
C St James 
Kains 
Amphitrite 
J 
AUGUST 


50°F 50 55 60 


55 
Taney San ihs| 


Langara . 

Cc St James 
Kains 
Amphitrite 


FIGURE 10 


fe! 


Eb 
ay 


A STUDY OF LOCAL VARIABILITY IN MARINE SEDIMENTS * 


By RicHarp G. BADER 


Department of Oceanography, University of Washington 
Seattle 5, Washington, U.S.A. 


INTRODUCTION 

The sampling problem involved in obtaining any natural sample is 
often exceedingly complex and has received much consideration in the 
literature. In the process of obtaining any one sediment sample by 
means of a coring tube or other sampling device, only an exceedingly 
minute portion of the sea bottom is sampled. In a strict sense any single 
sample is merely representative of the exact spot sampled. Unless the 
process of sampling continues systematically in this and adjacent areas, 
radial extrapolation from the sample is subject to great error, with any 
single sample being representative of only itself. ‘The introduction of 
this limitation on problems of sedimentation or sedimentary environ- 
mental studies, whether they be physical, chemical, or biological, pre- 
sents a serious handicap. In order to proceed with any sedimentary 
research it is necessary to know the limitations of the samples obtained 
and to understand, at least to some degree, the existing local variations 
and the probabilities for such variations. 

The purpose of this paper is to briefly present some of the initial 
results concerning a problem of sampling marine sediments in the region 
of Puget Sound, in the State of Washington. The information to date 
consists of the data from a particle size analysis of the bottom sediments 
obtained along an east-west traverse of Puget Sound, about 12 miles 
north of the city of Seattle. 


REGIONAL DESCRIPTION 
Puget Sound is a pre-existent valley system which has been partially 
drowned by the sea. It is one of the deepest salt water basins in the 
United States. The mid-channel bottom area exceeds 900 feet in depth 
in some localities. Depths of 600 or more feet below sea level are usually 
encountered in the channel portions of the Sound. Except for local 
areas, the shore slopes and underwater slopes are steep; inclines of 25 
degrees are common. 
* This work was supported by the Office of Naval Research under Contract Ne. N8onr- 


520/III, Project NR 083-012, with the Department of Oceanography, University of Washington, 
Seattle 5, Washington. 


721 


W22, EIGHTH PACIFIC SCIENCE CONGRESS 


The topography of the Puget Sound area is due primarily to glacial 
action by a lobe of the Cordillerian ice sheet. The shore line is bordered 
by deposits of clay, sand, gravel and till, reminiscent of the glacial con- 
trol. These glacier-derived sediments often form shore line cliffs 200 
or more feet high. 

Glacial till is a prominent source of sediments in Puget Sound and 
may become a part of the marine sediment in various ways. (1) The 
slopes may be in part composed of glacial deposits “in situ”. (2) The 
ercsion of cliffs and beaches will also be a supply of glacial sediments. 
(3) the streams are imposed on glacial till and will transport this ma- 
terial to the marine environment. (4) Slumping of the cliffs, which are 
composed of glacial deposits, will add to the marine sediments. 

Chemically and mechanically weathered material from the basement 
rocks of the Cascade and Olympic Mountains contributes to the sedi- 
ments as they are carried to the Sound by the numerous streams and 
rivers. Volcanics, from direct dust-falls and from inland erosion, pro- 
bably account for some sediment supply in the Sound. 

In the area of sampling (Fig. 1), between President Point on the 
west shore and Point Wells on the east, the bottom configuration is 
analogous to the steep shore bluffs. The eastern underwater slope is 
generally steep and continuous with a value of 1:3.5 from a single 
break at about 20 feet below sea level to the base of the slope which 
is approximately 700 feet below sea level. A few localities have slopes 
of 1:1. The western slope is not as continuous, being divided into areas 
with different slope angles. Some portions are exceedingly steep with 
values as great as 1:3, others have gradual slopes with an average value 
of 1:15. This suggests that bathymetrically the two slopes are different 
(See Fig. 3). In this region the slope areas account for about one-hall 
of the total Sound width of 35.7 miles. The mid-channel region, repre- 
senting the remaining one-half, is relatively flat with a maximum relief 


of about 75 feet. 


METHOD OF SAMPLING AND ANALYSIS 

Initiai examination of core samples from Puget Sound indicated 
that extreme variability in particle size existed. It was suspected that 
this variability occurred over exceedingly small horizontal distances. In 
order to study the variability both horizontally as well as vertically, over 
small horizontal distances, a device was designed to simultaneously ob- 
tain three cores spaced in a triangular pattern, | foot apart (Fig. 2). 
The cores obtained by this method were cut into sections 4 cm. in length 
from the surface down. Thus three approximately equal surface samples 
and three samples for every subsequent 4 cm. in depth were obtained 


LOCAL VARIABILITY IN MARINE SEDIMENTS U2 


for analysis. Some 60 locations on a traverse across Puget Sound have 
been sampled, making available for comparison the data obtained from 
the analysis of 180 cores. (Fig. 3 gives the location of these samples.) 
The sampling of approximately 18 to 20 locations in the mid-channel 
and on the near shore slopes is planned for the near future. 

The vertical sectioning of the cores in the manner just described 
yielded well over 500 individual samples. Each sample was analyzed 
for particle size by standard methods. The material courser than 1/16 
mm. in diameter was sieved mechanically, separating it into standard 
fractions. “The material finer than 1/16 mm., previously separated from 
the sample by wet sieving through a 1/16 mm. sieve, was submitted to a 
pipette analysis for size determination. This latter method is based 
upon Stokes Law; that is upon the settling velocities of spheres of a 
given radius suspended in a fluid of known viscosity. 

Since this study deals with the variation in the results obtained 
in the size analysis of adjacent core samples, it is essential to know the 
analysis error. The standard method briefly described above satisfies 
this condition in allowing an impartial duplicate analysis of the same 
sample to be run under essentially standard laboratory conditions. When 
the reproducibility of the results are known, it is possible to differentiate 
between inconsistencies due to analysis and the actual variation between 
samples. 

Duplicate analysis of 20 samples indicated that the analysis error 
was very small, with an average reproducibility for any one size deter- 
mination of +0.2 percent. There was very little divergence from this 
average, with only about 20 percent exceeding the average by a factor 
of 2. The probabilities are thus in favor of actual sample variation ac- 
counting for percentage differences between adjacent samples which ex- 
ceed +0.4 percent. 


INITIAL RESULTS 


In order to present a summation of the results obtained, the east- 
west traverse of the Sound has been divided into three general areas. 
The eastern and western slope area from sea level down to about 500 
feet below sea level represents one division. ‘he lower portion of both 
slopes, from about 500 feet below sea level to the base of the slopes and 
adjacent channel areas, represents the second division. The last division 
is the mid-channel region. 

The following table presents some of the differences in grade size 
percentages between the samples from the three cores obtained simul- 
taneously at one Jocation. The percent differences shown are thus in- 


724 EIGHTH PACIFIC SCIENCE CONGRESS 


dicative of variations in particle size distribution from samples only 
one foot apart. 


DIFFERENCES IN GRADE SIZE PERCENTAGES * 


SLOPE BASE OF SLOPE MID-CHANNEL 

(ee MAX MIN AVER. MAX. MIN. AVER MAX. MIN. AVER 

% % Ve Nyce Zanes % a %e 
>4 1 Al 5 — See <1 
42 2 <1 1 <1 <l <@ll 1 <el: <i 
2-1 <1 <ol <Gil <il <1 <a! <Al <Gil <Gill 
1-1/2 1 <1 <1 3 <al il <Gl <1 <1 
1/2-1/4 18 <1 A <<al <1 <i <1 <il <ol 
1/4-1/8 138 <i 4 D <1 2s 1 <1 <1 
1/8-1/16 20 <<il By ak) <1 4 6 1 3 


* These are approximations based on the analysis of cores from 36 of the 60 locations. 


Very often the data from sediment size analysis are reported in terms 
of major fractions; such as sand-silt-clay ratios. Coarse, medium and fine 
classifications are often used where coarse material includes coarse sands 
and larger, medium material represents a composite of medium and fine 
sands and the fine matter is a summation of the amounts of silt and clay. 
Using such a coarse-medium-fine differentiation for the sediments in 
this study, the variations in frequency percent between categories of any 
two adjacent samples is markedly increased. ‘The slope area presents a 
maximum variation of 33 percent for both the medium and fine frac- 
tions. The base of the slopes shows a maximum variation between ad- 
jacent samples, using this type of classification, is also significant in- 
maximum variation for the mid-channel is 10 percent in the medium and 
fine ranges. The average variation between the same categories of ad- 
jacent samples, using this type of classification, is also significantly in- 
creased. The slope area has an average variation of 10 to 12 percent, 
the base of the slopes 6 percent, and the mid-channel region 4 percent. 

Sediments are often described and/or classified according to statis- 
tical characteristics such as mode, median and quartile deviation. In 
view of this a few examples of the similarities and differences in these 
factors between immediately adjacent samples shall be presented. 

Figure 4 graphically presents the data from two sample locations. 
Sample 6L1 is located on the east slope at about 560 feet below sea level. 
Sample 1P2 is from the west slope, approximately 600 feet below sea 
level. ‘The first sample presents an exceptionally good match between 
the three adjacent cores. The modes are the same, while the maximum 
difference between the median diameters is very small, only 0.046 mm. 

1 The approximate variations given here are the averages of the numerical differences in 


the per cent of each individual category. For example: Core A—40 per cent fine sand; Core 
B—20 per cent fine sand; the variation in the fine sand is thus 20 per cent. 


LOCAL VARIABILITY IN MARINE SEDIMENTS 725 


The coefficient of sorting, i.e., the log of the geometric quartile deviation 


(log\/Q;/Q,), which is indicative of the sorting of the sample, differs 
by a factor of 1.23. They are all normally sorted sediments ranging 


from a sorting coefficient of 0.428 to 0.528. 

Visual inspection of 1P2 (Fig. 4), shows two fairly well matched 
bimodal curves. The cumulative curves also approximate one another. 
The median diameters differ by 0.29 mm.; both are poorly sorted with 
coefficients of 1.088 and 1.100. 

Sample 7M1 (Fig. 5) is located on the west slope at a depth of 
about 500 feet. The frequency curves for the three adjacent cores are 
similar; however core A has a mode between 0.125 and 0.065 mm., while 
cores B and C have their modes between 0.065 and 0.031 mm. The me- 
dian diameters are essentially the same, with only a 0.03 mm. difference. 
The most striking feature is shown in the numerical value for the sort- 
ing; 0.139 for core A and 0.385 for core B. They differ by a factor of 
2.87, yet they all represent good sorting. All three cores are generally 
comparable. 

Sample 3P3 (Fig. 5) shows some divergence between the three ad- 
jacent cores. There is a 10 percent difference in the frequency of the 
major modes. Cores A and B have modes between 0.5 and 0.25 mm. 
while core C has a mode between 0.125 and 0.0625 mm. This represents 
a difference of two standard grade sizes. The medium diameters have 
a maximum difference of 0.34 mm., or vary by a factor of 3.10. Sorting 
is essentially normal in all three cores with coefficients ranging from 
0.431 to 0.597. 

Sample 5L2 (Fig. 6) from the east slope at a water depth of 700 
feet shows a marked visual difference. Core A is bimodal while Core B 
is unimodal. The median diameters and the coefficients of sorting dif- 
fer by factors of 1.8 and 1.32 respectively. Core A is poorly sorted and 
core C is normally sorted. 

Sample 1P1 (Fig. 6) taken from the east slope at a depth of ap- 
proximately 500 feet shows a striking variation between adjacent cores. 
Core B is definitely unimodal, with the mode between 0.5 and 0.25 mm. 
Core C is slightly bimodal with the major mode between 16 and 8 mm. 
The median diameters differ by a factor of 1.8; the coefficients of sorting 
by a factor of 1.68. Both are poorly sorted. 

The horizontal variation of the median diameters of the particles 
- at particular depths in the cores is shown in Figure 7. Sample P6 shows 
a good relationship with depth between the median diameters of the 
three adjacent cores. The remaining samples present varying degrees of 
divergence in the median diameters. 


726 EIGHTH PACIFIC SCIENCE CONGRESS 


SUMMARY AND CONCLUSIONS 


Since the Puget Sound sediments are a composite of many sources, 
the sediment system is a complex one. Many of the sampling difficulties 
probably arise due to the glacial deposits, especially from those in situ 
and those added by the slumping of the shore bluffs. 

From the analysis obtained thus far, it appears that the local varia- 
bility increases up the slope and that maximum variations commonly 
occur on the upper slope regions, in areas of about 200- to 300-foot water 
depth. The degree of reliance for the data of any one core sample, 
in terms of horizontal extrapolation, decreases as the water depth de- 
creases. It is also apparent from the data obtained that the greatest 
discrepancies between any two adjacent samples usually occurs in the 
smaller diameter sand sizes. 

Differences between adjacent samples mean very little in themselves 
but by a continuation of systematic sampling and analysis, coupled with 
an analysis of variance as a statistical treatment of the data, variation 
may be placed on a quantitative basis. It is quite possible that definite 
horizontal and vertical trends in local variations may be defined. A 
continuation of this study may also assist in the devermination of “in 
situ” glacial deposits, if sampling is carried out on the adjacent land in 
known glacial sediments. 

Marked variations in the character of the sediments will affect the 
statistical values used to classify the sediments. The defining of the 
sediments in this or similar regions, by use of isolines or other convential 
means based on these statistical values, may be quite misleading. 

This general method of sampling is not limited to the determination 
of local variability in physical characteristics of sediments. The sedi- 
mentary chemist may find such a study applicable as an introductory 
investigation of any area. “The sedimentary bacteriologist and the neo- 
ecologist, paleo-ecologist or paleontologist studying the foraminifera and 
diatom distribution in sediments may consider this or some similar meth- 
od useful during a preliminary investigation. 


LOCAL VARIABILITY IN MARINE SEDIMENTS VAY 


ILLUSTRATIONS 


Fic, 1.—Outline map showing the sampling area. 

Fig. 2.—Device for obtaining 3 simultaneous cores. 

I'ig. 3—Upper figure shows sampling locations and bottom contours. 
Each location indicated was sampled by use of the triple coring device. The 
lower figure presents a profile of the sampling area. 

ig. 4.—Size-frequency polygons and cumulative curves for locations 6L1 
and 1P2, 6L1 lecated on the east slope at 560 foot depth, 1P2 is on the west 
slope at a depth of 600 feet. Both show good correspondence between ad- 
jacent cores. 

Fic. 5.—Size-frequency polygons and cumulative curves for locations 7M1 
and 3P3, 7M1 is located on the west slope at a 500 foot depth, 3P3 is located 
on the east slope at 450 feet. The beginning of divergence between adjacent 
cores can be observed. 

Fig. 6.—Size-frequency polygons and cumulative curves for locations 5L2 
and 1P1. Both are located on the east slope at depth of 500 feet. Marked 
variations between adjacent cores can be observed. 

Fic. 7.—Comparison of the median diameters of particle size for adja- 
cent cores for four locations with depth in core. Sample P6 indicates good 
correspondence between adjacent cores at all depths in the core. Sample P3 
(with a break in the scale) indicates good correspondence between adjacent 
cores on the surface; there are 3 fold differences between the median dia- 
meters of the cores at 10 and 20 cm. depths. Samples L6 and M7 show in- 
termediate divergences with depth. 


LOCAL VARIABILITY IN MARINE SEDIMENTS 729 


*) A . 
BEY eS 


- SAMPLING AREA 


A'Bremericr 


o_o 


[PUGET SOUND 


UPA 6 RLS ES OY EY CEE 


TT HU TANT TT A 


FIGURE 1 


FIGURE 2 


730 EIGHTH PACIFIC SCIENCE CONGRESS 


e 
PRESIDENT s A EY 
POINT ° h 
fee ¢ MOS 


z 


TRIPLE CORE SAMPLE LOCATIONS 


37 MILES 


“ wATURAL SCALE 


VERTICAL SCALE OR 


FIGURE 3 


FREQUENCY POLYGON CUMULATIVE CURVE (6L!) 


(6L1) 
ero Cone TER 
a- 0.100 


O- a1ek 
c- aes 


WEIGHT 
waren’ & 


DIAMETER (Mat) OUMETER (mim) 


FREQUENCY POLYGON (IP2) CUMULATIVE CURVE (IP2) 


MEDAN DIAMETER 
o— 0.78 
c— 046 


WEIGHT 
WEIGHT & 


cont A—— 
CORE 8 --~ 
cone ¢ 


DIAMETER (MM,) 


FIGURE 4 


2 


WEIGHT 


* 


WEIGHT 


v 


etionT 


WEIGHT 


LOCAL VARIABILITY IN 


TT TU 
FREQUENCY POLYGON , 


(7M) 


DIAMETER (MM) 


DIAMETER (MM) 


FREQUENCY POLYGON (5L2) 


CIAMETER (bM.) 


FREQUENCY POLYGON (IP!) 


DIAMETER (neat) 


MARINE SEDIMENTS Tar 


CUMULATIVE CURVE (7MI) 


MEDIAN DIAMETER 
aA— 0.10 
Bs — 0.10 
¢— 0.07 


WEIGHT % 


2 3 js Ost 0078 019 395 


DIAMETER (mm) 


CUMULATIVE \CURVE (3P3) 
\ 
MECUN DIAMETER 


A— 0.800 
®— 0.800 
aca ¢— 0.160 
z 
2 
ric 
x 


to 


2 25) 25 Os) 0078 0019 90948 


DIAMETER (mm) 


FIGURE 5 


CUMULATIVE CURVE (5L2) 


MECN Dies TER 
A— 0.047 
e— 0.027 


SS Se 
2 5 128 03! =©0078 §=60019 00048 


DIAMETER (Mid) 


Voeon onl aaron eaten aa alana ena 


CUMULATIVE CURVE (IPI) 


ncaa (om TER 
o— on¢e 
c— oe 


weienT & 


a) 23 om O07e = GD 
DIAMETER (mm) 


FIGURE 6 


URE EIGHTH PACIFIC SCIENCE CONGRESS 


| DEPTH IN CORE—— MEDIAN DIAMETER 


CEPTH iN CORE (CB.) 


20 LON 2 A 


MEDIAN DIAMETER OF SEDIMENTARY PARTICLES (mia) 


FIGURE 7 


SECULAR VARIATION OF THE ANNUAL MEAN SEA LEVEL 
ALONG THE JAPANESE COASTS 


By Masamori MIyAZAKI 
Kobe Marine Observatory, Japan 


1. INTRODUCTION 

Chief purposes of this manuscript are to analyse the time series of 
the annual mean sea-level computed for 11 stations (Fig. 1) along the 
Japanese coasts, and to investigate the origins of secular tide variations 
by using these data. The source material consists of continuous records 
(20-50 years) obtained at Aburatsubo, Kushimoto, Shimotsu, Osaka, 
Kobe, Uwajima, Shimizu, Hosajima, Tonoura, Sakai, and Wajima. Most 
of these data were already tabulated in the Tidal Record [Land Survey 
(1), Geographical Survey Institute (2), and the Tidal Observations 
Imperial Marine Observatory (3), CMO (4)]. 

The variations of annual mean sea-level at these stations are shown 
in Figure 2, which suggest the existence of the progressive and periodic 
variations. Especially, the progressive trends are clearly shown in these 
figures, and are the order of a few millimeters per year at most sta- 
tions. Besides them, the sudden fall of about 1.3 m. was observed at 
Aburatsubo in 1923 accompanied with the Kwanto Earthquake, and 
similar changes took place at Shimizu in 1946 by the Nankaido Earth- 
quake. 


2. PROGRESSIVE VARIATIONS 
Several methods are now available to compute the secular trends 
from the given time series. In this paper, the expansion in orthogonal 
polynomes 


f (tn) =a,t+ a(# oan? + az (°-- t+. wi 
is used for this purpose, where f(t,) is the annual mean sea-level, t, the 
time in year measured from the central instant, 2, the number of years, 
Q,, Qz, d3 are constants. 

This method is very convenient since the significance can be 
checked for each order term. Computations are made for these curves. 
and we find that, excepting Kobe, the first and second order terms are 
reliable at the significance level of 5%. The dashed curves in Figure 2 
represent the progressive trends computed by this method. 


733 


134 EIGHTH PACIFIC SCIENCE CONGRESS 


The dashed curve extremely rises at Osaka by the local land sub- 
sidence in the western part of the City. The total amount of variation 
in 19 years (1926-44) is nearly 110 cm., or 6 cm. per year. At other 
stations, the rates at which the sea-level changes are within 1 cm/year 
or so, except for the sudden or rapid changes accompanied with the 
great earthquakes (Aburatsubo, Shimizu, Shimotsu). 


3. PERIODIC VARIATIONS 

At first, we eliminate the progressive variations from the observed 
series of the mean sea-level. ‘These residuals really make the signifi- 
cant variations or not. The check is easily made by plotting the cor- 
relograms (Fig. 3), and we find that the variations are existent at the 
significance level of 5%. Figure 3 also suggests the existence of the 
periods 11-12 year and 18-19 year. 

The exact periods will be determined by the usual method of 
periodgram analysis. According to the computed results, the most 
probable periods are 

11.6 and 18.6 years for Kushimoto, and 

11.4 and 18.6 years for ‘Tonoura. 
Amplitudes of these variations are significant (significance level 5%) 
at these stations. Besides, the amplitude of 9.3 year variation is larger 
than that of 18.6 year variation at Tonoura, which means the existence 
of bitide for the 18.6 year tide. 

The amplitudes and phases (7 = 0 at 1940) of these periodic va- 
riations are computed for several stations, and shown in Table I. These 
coefficients are corrected and the effects of other periods are eliminated. 
The statistical tests are applied according to Ogawara’s method (5), and 
insignificant variations are omitted there. 

These results are not in good agreement with those computed by 
Kawakami (6) chiefly because of his neglect of 11.5 year variation. 


4, EFFECTS OF THE LAND DEFORMATION 

The land deformation is considered to be the effective origin of 
the sea-level variations. The results of the precise levelling carried out 
by the Geographical Survey Institute will be available to ascertain 
the relation between them. 

(i) Aburatsubo—The precise levelling is frequently carried out 
along the route Tokyo-Aburatsubo [cf. Yamaguchi(7)]. ‘These results 
fairly resemble the secular trends shown in Figure 2. However, the 
correlation coefficient between the leveled height of the datum line 
and the corresponding annual mean sea-level is 

pe US) (mn = 6) 


ANNUAL MEAN SEA LEVEL ALONG THE JAPANESE COASTS 735 


which shows that the linear correlation is insignificant for the year-to- 
year variations of the uncorrected sea-level. 

(ii) Kushimoto—The datum line falls 17.55 cm. from 1900 to 1928, 
while the mean sea-level rises 20.0 cm. in this period, 

(iit) Shimotsu—The datum line falls 27.5 cm. from 1928 to 1950, 
and the mean sea-level rises 25.2 cm. in this period. 

(iv) Uwajima—The bench mark No. 4589, situated in Uwajima 
City, rises 8.9 cm. in the period 1897-1935, and falls 4.3 cm. in the 
period 1935-47. ‘These results are in fair agreement with the progres- 
sive sea-level variation shown in Figure 2. 

(v) Tonoura—The datum line falls 5.6 cm. from 1944 to 1950, 
while we have the gradual rise of the progressive sea-level trends (about 
3 cm.) in this period. 

Thus, the vertical land deformation is likely to be closely related 
with the progressive sea-level variations. However, the relations are 
doubtful for the year-to-year variations. 


5. ‘Tipe oF 18.6-YEAR PERIOD 
The longitude of the moon’s ascending node varies with the 18.6- 
year period, and accordingly the obliquity of the moon’s orbit varies 
from 18.5 to 28.6. It is the origin of the 18.6-year period tide. ‘There- 
fore, it is included in Darwin’s expansion of equilibrium tides. But 
the theoretical amplitudes are, similarly as the other component tides, 
generally smaller than the computed values. 


6. OCEANOGRAPHICAL EFFECTS 

The oceanographical effects are also thought to be important. 
However, at least until now, the numbers of the oceanographical sur- 
veys are too small to find out the mutual relations. The only available 
data are found for the variations of Kushimoto. 

The repeated observations are made for the fixed section off 
Shiono-Misaki, and the year-to-year density variations in the upper 
layers can be computed for the period 1925-31. The sea-level varia- 
tions caused by this origin h, are computed by Nomitsu’s method (8), 
and shown in Table II. The variations of the Kuroshio currents are 
also investigated for this region by Uda(9) (10), and the sea-level rise 
measured from the current axis is easily computed by the formula 


w sin cf 
fp eee Jury 


where @ is the annual mean speed of the Kuroshio at the surface of 


this area, and L is the corresponding current width. The results of 
computation are also shown in Table III. 


736 EIGHTH PACIFIC SCIENCE CONGRESS 


We now eliminate the effects of the statical pressure from the 
residual sea-level variation at Kushimoto. ‘The correlation coefficient 
between fA, and this quantity 

p == (O45 (Go 1/) 
is not significant. However, when we further deduct h; from this quan- 
tity, the correlation between h, and the last quantity is significant at 
the level of 2%, since we have 

08a . (a = 7) 

It means that the residual sea-level change in this period is chiefly 
caused by the variations of pressure, water density, and ocean currents. 


7. METEOROLOGICAL EFFECTS 

(1) Pressure—The pressure change naturally causes the variation 
of the sea-level. The sea-level rise of 1 cm. nearly corresponds to the 
pressure fall of 1 mb. The fluctuation of the annual mean sea-level 
is generally within 1 mb. and the corresponding sea-level change will 
be also the order of 1 cm. or less. 

(ii) Winds—According to Shimizu (11), the sea-level change caused 
by winds is estimated to be the order of 1 cm/m/sec or less for the 
most effective wind directions. ‘Therefore, the wind effects will be 
disregarded for our purpose, since the fluctuation of the annual mean 
wind speed is within tens of centimeters. 

Effects of other elements (precipitation, melting of polar ice, etc.) 
are supposed to be too small to be taken into account. 


8. CONCLUSIONS 

(i) The annual mean sea-level at the stations along the Japanese 
coasts make the progressive and periodic variations. ‘The progressive 
changes are within 1 cm/year excepting Osaka (6 cm/year), and the 
periodic changes (9.3, 11.5 and 18.6 years) have the magnitudes with- 
in a few centimeters. 

(ii) The progressive changes are chiefly caused by the vertical land 
deformation: the periodic changes are likely to be chiefly caused by 
astronomical, oceanographical, and meteorological origins. 


REFERENCES 


Land Survey: Tidal Record, 1900-29 (1930). 

. Geographical Survey Institution: Tidal Record, 1930-49 (1950). 

Imperial Marine Observatory: Tidal Observations, Vol. 1-18, 1924-41. 

. Central Meteorological Observatory: Tidal Observations, Ser. 2, 1941-48, 
Ser. 3, 1949-. 

5. M. Ocawara: Applied Statistics, Chapter 7 (1949). 


moo be 


Prop MAS 


4 


ANNUAL MEAN SEA LEVEL ALONG THE JAPANESE COASTS 737 


N. KAWAKAMI: Mem. Imp. Mar. Obs. 2 (1925). 

S. YAMAGUCHI: Bull. G.S.I. 2, 1 (1950). 

T. NoMitsu and M. OKAmMoTo: Mem. Kyoto Imp. Univ. (A) 10 (1927). 
M. UDA: Oceanogr. Mag. 1, 1 (1949). 

M. Upa: J. Oceanogr. Soc. 6, 4 (1951). 

. T. SHimizu: Bull. G.S.J. 2, 1 (1950). 


=4 
(oe) 
CO 


EIGHTH PACIFIC SCIENCE CONGRESS 


TABLE I 
PHASES AND AMPLITUDES OF THE PERIODIC VARIATIONS 


9.8 YEAR 11.5 YEAR 18.6 YEAR 
STATION AMP. res AMP. 

Ain PHASE aa PHASE | oan PHASE 
Kushimoto oo — 2.10 285.5 1.58 180.6 
Shimotsu Det Sias a] 197.5 1.56 PASM | 1.89 164.8 
Osaka 2.82 298.4 BAs) Be) | 1.93 alee 
Kobe 2.54 104.0 2.04 304.1 3.16 340.8 
Hosojima | 1.85 87.4 — —_ — — 
Tonoura | 1.57 11212) | aeoreit 249.0 WG | 245.1 
Sakai (ee = 1.36 1000) 
Wajima | 1.03 259.1 1.46 325.455) 0.74 129.2 

TABLE II 


THEORETICAL AMPLITUDES OF THE 18.6 YEAR TIDE 


| STATION AMPLITUDE (cm.) | STATION | AMPLITUDE (cm.) 

| Kushimoto 0.5 Kobe | 0.1 | 

| Shimotsu 0.3 Tonoura | 0.0 | 

| Osaka 0.1 Wajima 0.8 | 
TABLE III 


EFFECTS OF OCEANOGRAPHICAL ELEMENTS ON THE ANNUAL MEAN-SEA LEVEL 
AT KUSHIMO 


| YEAR | Tees UAE CE NGE | MEAN PRESSURE h, | h, 
cm. mm. Hg cm. cm. 1 
1925 3.9 760.6 SH al 5.8 | 
1926 =0:9 60.9 =05. | 63) all 
1927 0.7 60.5 6.4) "1 RSE aal 
1928 2.6 60.7 Be i aL 
1929 = j1 60.7 = Oe il Tel 
1930 1.3 61.0 AB NW RO 
Vemloot 2.8 60.8 ALOE apple 


ANNUAL MEAN SEA LEVEL ALONG THE JAPANESE COASTS 739 


FIGURE 1 


“1 
aS 
eo) 


EIGHTH PACIFIC SCIENCE CONGRESS 


Kushi moto 


idee tie sabe 1932 tie (95° 


Hosojima 


se) iste 19> 193e Ste 1980 


Fic. 2.—Variations of the annual mean sea-level (solid curves) and their 
progressive trends (dashed curves). 


ANNUAL MEAN SEA LEVEL ALONG THE JAPANESE COASTS 741 


FIGURE 2 (continuation) 


| 
i 
ww) 


EIGHTH PACIFIC SCIENCE CONGRESS 


Des hn 
Kushimoto 


3) aD 


Tonoura 


Masamori Miyazaki me 


FIGURE 3 


SUBMARINE CANYON INVESTIGATIONS 


By Francis P. SHEPARD 


Scripps Institution of Oceanography 
University of California, La Jolla, California, U.S.A. 


[Published: Proceedings of the Eighth Pacific Science Congress, vol. 
IIA (Geology and Geophysics and Meteorology), p. 820-826 
(1956) ] 


SURFACE TEMPERATURE AND SALINITY IN THE 
SOUTHWEST PACIFIC OCEAN 


By D. M. Garner 
Oceanographic Observatory 
Department of Scientific and Industrial Research, Wellington 
New Zealand 


ABSTRACT 

From material recently collected, the hydrology of surface waters 
in seas around New Zealand is discussed in a series of papers to be pub- 
lished in forthcoming issues of the New Zealand Journal of Science and 
Technology. ‘The disposition of mean monthly sea surface isotherms 
is described over an area from the East Australian coast to the 180th 
meridian between latitudes 20°S and 46°S. Differences between these 
patterns for individual years and the charts showing mean monthly 
isotherms published by the United Kingdom Meteorological Office, 
are defined and discussed in terms of climatological factors. “These pat- 
terns are also discussed in terms of oceanic circulation and, in part- 
icular, features of the flow of subtropical water southwards off the 
east coasts of Australia and New Zealand are described. With the aid of 
thermograph records obtained on transTasman and tropical commercial 
routes, the fine temperature detail associated with the water masses 
(defined by the mean patterns), and their boundaries, are described. 
Similar records, obtained in New Zealand coastal waters, establish the 
relation between water circulation and bottom topography, and define 
areas of upwelling, and the distribution of subtropical, subantarctic, 
and coastal water types. 

To a more limited degree, salinity in the various water masses 
defined by the temperature patterns is also discussed. 


743 


nin ecome aban: 


t 
| 
; 


te bene 
Se AL 7 
iS eee d ans 
« 
{8 Pas erin 
} ve ; 
é rc rhs 
5 % 
£3 
ie as F ali 
eRe Ga i | 
Mi 
5 F elcte Ci aeet* 4 he Sar 
‘ i 


Boe naaeh 


A alee. he 


tht Aatictniee 


(ibsty Fined kleine ere 
Pea fete, BS toi 


Cau As 


iyo iey eb psieiregn: otf aE ee aad 


die Lp ee ae 


00 Joa aay it 


pie Aid bite) mobelionty pays ate he 


Ee oe. adi bos, 
- Adelie ber ii GRAAF “he _ RO ae 


ny i A wows a 


t¢ 5 ae, +7 ; an 


ae; 


ee ACTRESS Be Oh era beaee tame 


of rer Yissys a iieas 


sealer ie cre 


geleas wee Mt higay beth on ih 


Geng ‘4 agile : ? 
etic sa aroleT ‘Shainin eth 


SECULAR TRENDS AT EAST AUSTRALIAN COASTAL 
STATIONS: 1942-1952 


By D. J. Roctrorp 


Marine Biological Laboratory, Cronulla 
N. S. W., Australia 


I. INTRODUCTION 

A phenomenon of extreme importance to the oceanographer work- 
ing upon fisheries problems is the occurrence of long term trends in 
hydrological conditions at any region. 

As part of its coastal oceanographical programme the C.S.I.R.O. 
Fisheries Division has, since 1942, maintained monthly to fortnightly 
sampling at a number of stations situated some five miles offshore in 
about 60-70 metres of water. (Fig. 1.) 

At each of these stations samples for temperature, chlorinity, dis- 
solved O,, pH, inorganic phosphates, organic phosphorus and _ nitrate 
nitrogen have been collected at 10-metre depth intervals to 50 metres. 

Within the time limits of this paper it is proposed to demonstrate 
long term trends in hydrological properties at a number of these sta- 
tions, and to discuss possible causes of such trends. 


II. DATA AND METHODS 


The data and the methods used in their collection and analysis 
have been given in Oceanographical Station Lists of the C.S.I.R.O. 
Vols. 4 and 14. 

In order to simplify the presentation of the trends, the data have 
been divided into a summer period, October to April inclusive, and 
a winter period, May to September, on the basis of the annual tem- 
perature cycle in these waters. During the summer period the water 
temperature increases or remains at a stationary maximum value, 
whilst during the winter it decreases or remains stationary at a minimal 
value. 

The vertical water column at each station has been subdivided into 
a surface zone, in which sampling at 0, 10 and 20 metres depth are 
included and a bottom zone in which sampling at 30, 40 and 50 metres 
depth are included. Surface or bottom values of any hydrological prop- 
erty are thus the A.M. of the 0, 10 and 20 or the 30, 40 and 50 metre 
values respectively. 


745 


746 EIGHTH PACIFIC SCIENCE CONGRESS 


III. S—EcULAR TRENDS AT THE Port STEPHENS, PorT HACKING AND 
MariA ISLAND COASTAL STATIONS 


In order to illustrate the latitudinal spread of the trends exhibited 
by east Australian coastal waters, and also to provide as long a time 
span as possible, only data from the three earliest established coastal 
stations in New South Wales and ‘Tasmania will be considered in this 
section. 

Fig. 2 shows how the mean summer and winter surface and bottom 
nutrient conditions at the Port Hacking station have varied over the 
period 1943 to 1952. There is clear evidence of a gradual rise in in- 
organic and total phosphorus for both surface and bottom layers, with 
little difference between winter and summer conditions. Nitrate ni- 
trogen values have also risen during the same period, but only in the 
bottom layers. 

Fig. 3 demonstrates clearly the gradual decrease in Cl°/,, as- 
sociated with an increase in the rainfall at the Port Hacking coastal 
station during the same period. However, it is clear that the summer 
bottom Cl°/,, was decreasing well in advance of the 1948 increase in 
summer rainfall. At the Port Stephens coastal station (Fig. 4) there 
is evidence of an increase in inorganic and total phosphorus from 1945 
to 1950, but after that year the values have remained steady. It is to 
be noted, however, that the magnitude of the increase is much less than 
at the Port Hacking station. Moreover, nitrate values have decreased, 
except for the rather inexplicable increase in the bottom winter waters. 
At the same station the Cl°/,, of surface waters has been greatly af- 
fected by land runoff (Fig. 5). However, it is important to note that 
the Cl°/,. of the summer bottom waters has varied little during the 
period. 

Off Maria Island (Fig. 6), the inorganic phosphates have increased 
since 1946 to a maximum in 1950, but have remained at this level since 
that year. The total phosphorus increase parallels that for inorganic 
phosphate. There appears to have been little change in the nitrate 
nitrogen of these waters during the same period. 

The Cl°/,,. of these waters (Fig. 7) has increased at a steady rate 
since 1947 and this is true of both summer and winter periods. The 
decrease in rainfall particularly during the winter period is apparent. 

It is clear then that at each of these three coastal stations at dif- 
ferent latitudes along east Australia, there has been an increase in the 
phosphate content, both in the inorganic and organic form, over the 
past 7-10 years. The nitrate nitrogen has increased only at the Port 
Hacking station and has decreased at the other two stations. 


SECULAR TRENDS AT £. AUSTRALIAN COASTAL. STATIONS :1942-52 747 


For the New South Wales stations, the decrease in chlorinity of the 
surface waters particularly has been associated with increases in rain- 
fall, but on the other hand, at the Maria Island station there has been 
an increase in C]°/,, accompanied by a decrease in rainfall. 


IV. Factors oF PossisLtE IMPORTANCE IN THE GENESIS 
OF THESE TRENDS 


(a) Riverine dilution and nutrient enrichment of coastal waters. 

The parallelism between surface Cl°/,, and rainfall trends at the 
three stations considered in the previous section, suggests that land 
drainage can greatly affect the Cl°/,, of these coastal waters. 

The considerable scatter evident in the plotting of the relationship 
between rainfall and coastal surface Cl°/,, in east Australian waters 
(Fig. 8), is not unexpected, because of the varying time lag between 
rainfall and its effect as riverine discharge on coastal Cl°/,, and also 
because of the varying depth to which such discharges are mixed into 
the coastal water structure. However, it is clear that surface waters are 
diluted by riverine discharge with increasing effectiveness as the rain- 
fall increases. Moreover, there is clear evidence of the existence of two 
principal surface water masses, a New South Wales above 37°S and an 
eastern Tasmanian below 37°S. Is it possible that these riverine dis- 
charges could vary the phosphate levels of these coastal waters to the 
extent that has been experienced at the three stations discussed in 
Section III? 

In Fig. 9, the relationship between inorganic phosphates and 
Cl¢/,, at the Port Hacking station is shown. It is clear that surface 
and bottom waters exhibit a different Cl°/,.-phosphate relationship. 

inpthnesuniace Wayery a decrease im) Glo/>5 from 19:70 to 19.40%, 
is accompanied by a rise in inorganic phosphates of 6ug P/L. Assuming 
that the decrease in Cl°/,, is due to land drainage and that the rise 
in inorganic phosphates has been wholly an effect of such riverine dis- 
charges, then the phosphate concentration in the discharge would have 
to be about 400yg P/L. ‘This figure is about 10 times greater than the 
maximum phosphate level in coastal rivers of the phosphate rich north- 
ern New South Wales region and about 40 times greater than the rivers 
immediately adjoining Port Hacking. 

In the bottom waters the decrease in Cl°/,, from 19.70 to 19.55 is 
paralleled by a rise in inorganic phosphates of 9ng P/L. This would 
imply a phosphate concentration of 1200,g¢ P/L in the diluting water, 
which phosphate concentration is quite impossible. 


748 EIGHTH PACIFIC SCIENCE CONGRESS 


It is apparent therefore that whilst land drainage can modify the 
Cl°/,, structure of coastal waters, its role in the gradual increase in 
phosphate levels at coastal stations since 1945 cannot be a direct one. 


(b) Lateral movement of slope waters into the coastal region. 

During 1940-42 F.R.V. “Warreen’”’ was able to sample simultaneous 
coastal and shelf stations at frequent intervals off Port Hacking. Fig. 
10 shows the relationship between inorganic phosphates and Cl°/,, for 
slope waters and Fig. 11 for the bottom coastal waters sampled during 
this period. The regression line for the slope data above 10ug/L PO,P 
has been calculated and superimposed on the coastal water diagram. 
The coastal data fits this regression line fairly well and it is highly 
probable that slope waters of varying depths have periodically invaded 
these coastal regions during this period. 

Since that time, the systematic collection of data at the Port Hack- 
ing coastal station has revealed that these slope water invasions of the 
coastal region are a common feature of the summer period, particularly 
during the period of high vertical stability. “These slope waters are 
comparatively rich in phosphates with lower Cl°/,., temperature and 
dissolved O, than the coastal bottom waters. Could the rise in in- 
organic phosphates and the decrease in Cl°/,, in the bottom waters at 
the Port Hacking station during 1943-1952 be an effect of more frequent 
invasion and more effective assimilation of such slope waters into the 
structure of coastal waters? 

Whilst lack of information about the dynamical continuity between 
slope and coastal regions makes the examination of such a possibility 
very difficult, there are certain significant features in the trend curves 
at the Port Hacking station which favour such a theory. 

Referring again to Fig. 3, it can be seen that the mean summer 
bottom temperatures have decreased fairly consistently from 1943 to 
1949, and risen rather rapidly since that year. This trend is paralleled 
by the Cl°/,,. of these waters and, whilst the surface dilution of these 
waters during the 1949 period and onward, may have contributed in 
some measure to the later portion of this trend, the fact that this de- 
crease commenced in 1944 would indicate some more fundamental cause 
of the phenomenon. Assuming then that the decrease in summer bottom 
temperature and chlorinity has been little influenced by the rainfall 
cycles during the period, there seems good evidence to support the 
theory of more effective assimilation of low temperatures and chlorinity 
slope waters into the structure of the Port Hacking bottom coastal waters 
during 1943-1949. 


(c) Increase in phosphate content of slope waters. 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL STATIONS :1942-52 749 


Fig. 12 shows the relationship between total phosphorus and oxy- 
gen saturation values of the Port Hacking summer bottom waters during 
1943-1952. 

By differentiating the data into years, it is possible to see clearly 
that these bottom waters have changed their O,-total phosphorus rela- 
tionship quite considerably during the period. 

To better illustrate this, two envelopes have been entered, one 
labelled A, containing a majority of the data subsequent to and the 
other labelled B, prior to that year. At any given oxygen saturation 
level it is clear that the total phosphorus content has increased over the 
period. Unfortunately one cannot assume from this that the parent 
slope waters have also changed their total phosphorus and dissolved O, 
content in a similar fashion at the depth of origin of these coastal in- 
trusions. “There would, however be no reason to suppose that the east 
Australian slope waters would not undergo long term changes in hydro- 
logical properties, and it is quite possible that an increase in the nu- 
trient level of the parent slope waters themselves has contributed to 
these coastal water trends. 


(d) Replacement of local coastal waters by a foreign water mass of 
higher nutrient content. 

Along the east Tasmanian coast the evidence from coastal observa- 
tions suggests that lateral movement of deep offshore waters into 
coastal regions is extremely rare, largely because it is suspected that a 
slope current is only weakly developed. One cannot assume therefore 
that the same processes have contributed to the secular trends at the 
Maria Island station, as have been considered responsible in more 
northern latitudes. It is significant too that the rise in phosphates and 
total phosphorus has been accompanied by an increase in Cl°/,, and 
temperature during the winter period, particularly from 1947 to 1951. 
On the evidence it was considered probable that in this region the 
secular changes were due to a gradual displacement of the original east 
Tasmanian water mass of 1945 by a new water mass of higher Cl°/ 9, 
temperature and nutrient content. 

In Fig. 13 the total phosphorus-chlorinity relationship of the mean 
summer bottom data for east Australian coastal stations is shown. It 
seems clear from this slide that all of the data can be developed by 
mixing between three primary water masses with distinct total phos- 
phorus-Cl°/,, relationship. If we examine the chlorinity-temperature 
relationship, Fig. 14, three primary water masses can be distinguished. 
It is possible to identify a New South Wales coastal and an east Tasma- 
nian coastal water mass on their temperature, chlorinity, total phos- 
phorus relationships, but the genesis of the third with low temperature 


750 EIGHTH PACIFIC SCIENCE CONGRESS 


and chlorinity, associated with high total phosphorus characteristics is 
difficult to decide exactly, although such characteristics are more typi- 
cal of deeper offshore waters of New South Wales than of east Tasma- 
nia. 

Without sufficient knowledge of the dynamics of the New South 
Wales ‘Tasman Sea, however, it is impossible to demonstrate how such 
a water mass could have influenced the Tasmanian coastal region. 


V. METEOROLOGICAL AND DyNAMICAL CHANGES ASSOCIATED 
WITH THESE TRENDS 


If we accept the proposition that the secular trends at the Port 
Hacking coastal station are due in large measure to variations in the 
amount of slope water influence, then a study of the possible factors 
controlling such slope water variation might eventually enable the 
oceanographer to predict by study of the variation in the principal con- 
trolling factors, oceanographical conditions in future seasons. For the 
past 10 years the C.S.I.R.O. Fisheries Division has been studying the 
monthly and annual variations in mean sea level at a station representa- 
tive of coastal conditions off Port Hacking. 

If we examine the mean summer and winter mean sea levels varia- 
tions at this station during the period 1942-1952, Fig. 15, the existence 
of a secular trend is evident. Moreover, the magnitude of the cycle has 
been much greater during the summer than the winter period. ‘The 
period of minimum summer mean sea levels irom 1946 to 1949, cor- 
responds to the period of lowest mean summer bottom temperatures 
at the Port Hacking station. ‘There is evidence from the New South 
Wales coastal station of the development of a counter current flowing 
north, at distances of about 5 miles offshore, during the later part of 
the summer, ‘The high mean sea levels normally experienced in March- 
April are considered to be an effect of this current along the coast. 
Presumably then during seasons when this counter current is strongly 
developed, the intrusion of slope waters is retarded because the isen- 
tropic layers are tilted down towards the coast and oppose the latera! 
movement of dee) slope waters into the coastal region. 

In Fig. 16 the relationship between mean monthly sea level and 
bottom temperatures at the Port Hacking station during December over 
the period 1942-1952 is shown. For those years when high sea levels 
prevailed during December and are indicative according to the theory 
outlined above of weak slope water influence, the mean monthly bottom 
temperatures are higher. 

It seems clear then that the ultimate answer to both variation in 
slope water intrusion and the coastal mean sea level at the Port Hacking 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL. STATIONS :1942-52 751 


station is linked with the variation in the development of this counter 
current. However, it has not been possible as yet to show any con- 
sistent relationship between the variation in this counter current and 
corresponding variation in the direction or strength of coastal winds. 
It is possible that wind conditions over the Tasman Sea proper may be 
more influential in this regard but scarcity of data prevents such an 
analysis being made. 


VI. Discussion 


In studying the coastal hydrology of the east Australian region 
with its comparatively narrow shelf and well-developed offshore current 
system, the extreme variability of the coastal environment and the major 
effects of the offshore current on such variation, are evident. ‘This 
paper serves to illustrate another longer term variation, which is im- 
portant to the fisheries of the region and which has had very wide- 
spread effects. 

It is obvious, however, that to advance beyond the mere descrip- 
tion of coastal events, and of their probable genesis, to a more com- 
plete and perhaps useful stage, requires the simultaneous collection of 
information upon the dynamics and hydrological structure of the off- 
shore in addition to the onshore regions. Moreover, it is clear that the 
elucidation of the causes for long term fluctuations in east Australian 
coastal conditions requires persistent and intensive investigation not 
only of the coastal hydrology but also of the associated estuaries and 
their flood contribution, as well as of the meteorological elements, par- 
ticularly wind and rainfall, which enter into these cycles. 


EIGHTH PACIFIC SCIENCE CONGRESS 


PORT STEPHENS COASTAL STATION 


Latitude: 32° 43’ S. 


SUMMER PERIOD 


October 
October 
October 
October 
October 
October 
October 
October 


October 
October 
October 
October 
October 
October 
October 
October 


October 
October 
October 
October 
October 
October 
October 
October 


’45-April 
’46-April 
»47—-April 
’48-April 
’49-April 
’*b0—April 
*51-April 
’52-April 


’45—-April 
’46—-A pril 
?47—April 
’A8—April 
’49-April 
’50-April 
»51—April 
’52-April 


*45-April 
’*46-April 
?47-April 
’A8—April 
749—April 
50—April 
51—April 
’52-April 


PORT STEPHENS COASTAL STATION 


"46 
"AT 
"A8 
"49 
D0 
*ol 
D2 
08 


"46 
"AT 
"48 
"AQ 
’b0 
ol 
702 
d3 


’A6 
"AT 
"48 
"49 
50 
’O1 
"52 
D3 


TEMP. 


Cl °/v0 


0—-25 m. Mean 


19.51 
TO eTO 
19.54 
19.22 
19.53 
21.64 
18.62 
20.26 


25-50 


17.47 
17.35 
17.91 
17.89 
16.99 
19.31 
17.52 
18.10 


m. 


19.27 
19.60 
19.63 
19.62 
19.52 
19.52 
19.63 
19.56 


Mean Column 


19.59 
19.60 
19.63 
19.64 
19.61 
19.61 
19.62 
19.58 


Longitude: 152° 18’ E. 


PO:P 


Column 


or co O1 00 Or 1 bY CO 


9 
8 
13 
8 
15 
ff 
13 
14 


0-50 m. Mean Column 


18.49 
18.53 
18.63 
18.56 
18.26 
20.73 
18.07 
19.18 


Latitude: 32° 43’ S. 


WINTER PERIOD 


May—September 
May-—September 
May—September 
May—September 
May-—September 
May-—September 
May-—September 
May-—September 


"45 
"46 
"AT 
48 
*49 
’b0 
"51 
"D2 


TEMP. 


19.48 
19.60 
19.63 
19.63 
19.57 
19.57 
19.63 
19.57 


Cl "/s0 


10.5 
9.5 


TeTAL P. 


13.5 
10.5 
18 
11 
23.5 
13.5 
16 
16 


NO:N 


Longitude: 152° 18’ E. 


PO:P 


0-25 m. Mean Column 


(17.52) (19.52) 
16.89 19.65 
17.98 19.61 

(18.45) (19.63) 
18.05 19.36 
18.21 19.34 


(18.50) (19.59) 


19.07 


19.62 


(2) 
3 
(4) 
(5) 
9 
8 
(6) 
6 


ToTAL P. 


(5) 
5 
(8) 
(12) 
16 
13 
(18) 
15 


NO.N 


100 


(105) 
101 


o 
80 
89 
88 
it 
93 
89 
82 


83 
87 
94 
94 
87 
96 
(97) 
92 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL STATIONS :1942-52 755 


25-50 m. Mean Column 


May-September ’°45 (17.88) (19.68) (8) (14) (56) (79) 
May-September ’46 16.48 19.67 2 5 19 96 
May-September °47 (17.85) (19.63) (6) (11) (51) (87) 
May-September ’48 (18.15) (19.62) (4) (12) (3) (100) 
May-—September ’49 17.90 19.51 10 15 45 91 
May—September ’50 18.07 19.56 11 15 54 86 
May-September ’51 (17.87) (19.68) (8) (14) (95) (95) 
May-September ’52 18.42 19.63 8 iy 21 95 


0-50 m. Mean Column 


May—September 745 (17.48) (19.60) (2.5) (9.5) (35) (88) 
May-September 746 16.69 19.66 2.5 5 15 97 
May—September 747 (17.92) (19.62) (5) (9.5) (40) (91) 
May-—September ’48 (18.30) (19.68) (4.5) (12) (3) (100) 
May-September ’49 17.98 19.44 9.5 15.5 31 93 
May-September ’50 18.14 19.45 9.5 14 42 91 
May-September 751 (18.19) (19.61) (7) (16) (48) (96) 


May-September °52 18.75 19.63 a 16 15 96 


PORT HACKING COASTAL STATION 
Latitude: 34° 05'S. Longitude: 151° 13’ E. 


SUMMER PERIOD TEMP. Cl °/o0 PO:P TOTAL P. NO:N 02% 


0-25 m. Mean Column 


October ’42-April °43 19.86 19.67 1 — 5 97 
October ’43-April °44 19.45 19.67 1 4 7 97 
October ’44-April 45 19.37 19.65 1 4 4 96 
October ’45-April ’46 19.54 19.60 4 10 17 96 
October ’46—-April ’47 18.69 19.64 3 7 15 97 
October ’47—-April ’48 19.18 19.60 6 13 6 98 
October ’48-April ’49 18.91 19.61 6 12 10 98 
Qetober °49-April ’50 19.19 19.43 9 20 19 95 
October ’50-April 751 20.85 19.44 5 15 6 98 
October ’51—April 752 19.54 19.64 4 15 10 100 
October ’5Z-April 753 20.14 19:59 5 15 5 99 


25-50 m. Mean Column 


October °42—April 743 18.10 19.63 5 — 22 83 
October *?438—April ’44 17.85 19.69 4 8 19 90 
October *44—-April 745 17.87 19.64 3 uf 18 90 
October ’45-April 746 17.00 19.60 9 15 46 84 
October ’46-April ’47 16.92 19.62 6 11 35 88 
October *47-April ’48 17.30 19.58 12 19 53 88 
Qctober ’48-April ’49 16.75 19.57 10 15 35 88 
October ’49-April 50 17.50 19.58 14 21 62 83 
October ’50-April °51 18.98 19.54 9 21 34 89 
October *51—-April 52 17.56 19.63 13 20 44 89 


October °52-April 753 17.74 19.58 13 21 40 87 


754 EIGHTH PACIFIC SCIENCE CONGRESS 


0-50 m. Mean Column 


October ’42—-April 743 18.98 19.65 3 — 15 90 
October ’43—April ’44 18.65 19.68 2.5 6 1133 94 
October ’44—April ’45 18.62 19.65 2 55) 11 93 
October ’45-April ’46 18.27 19.60 6.5 WPA 32 90 
October ’46—April ’47 17.81 19.63 4.5 i) 25 93 
October ’47—April ’48 18.24 19.59 9 16 30 93 
October ’48—-April ’49 17.83 19.59 8 13.5 23 93 
October ’49—-April ’50 18.35 19.48 Tales) 20.5 40 94 
October ’50—April 51 19.82 19.49 uf 18 20 93 
October ’51—-April ’52 18.50 19.64 10 We) Pal 95 
October ’52-April 753 18.94 19.59 9 18 28 93 


PORT HACKING COASTAL STATION 


Latitude: 34° 05'S. Longitude: 151° 13’ E. 
WINTER PERIOD TEMP. Cl °/00 PO.P TotaL P. NO:N 02% 
0-25 m. Mean Column 

May-September 743 15.89 19.62 5 10 15 97 
May-September 744 16.84 19.70 2 9 9 97 
May-—September 745 17.99 19.57 3 9 21 92 
May-—September 746 16.98 19.67 3 6 15 95 
May-September 747 16.86 19.65 5 ult 31 95 
May-—September ’48 16.59 19.62 8 EZ, 8 99 
May-September ’49 17.67 19.638 9 14 9 96 
May-—September ’50 17.90 19.44 7 19 IY 99 
May-—September 751 aL S74 19.51 8 18 16 hel 
May—September 752 17.53 19.47 10 16 21 89 


25-50 m. Mean Column 


May-September 743 15.74 19.69 6 11 18 92 
May—September 744 16.38 19.67 4 10 7 93 
May-September 745 16.54 19.58 8 15 52 82 
May-September ’46 16.72 19.67 4 Uf 27 94 
May-—September 747 16.17 19.638 6 10 44 sit 
May-September 748 16.01 19.61 9 16 20 96 
May-—September ’49 17.04 19.63 9 16 30 91 
May-September ’50 17.36 19.52 11 21 48 92 
May-September ’51 WAL 19.56 10 20 33 90 
May-—September 752 16.80 UG) by 7 15 22 54 89 
0-50 m. Mean Column 
May-—September 743 15.79 19.66 5.5 10.5 7 95 
May—September 744 16.61 19.69 3 9.5 13 95 
May-—September ’45 OAL 19.58 5.5 12 37 87 
May-—September ’46 16.85 1OLGi 3.5 6.5 21 95 
May-September ’47 16.52 19.64 5.5 10.5 38 93 


May—September ’48 16.30 19.62 8.5 14 14 98 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL STATIONS :1942-52 755 


May-—September 49 17.36 19.63 9 15 20 94 
May-—September ’50 17.63 19.48 9 20 33 96 
May-—September 751 17.50 19.54 9 19 25 94 
May—September 752 IU ell'g 19.52 1255 18 38 89 


MARIA ISLAND COASTAL STATION 
Latitude: 42° 36'S. Longitude: 148° 16’ E. 


SUMMER PERIOD TEMP. Cl °/o0 PO:P Tota. P. NO3N 02% 


0-25 m. Mean Column 


October ’44-April *45 (12.51) (19.34) — — (12) — 
October ’45-April ’46 (14.59) (19.34) (4) (6) (13) (97) 
October ’46—-April ’47 13.78 19.31 4 6 1% 101 
October ’47—April 748 14.14 19.39 9 13 12 97 
October *48—-April ’49 13.26 19.37 8 i 5 92 
October ’49-April 750 (13.91) (19.387) (11) (22) (7) (100) 
October ’50—April 751 14.64 19.40 8 22 7 (95) 
October °51—April 752 14.31 19.54 11 (14) 10 (85) 
October °52-April °53 14.65 19.40 8 Wi 1 101 
25-50 m. Mean Column 
October ’44-April ’45 (12.18) (19.384) — — (3) — 
October ’45—-April 746 (14.14) (19.35) (5) (9) (22) (94) 
October ’46—April ’47 fi Seto 19.30 5 iq 24 99 
October *47—April ’48 13.59 19.39 10 14 15 92 
October ’48—April 749 12.80 19.41 8 13 6 95 
October ’49-April 750 (12.98) (19.387) (12) (15) (13) (94) 
October ’50—April 751 14.16 19.44 9 au 4 90 
October ’51—April 752 13.89 19.51 10 (16) 12 85 
October ’52-April 753 13.59 19.41 11 21 25 (91) 
0-50 m. Mean Column 
October ’44-April 745 (12.35) (19.84) — — (8) == 
October ’45—-April 746 (14.87) (19.35) (4.5) (7.5) (18) (96) 
October ’46—April 747 13.45 19.31 4.5 6.5 18 100 
October ’47—April 748 13.87 19.389 975, 13.5 14 95 
October ’48—April 749 13.03 19.39 8 12.5 6 94 
October ’49-April ’50 (13.42) (19.87) (11.5) (18.5) (10) (97) 
October ’50—April 751 14.40 19.42 8.5 20.5 6 (93) 
October *51—April 752 14.10 ORD Ss 10.5 15 11 (85) 
October ’52—April 753 14,12 19.41 9.5 19 19 (96) 


MARIA ISLAND COASTAL STATION 
Latitude: 42° 36'S. Longitude: 148° 16’ E. 
WINTER PERIOD TEMP. Cl °/o0 PO:P OLA Ebr NO3N 02% 


0-25 m. Mean Column 


May-—September ’45 (13.00) (19.46) — — (7) (97) 
May—September 746 LEST 19.33 7 9 36 $9 


; 6 


May-—September 
May-—September 
May-—September 
May—September 
May—September 
May—September 


May—September 
May—September 
May-—September 
May-—September 
May—September 
May-—September 
May—September 
May-—September 


May-September 
May-—September 
May—September 
May—September 
May—September 
May—September 
May-—September 
May-—September 


EIGHTH PACIFIC SCIENCE CONGRESS 


"47 
°48 
’49 
*b0 
"D1 
52 


*45 
*46 
"AT 
48 
"49 
*B0 
51 
D2 


"45 
"A6 
*47 
°48 
749 
"60 
*51 


"52 


12.44 19.32 6 
11.43 19.35 11 
(12.46) (19.39) (11) 
13.31 19.44 10 
13.76 (19.48) (9) 
12.19 19.47 11 


25-50 m. Mean Column 


(12.95) (19.45) 


Tiss TO) ay a my 
IAS OS Es 
nA OB) 
(12.47) (19.89) (12) 
WO OL) 
ES (Oss) © 
#12125) 19.47, 10 


0-50 m. Mean Column 


(12.98) (19.46) — 


11.48 19.34 7 
1246" 149-33 6.5 
YD = IGAYR cata 

(12.47) (19.89) (11.5) 
e103) VLOG 9.5 
13.75 (19.47) (8) 
12.22 1947 10.5 


16 
14 
(17) 
ul) 
(22) 
13 


8.5 
15 
14 
(19) 
17.5 
(17) 
11.5 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL STATIONS 21942-52 757 


rn 


BRISBANES . 


COFFS HARBOUR 


PORT MACQUARIE 
> PORT STEPHENS 
BOTANY BA 


Y 
PORT HACKING 


LLADULLA 


ae ws 
sr PORT 
PHILLIP 


@ ST. HELENS PT. 


FIGURE 1 


EIGHTH PACIFIC SCIENCE CONGRESS 


758 


NITRATE NITROGEN 


TOTAL PHOSPHATE FP 


INORGANIC PHOSPHATE FP 


1947 


1948 


’ iF . ® 
NUMBER OF STATIONS 


FIGURE 2 


SECULAR TRENDS AT E,. AUSTRALIAN COASTAL STATIONS :1942-52 759 


RAINFALL ANOMALY 


FIGURE 3 


CHLORINITY °%,, 


WATER TEMPERATURE (°C.). 


° 
NUMBER OF STATIONS 


SNOILWLS 40 WIGANN 


r 


60 


INORGANIC PHOSPHATE P 


EIGHTH PACIFIC SCIENCE CONGRESS 


TOTAL PHOSPHATE P NITRATE NITROGEN 


$z 


uw 
° 


- FIGURE 4 


ty4 


AUSTRALIAN COASTAL STATIONS :1942-52 761 


SECULAR TRENDS AT E. 


RAINFALL ANOMALY 


CHLORINITY °/,, 


WAT_4 TEMPERATURE (°C) 


1948 
‘ 


NUMBER OF STATIONS 


1949 
7 


FIGURE 5 


NITRATE NITROGEN 


TOTAL PHOSPHATE P 


INORGANIC PHOSPHATE P 


so 


1948 1949 
4 5) ’ 


s 
NUMBER OF STATIONS 


1952 


FIGURE 6 


SNOILVLS 40 WIBWAN 


AO2 


WATER TEMPERATURE (TC. 


261 


EIGHTH PACIFIC SCIENCE CONGRESS 


CHLORINITY °/.. 


RAINFALL ANOMALY 


is: $ 
t 
\ a 
' a 
° a 
a yy 
£4 
li 
UE 
‘i 


FIGURE 7 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL STATIONS : 1942-52 


+] 
(oy) 


6 


6 O' 


\ © 30-34°S. 
56 \ x 34-3795 
\ OB 37-45°S. 


Oo BASS STRAIT. 


40 


30 


ss 
>». 
“s 
~ 


20 


TOTAL RAINFALL IN SEASON 


io 
Sos 
vs. 


12) 
19-20 19:40 19-60 19-80 
CHLORINITY %,, 


FIGURE 8 


EIGHTH PACIFIC SCIENCE CONGRESS 


764 
PORT HACKING. 
20 . 
N ® O - 25m 
\ \ 
\ \ 
‘ ‘ 
‘ \ 
\ 
1s \ aN 
N \ 
\ x \ 
\ \ 
oe X \ x 
OAS e N 
ae x \ 
a \ 
1O T kat NX xX X 
e Pee xX XK \ 
~ \ 
e . x ® \ 
® \ vin) S 
X Sek 
ORE SN 
A \ TaN 
5 r S ex 0 
ae © Ne XK 
Sew @ \g ® 
el N 
Deu \ ® 
tN 
4 aN 
ol i 
19-40 19-SO 19-60 19-70 
fe) 
Gl foe 


FIGURE 9 


SECULAR TRENDS AT E, AUSTRALIAN COASTAL STATIONS :1942-52 765 


19-90 


I9-GO 


Qrz0 = 
be 
o 
a 


CHLORINITY °/,.. 


19:50 


19-40 


19-30 


PHOSPHATE P 


FIGURE 10 


766 


6 
loo. 


CHLORINITY 


EIGHTH PACIFIC SCIENCE CONGRESS 


19-80 02° Jo. 


ORIGIN. 


50 


19-60 


3 DEPTH OF SLOPE 


19:50 


10] 5 10 i) 20 25 30 35 


INORGANIC PHOSPHATE P 


FIGUZE 11 


SECULAR TRENDS AT E. AUSTRALIAN COASTAL STATIONS: 1942-52 767 


CL GUAT 
d W1LOL 
or te OE 9E ce 8z ad iol 4 91 zi 8 v (oe) 


pF oS, Ttadyv - 146, *390 + ap ° IN pk 
bZ bS, Ttady - 0S, *190 * Noy 

lz 0S, Ttady - 6h, *3200 O \ 

62 6h, ttady - gh, *200 A ate ~ 

29 eT, ttadv = 1h, *390 0 N 

on Zh, Ttadvy - 9h, °300 @ > 

6 gn, ttadv - Gh, *290 WV \ 
S Sh, Ttadv - th, "390 Xx N 
i) th, Ttady - ¢€h, °190 @ 

L/S 


(ex 


YSWWNS (“OS —SZ) 
ONINXOVH LuOd 


FL AWN 


00 . 
NS) 
O4-6h 09-61 OS 6) Ov-6l O€-61 


69°6s 8) 


25°64 


EIGHTH PACIFIC SCIENCE CONGRESS 


61 


oe 


ex48dk00 


eg (YBNWNS) YOS-St ONINDSVH LYOd 


eW3al 


2) 


eT aun 


sO0/)4 
ED 
09:6! 0s-6! Ov-6l Oc-6t 


“d Te4oL ¥ 19 Oo! 


S| 


ley4 


£6,- 26,4 
2g,- 16,0 


bS,- 056,% se 
0S.- 61,9 
6%.- 87, @ 
ene LV 
dn.- 99, X 
97.- Sn, @ 
oe 


(YBNIWNS) “OS— SZ ONINDVWH LYOd 


d W1OL 


SECULAR TRENDS AT CL. AUSTRALIAN COASTAL STATIONS :1942-52 769 


PORT HACKING. 
28 


a WINTER 


SEA LEVEL. (Inches) 


MEAN 


1942 1943 1944 1945 1946 1947 1948 1949 1950 193) 19Sa 19S 
YEAR 


FIGURE 15 


770 


(25-5Om) TEMP 


EIGHTH PACIFIC SCIENCE CONGRESS 


PORT HACKING (DECEMBER), 


30 33 
MEAN SEA LEVEL. (Inches). 


FIGURE 16 


40 


RECENT DEVELOPMENTS IN TIDAL AND TIDAL 
CURRENT MEASUREMENTS * 


U.S. CoAsT AND GEODETIC SURVEY 


CURRENT MEASURING EQUIPMENT 


During World War IJ, when a large part of its personnel and 
equipment had been transferred to the Armed Forces, the U.S. Coast 
and Geodetic Survey, in an effort to meet both military and civilian 
requirements, devised several new instruments and procedures. One 
of the most interesting of these is a radio current meter known as the 
Roberts Radio Current Meter after its designer Capt. E. B. Roberts, 
now Chief of the Division of Geophysics of the Bureau. The design 
includes both the meter and a special buoy to support the meter and 
house the radio transmitter. 

As often happens after field trials, the first design of this equip- 
ment was found to have some features capable of being improved. 
These improvements have been embodied in a revised design known as 
Model II. However, Model I instruments are still being used with 
satisfactory results. 

Equipment losses in congested harbor areas are likely to be high. 
Buoys with attached equipment sometimes disappear without trace and 
cannot be found by dragging. More often buoys are rammed by pass- 
ing craft and set adrift. When found, if the meters are still attached, 
they are usually badly damaged. Frequently the meter suspension cable 
has been cut and all meters lost. Losses can be minimized to some 
extent by publication of operations in local and weekly Notices to 
Mariners. From time to time, it becomes necessary to replace equip- 
ment lost in operation, and successful bidders have found it desirable 
to make minor changes during construction. These have not changed 
the basic design, but unless made by the same manufacturer, parts are 
not always interchangeable. 

The introduction of this meter represented such a radical change 
in standard methods for the determination of tidal current velocities 
that it was necessary to prepare a special operating manual for it. This 
manual has been revised periodically as improvements in equipment 

* Contribution from the U.S. Coast and Geodetic Survey, Department of Commerce, Wash- 
ington, D.C., U.S.A. 


Presented by Capt. Andres O. Hizon, Director of the Bureau of Coast and Geodetic Sur- 
vey, Republic of the Philippines. 


a 


CU EIGHTH PACIFIC SCIENCE CONGRESS 


and methods have occurred. ‘The latest revision was made in early 
1952. It will be revised again to include improved procedures devel- 
oped during the 1952-53 seasons. 

At present, research is underway toward improved designs for the 
transmitter and chronograph. Considerable work has been done on 
the design of a low-velocity highly sensitive meter for use on the bot- 
tom. Work is also in progress on an automatic recording system for 
these meters. 


FIELD METHODS 

As indicated earlier, this meter is a wartime development, con- 
ceived as the solution of the problem of economical and rapid deter- 
mination of surface current velocities of interest to marine navigators. 
The laborious and time-consuming methods involving the anchoring 
of vessels or barges on current stations could no longer be employed 
for lack of men and floating equipment. The Roberts Radio Current 
Meter provided an economical and relatively easy method for making 
current observations from surveying vessels engaged in hydrographic 
or other surveys within radio range of the buoy transmitters. The 
design of this equipment was based on the concept of single-meter oper- 
ation. ‘To permit satisfactory handling from small craft, weights were 
kept to a minimum. At first, normal operating procedure consisted of 
streaming a buoy with one meter attached—usually at some level 12 to 
40 feet below the surface. At receiving stations, whether ashore or 
afloat, it is necessary to tune manually receivers to the frequency of 
each transmitter. This limits observations in radio-congested areas to 
six or seven meters for a single receiving station, as six or more clear, 
unobstructed frequency channels are difficult to find. Interruptions 
in transmission make records difficult to process—oftentimes worthless. 

For marine transportation, surface current velocities are of para- 
mount interest, and the Roberts Radio Current Meter was used at 
first to determine these. Because of its light weight it tends to lift 
in proportion to the strength of the current in velocities greater than 
about 2 knots. A tendency to sheer is noticeable in velocities of 3 
knots. A leader was devised for attachment to the buoy anchor cable 
to obviate these tendencies. It was found desirable to use this leader 
regardless of the velocity because it causes the meter to pivot about a 
point of the anchor cable and produces more consistent results in cur- 
rent direction measurements. 

Although the buoy, as designed, has a strong planing lift, it must 
be carefully streamed to insure satisfactory operation in strong cur- 
rents. The lightest cable of adequate strength must be used. It has 
also been found desirable to attach buoy wings at the sides and bow. 


DEVELOPMENTS IN TIDAL & TIDAL CURRENT MEASUREMENTS 773 


The Roberts meter lends itself to economical operation for obser- 
vation at one or two stations simultaneously with large-scale surveying 
activities in the same general area. Activities of this nature are usually 
carried on by vessels maintaining continuous radio watches. Radio per- 
sonnel can monitor and receive the meter transmissions without greatly 
interrupting their normal routine. Since the advent of electronic ship- 
positioning methods, it is sometimes desirable to have electronic shore- 
station personnel receive meter returns from isolated current stations 
within range. This method is not as desirable as the ship receiving 
method unless electronic shore-station personnel are increased sufficient- 
ly to permit the usual “on the spot” tabulations. 

For short-period observations, it has been found desirable on oc- 
casion to use the Roberts meter without the radio link. In practice a 
small vessel, or launch, is anchored on station and the meter hoisted 
in and out in the manner normally employed when using non-record- 
ing meters. The meter is connected electrically to a tape chronograph, 

ut without the radio receiver and amplifier. 


REVISED FIELD METHODS 


Earlier methods have been revised and new components introduced 
which have made it possible to more than double the former rate of 
receiving. In the early days each meter required a separate radio fre- 
quency and transmitter. Monitoring, receiving, and tabulating records 
from six or seven transmitters were about all the receiving-station per- 
sonnel could manage in one 30-minute observation period. Last year 
a timing device, known as the “Sequence Switch,” was designed and 
developed in the Bureau. Since then it has become standard practice 
to suspend three meters from one buoy. By inserting the sequence 
switch in the meter circuits returns from each meter are coded and 
transmitted over one frequency. It is now possible to receive returns 
from 18 meters in one 30-minute period. This switch is illustrated and 
described briefly in the 1952 revised operating manual. An _ article 
concerning the switch appeared in the Surveying and Mapping News 
section of the 1952 September-October issue of the Military Engineer. 

With the development of the three-meter suspension method it be- 
came necessary to discard the leaders. The added weight of meters 
and connections plus a 30- to 50-pound lead, or cast iron “sinker’’ below 
the meters prevents any great amount of lift in moderate velocities. 
Care must be exercised in attaching the two extra meters to prevent 
“twist” in electrical cables—otherwise they may not stream freely with 
the current. If this does occur, it can first be detected in the direction 
data, as, obviously any prolonged indication of directions normal to 


TTA EIGHTH PACIFIC SCIENCE CONGRESS 


channel axes must be erroneous. Multiple meter suspension was first 
used with 80-inch buoys. They do not have enough reserve buoyancy 
to carry the extra weight satisfactorily in strong currents. One-hundred- 
twenty-inch buoys are now being used with much better results. Their 
use also makes it possible to employ heavier “sinkers’” and heavier ball- 
bearing swivels between meters. 

For routine current work in the past, when velocities at levels 
other than surface were desired, observations were made at two-tenths, 
five-tenths, and eight-tenths of the depth at the station. In an effort to 
determine the behavior throughout the depth, observations have been 
made at varying intervals from surface to bottom. ‘The larger num- 
ber have been made at levels of 6 to 12 feet below the surface, at mid- 
depth, and at a minimum of about 3 feet above the bottom, irrespective 
of the rise and fall of the tide. The Woods Hole Oceanographic In- 
stitution has devised an experimental mounting for use in shoal water 
where velocities are desired at fixed levels within 1.5 to 3.0 feet from 
the bottom. 


EQUIPMENT AVAILABILITY AND CosT 


The Roberts Radio Current Meter and equipment is not patented. 
It is currently being used by severai federal agencies and one or two 
oceanographic institutions. One English instrument maker has ob- 
tained a set of specifications and has, it is presumed, produced instru- 
ments for Admiralty use. ‘Those used in the United States have been 
produced by three different “low-bidding” instrument makers, none of 
whom have produced them for general sales. ‘The radio transmitters 
and sequence switches have been procured in much the same manner. 

The major items of special equipment necessary to operate a cur- 
rent survey party using a launch and shore-based receiving station are 
listed below, with the approximate total cost. 


[EB UOy sO sGlhi ier aces eee 6 @ $760.00 — $ 4,560.00 
2. Roberts Radio Current Meter 18 @ 550.00 — 10,000.00 
3. Radio transmitter for buoy .. 6 @ 400.00 — 2,400.00 
4. Radio receiver for shore station 1 @ 400.00 — 400.00 
5. Chronograph, tape recording . 1 @ 675.00 — 675.00 
6. Voice radio, for launch and 

Shoremstablon ue ane alien 2 @ 750.00 — 1,500.00 
7 Ground tackle; per) DUOy nae) 40 @ 200.00 — _ 1,200.00 
SE SEQUENCE mS WiC Iain ere a ee ae 6 @ 90.00 — 540.00 


Total $21,275.00 


DEVELOPMENTS IN TIDAL & TIDAL CURRENT MEASUREMENTS 1775 


From this it can be seen that the equipment required for one cur- 
rent party represents a modest investment. 


‘TIDE AND CURRENT PROGRAM 


Early in 1951 the Bureau embarked on a tide and current program 
in domestic waters on a scale it had never before attempted. Several 
vessels were assigned this duty exclusively. ‘Two of these were large 
enough to provide suitable berthing and working spaces for all per- 
sonnel employed. Others were not, and it became necessary to estab- 
lish self-contained receiving stations ashore. In protected waters the 
employment of the shore-station method permits the use of medium- 
sized launches suitably equipped to handle the buoys, but otherwise re- 
quiring few men. A shore station can be operated quite satisfactorily 
by nine men. One of these is the supervisor and relief and the other 
eight are divided into four watches of two men each. The launch and 
station combination makes for very economical operation, if or when 
overhead costs of larger vessel operation are considered. 

Simultaneous observations of tides and currents have been under- 
taken as regular routine in this program. Normally, about one-third 
of the special tide stations in each area are established and operated 
for a period of 12 consecutive months. ‘They are equipped with stand- 
ard recording gages. The remainder are equipped with portable gages 
which are operated for 2 consecutive months. While the tides and cur- 
rents are being observed, all tide station bench marks and tide staffs 
are interconnected by closed loops of first-order levels. “This provides 
the means of relating the tide planes determined independently at each 
station. When the observations at the tide stations have been cor- 
rected to a 19-year mean through comparison with a reference station, 
the results show the variation of the different tide planes throughout 
the survey area as referred to a common datum. Also through com- 
bination of simultaneous tide observations and the interconnecting level 
lines, the pattern of gradient variation between stations throughout the 
tidal cycle can be established. 


fe 


i Teles 


ON THE MINIMUM OXYGEN LAYER IN THE 
NORTH PACIFIC OCEAN 


By TAkEo KAWAMOTO 
Kobe Marine Observatory, Japan 


Oxygen in the sea is supplied by contact with the atmosphere and 
by photosynthesis. On the other hand, dissolved oxygen is consumed 
by the respiration of marine organisms and the reduction of bacterial 
action or the reducing agents of both inorganic or organic matters dis- 
solved in water. Thus the oxygen contents in sea water are always af- 
fected by the reactions of general oxidation and reduction taking place 
im the sea. Besides the oxygen content in the sea are influenced by 
the mixing with other waters. Therefore, if there is no supply of oxy- 
gen in sea water, the dissolved oxygen will be diminished gradually. 
Then, if we observed a water mass which contained low oxygen value 
in the intermediate waters, we generally consider that the water mass 
had taken a long run and many times before reaching that region. 

So when we discuss the property of the water mass or its movement 
in ocean, it is important and interesting to know the distribution of 
dissolved oxygen in sea waters. Though the causes of the variations 
in the dissolved oxygen content are not explained completely, but by 
tracing the distribution of poor oxygen layer in the ocean some aspects 
of the oceanic general circulation in the intermediate waters will be 
given. 

We have much interest in the oxygen minimum layer observed 
at the depths between 400 and 1000 meters in the North Pacific Ocean. 
This paper is an attempt to obtain the general aspects of the general 
oceanic circulation in the intermediate waters in the North Pacific 
Ocean by the distribution of poor oxygen layer. Figures show the hori- 
zontal distribution of the dissolved oxygen at 250, 500 and 1000-meter 
layers, respectively. 

These oceanographical data were obtained from the following re- 
ports: 

The “Carnegie” in 1928, 1929. 

The “Soyo Maru” in 1933, 1934, 1935. 

The “E. W. Scripps” in 1938, 1939, 1940, 1941. 
The U. S..S. “Bushnell” in 1939. 

The “H. M. Smith” in 1950. 

The “Tenyo Maru” in 1951. 


UE 


773 EIGHTH PACIFIC SCIENCE CONGRESS 


From the figure (500-meter layer), we can recognise a remarkable 
poor oxygen region on the east side of the North Pacific Ocean. Espe- 
cially off California, we can find even no oxygen at that layer; how- 
ever, on the west side—Kuroshio region—the content being abundant 
comparatively. And in the Oyashio region the minimum layer is at 
shallower depth. This means that in the southern region off Kurile 
Islands there occurred upwelling of the intermediate water of the North 
Pacific Ocean. 

‘The writer will, in conclusion, show the general circulation of the 
intermediate water of the North Pacific Ocean as follows: 

(1) In the region off California the intermediate water upwells and 
runs westward following the equatorial current. 

(2) Before reaching the Kuroshio region it mixes with other waters 
along the route. 

(3) A part of the above mentioned current takes the easterly course 
sinking to a lower layer. 

(4) The other part of the current flows northward to the Kurile 
Islands region and runs eastward along Aleutian Islands to places off 
North America and California. 


MINIMUM OXYGEN LAYER IN THE NORTH PACIFIC OCEAN 779 


150 180 150 ‘ 120 


150 180 150 120 


eww DY ON THE PROPERIY, OF DHE COASHAL WATER: 
AROUND HACHIJO ISLANDS 


By Yasuo Miyake, Y. SuGiuRA and K. KAMEDA 
Meteorological Research Institute, Tokyo, Japan 


It is interesting to study how the property of the ocean water is 
affected by the presence of a tiny island in the far-off sea, and to what 
extent the coastal water of such an island is changed by land water 
pouring into the sea. Since the land water contains more nutrient 
matter than the offshore water, it may contribute more or less to the 
biological productivity around the island. Accordingly, a study of this 
problem will give also a basic knowledge for the coastal fisheries and 
the growth of sea weeds near the island. 

For such a program, the chemical properties of the coastal sur- 
face water around Hachijo Island (33°05’N, 139°48’E) were studied 
in July, 1951, December, 1952, and in October, 1953. 

Land waters of the island were also chemically investigated during 
the observation periods. In summer (from 13 to 28 July, 1951), the 
surface water temperature varied from 23.7°C to 27.4°C, pH of sea 
water averaged 8.3 and the mean chlorinity was 18.75°/o,. The con- 
centrations of most of the nutrients in this season were so low that am- 
monia-N was less than 3g atoms per liter, nitrite-N was also less than 
0.05u.g atoms per liter, and phosphate-P could be found only in traces. 
Only silicate-Si was present in an appreciable amount. The amount 
was about 10g atoms per liter in the offshore water, but increased 
as the shore was approached until a quantity of 20 to 70y,g atoms per 
liter was present. In winter (from 6 to 14 Dec., 1952), the water tem- 
perature of the surface was about 20°C and the chlorinity averaged 
19.02°/,,, which was comparatively higher than in summer. The 
amounts of the nutrient salts were also larger. Nitrite-N and nitrate-N 
were contained from 0.05 to 0.70 and from 1 to 100,g atoms per liter 
respectively. Phosphate-P was from 0.05 to 4.0ug atoms per liter. Sil- 
icate-Si was from 10 to 70ug atoms per liter. The distribution patterns 
of these compounds around the island were like that of the chlorinity 
shown in Figure 1. As shown in Figure 1, the effect of the island on 
the ocean water was greater in the region from the eastern to the 
southern coast owing to the different amount of the outflowing land 
water as well as to the direction of the current. The effect of the ocean 


781 


782 EIGHTH PACIFIC SCIENCE CONGRESS 


current is seen clearly on the southern coast where the shadow of the 
current is formed. 

The daily variations in the concentrations of some chemical sub- 
stances were observed at a fixed point A in Figure 1. 

It was found that the chlorinity change showed a good correlation 
with the tide, increasing and decreasing in the same direction as the 
elevation of the water level (Fig. 2). The relation between the silicate 
content and the chlorinity is almost linear as shown in Figure 3. Using 
these facts, we can calculate the mixing ratio of ocean water and land 
water. The result of calculation shows that the rate of mixing in the 
surface water at the distance of 100 m. from the coast line is about 25% 
in winter and the effect of land water seems to extend as far as to about 
5 km. from the land. 

The diurnal variation of the dissolved oxygen content is shown in 
Figure +. It is maximum at about 14 h. and minimal in the early morn- 
ing. Such a type of variation resembling somewhat that of air tem- 
perature may be regarded as a normal one as pointed out by one 
(Miyake 1) of the present authors previously. 

In summer the range of variation is greater than in winter, as the 
population of living matter and the intensity of the sunshine are larger 
in summer. 

Since most of nutrient matter near the shore is supplied from the 
land, the chemical analysis of land water is also necessary. 

There are a number of wells, small springs and a few streamlets in 
the island. These may be classified into two groups from a chemical 
point of view. The first group (A) of waters contains much chloride 
and nutrient matter while the second one (B) contains a considerably 
lesser amount. 

It is interesting to note that the content of the silicate-Si in land 
water was comparatively larger in summer than in winter. In compar- 
ing the land water with regard to the nutrient matter, it is seen that 
the first group has a remarkably richer silicate and nitrate content than 
the second. 

The average concentrations of both groups are shown in Table I. 


TABLE I 
AMM.-N NITRITE-N NITRATE-N PHOSPHATE-P  SILICATE-SI CHLORINITY 
ug at/L pe at/L pe at/L pe at/L pe at/L % 
A 0.0 0.00 ees 0.5 180 0.02 
B 


3.0 0.05 95. lef 180 0.60 


1Y. MIYAKE: Geophys. Mag., 16, (1948), 66-70. 


PROPERTY OF THE COASTAL WATER AROUND HACHIJO ISLANDS 783 


[<>] Ss 
= oe 
} 2 
SH SoS 
2 oO 
B Sa 
~ = 


33°10" B 


Fig. 1.—The distribution of the chlorinity around Hachijo Islands, Dec., 1952. 


EIGHTH PACIFIC SCIENCE CONGRESS 


784 


-INS Td}BVM 01 


SULISIP [BOIQIOA B SE Gq 


IU ck 9G Vi. cE of - 3 


eso 2° 


‘Aqyjgol vw worz sory 


‘Opty oyy pue AqtuLtopyo oy. udeMJoq UOIZVIel 9Y,—zZ ‘DIW 


9 y ¢ be 22 O8 


03° eT 
19 


00° 6T 


% 


Ost 


002 


wo 


PROPERTY OF THE COASTAL WATER AROUND HACHIJO ISLANDS 785 


°% 19 06°8T 


“APULLOTYO BY} pus Ig 97¥dI[IS 94} Jo JUNOWe ayy UdEMJaq UOTWBIOL euUL—'e “DIY 


OL°ST Og9°S8T Og°ST OT°ST 06° LT OL°L4T §=OG° ALT 


1/° 48-377 ts 


I 
oC 
fons 


KIGHTH PACIFIC SCIENCE CONGRESS 


—@---@— pDec., 1952 


% —@—_o— July, 1951 


Summer 
ec/litre 
ae Rome. 
4 ea 
ws : 
5.0 “Oe --@--o 4 
Winter 


4.0 Summer 


Bo Oe Ley LAN OS Ie BON Bey BAN ee yA Glen Ou Dis 


Fic. 4.—The diurnal] variation of the dissolved oxygen. 


ON THE OCEANOGRAPHICAL CONDITIONS OF THE SEA 
NEAR EEE EEX Dy POET alba 7 oI aN: INT aE 
NORTH PACIFIC OCEAN 


By M. Nakano, M. Koizumi and J. FUKUOKA 
Central Meteorological Observatory of Japan, Tokyo, Japan 


1. INTRODUCTION 


The variations of water temperature, chlorinity, etc. in deep layers 
of the ocean have not yet been made clear owing to the scarcity of con- 
tinuous data of serial oceanographical observations taken at a fixed 
point for a long time. However, several years ago, ocean weather sta- 
tions were set up, and serial oceanographical observations are being 
made without interruption. 

In Japan, the first ocean weather station was established at the point 
beso Ne iin Ene North Pacific: Ocean, im October 1947, andthe 
second one at the point 135°E, 29°N, in June 1949. ‘The former station 
is now named “Extra,” and the latter “Tango.” The data of meteoro- 
logical and oceanographical observations at these fixed points are pub- 
lished in “The Results of Marine Meteorological and Oceanographical 
Observations,” a quarterly bulletin of the Central Meteorological Ob- 
servatory of Japan. 

At these fixed points oceanographical observations are usually made 
from surface to a depth of about 1200 m. about 12-24 times a month, 
the main oceanographical elements observed being water temperature, 
chlorinity, and contents of oxygen and plankton. In the present paper 
the authors intend to report some results of investigation on the varia- 
tions of water temperature and chlerinity in deep layers mainly, together 
with some other results, made from the data of observation at the fixed 
POE ENT. (hic-ali): 


2. WATER J EMPERATURE 


(a) The annual variation of water temperature. In the first place, 
the authors calculated the monthly mean water temperature of each 
layer. Figure 2 shows the variations thus obtained of water tempera- 
ture of the layers 0 m. (surface), 25 m., 50 m., 100 m., 200 m., 300 m., 
400 m., 500 m., 800 m., 1000 m. and 1500 m. From this figure we can 
see that the water temperature near the surface becomes minimum in 
February or March and maximum in August or September and that, 


788 EIGHTH PACIFIC SCIENCE CONGRESS 


for the layers from 100 m. to 300 m. deep, the phases of change of water 
temperature are nearly coincident and the maximum temperatures 
generally appear between October and December. Moreover, the time 
of occurrence of the maximum temperature of each layer near the sur- 
face (0 m.—100 m. deep) tends to lag with increasing depth. For 
example, the maximum temperature of the surface layer appears in 
August, while that of the layer of 50 m. depth appears in October or 
November. This time-lag may be regarded as mainly due to the effect 
of eddy conductivity of sea water. If we assume that the said variation 
of water temperature near the surface is due to the effect of eddy con- 
duction alone, the amplitude A, of the annual variation of water tem- 
perature of a layer of depth z is expressed by the formula 


AA coe e—a\t (1) 


PT 
where A, is the value of A, for z == 0 (surface), » the coefficient of eddy 
conductivity, and ; the period of variation (assumed sinusoidal), of the 
water temperature. Again, let ¢ be the phase lag of the variation of 
water temperature at the depth z; then 


ene] |S ae ae 


If we calculate the value of » by the formulae (1) and (2), using the 
data of oceanographical observations in 1948, we have the results as 
follows: 


Layer By formula (1) By formula (2) 
0 m—50 m. 7.55 2.39 
0 m.—100 m. eral 417 


These values of », are not so extravagant in the order of magnitude. 
However, as seen from the above results, the values of » calculated by 
the two formulae (1) and (2) do not agree very well with each other. 
This is because we have neglected the effect of heat transfer other than 
that of eddy conduction. 

(b) Long periodic change of water temperature. As seen from 
Figure 2, in the variation of water temperature of each layer, longer 
and shorter periodic changes other than the annual variation are also 
recognized. In order to eliminate the annual variation, if we apply 
the method of twelve-month moving average to these data, we have 
the results as shown in Figure 3. 

From this figure we can see that the water temperature was rising 
from 1948 to 1951 and has been falling since the summer of 1951. As 
for the cause of this periodic variation, we cannot give any definite 
explanation for the present, but it seems that this variation is due to 
a long period change of water mass situation. 


OCEANOGRAPHICAL CONDITIONS OF THE SEA IN THE PACIFIC OCEAN 789 


(c) Short periodic change. On the other hand, as mentioned above, 
in the variation of the water temperature of each layer, a short periodic 
variation is also recognized. ‘This is especially the case for the layers 
50 m., 100 m., 200 m. and 300 m. deep. 

Now, the maxima and minima of temperature of the 100 m. layer 
as shown in Figure 2 were read off, and the time intervals between two 
maxima or minima were measured and are shown in the following table. 


__ { Period (in Months) 3 4 5 
Time Interval of Temperature Maxima < 


| Frequency By tl 
Peri i [ 7 

Time Interval of Temperature Minima Soe! Woon MMOS) Be 
Frequency Hea Boe 


(From 100 m. layer) 


As is seen in this table, the short periodic change in question has a 
predominant period of 3 months. J. Fukuoka, one of the present 
authors, and T. Yusa have studied the variation of water temperature 
along the so-called “C-line” (Fig. 1) and it has been known that there 
exists a change of water temperature of about 3-month period in the 
sea adjacent to the Tohoku District (Northeastern Japan). 


3. CHLORINITY 


Figure 4 shows the variations of chlorinity at different depths. From 
this figure we can see that the annual variation of chlorinity in the 
upper layers has a maximum in spring, which is due to the effect of 
continued evaporation, and a minimum in autumn, which is caused 
by heavy precipitation. Again, we can recognize that the chlorinity 
in the layers 50-100 m. deep, tends to become high from early summer 
to autumn. ‘This could be due to the effect of the Kuroshio having 
high chlorinity. On the other hand, the chlorinity in the layers 200- 
500 m. deep is generally lower, which could be due to the effect of the 
Oyashio creeping current. 

Further, if we look at the variation in chlorinity shown in Figure 4, 
we can recognize that the long periodic change of chlorinity is similar 
to that of water temperature, which is a fact worthy of being noted. 
Thus it seems that the long periodic change of chlorinity is also due 
to a long period change of water mass situation. 


4. COLOUR OF THE SEA, TRANSPARENCY AND PLANKTON VOLUME 


At the point “Exira,’ the observations of colour of the sea and 
transparency have been performed since March 1948, and the collec- 
tion of plankton since March 1950. In the following, we shall outline 
the result. 


790 EIGHTH PACIFIC SCIENCE CONGRESS 


The annual variation of the colour of the sea is similar to that of 
the transparency, both with two maxima, one in summer and the other 
in winter, and two minima, occurrmg in spring and autumn. As to 
the seasonal variation of plankton volume, a very distinct maximum, 
a phenomenon of the so-called burst growth, occurs in spring and a 
less marked maximum in autumn, and a marked minimum appears in 
winter, and also, in a less degree, in early autumn. An experimental for- 
mula D == 21.8)-%25, where D represents transparency expressed in 
meters, and V the plankton volume in cc/m.*, has been determined 
(Fig. 5), although there are involved somewhat unsatisfactory conditions 
such as the disregard of composition of plankton, the inequality between 
the values of transparency and the depth of the net haul, ete. 


REFERENCES 


(1) J. FUKUOKA and T. Yuss: The Variation of the Oceanic Condition in the 
Sea Adjacent to Tohoku District. Oceanogr. Mag., Vol. 4, No. 2, 1952. 

(2) T. NAN’NITI: On the Fluctuation of the Kurosiwo and the Oyasiwo. 
Papers in Meteor. and Gecphys. (Meteorological Research Institute, 
Tokyo), Vol. 2, No. 1, 1951. 

(3) J. FukuoKA and T. Tsurki: On the Variation of the Oceanographic Con- 
dition of the Sea near the Fixed Point “Hxtra.” Records of Oceanogr. 
Works in Japan. (Japanese National Commission for Unesco) Vol. 1, 
No. 1 (New Series), 1953. 

(4) M. KorzumMi: On the Annual Variation in Oceanographical Elements at a 
Fixed Point (39°N, 153°E) in the Pacific Ocean. Records of Oceanogr. 
Works in Japan. (Japanese National Commission for Unesco) Vol. 1, 


No. 1 (New Series), 1953. 


CCEANOGRAPHICAL CONDITIONS OF THE SEA IN THE PACIFIC OCEAN 791 


Fic. 
FIG. 
FIG. 


IDES 
FIG. 


MG O SE RNAIOIN'S 


1.—Map showing ‘‘C-line” and the fixed points “Extra” and “Tango.” 

2.—Variation in water temperature at different depths. 

3.—The variation of the water temperature obtained by taking twelve- 
month moving average. 

4.—Variaticn in chlorinity at different depths. 

5.—Relation between transparency and plankton volume. The curve 
represents D-21.8V—).25, 


30S | _ 0051 svi _—_—sC«éOPI eae a: OE! 


a 

gj ge 
= NvFIO WAI 

S 

ica) 

oO 

Z 

== 

Fe 

ie) 

<— 

A, 

an 

al 

S V3S Nv 

I AY 4 
ON | 

2 N 


OCEANOGRAPHICAL CONDITIONS OF THE SEA IN PACIFIC OCEAN 793 


Vamces iota) 0 | 


<< 


=~] 


EIGHTH PACIFIC SCIENCE CONGRESS 


nN 
ny 
D 
— 
= 
S 
eae) = — 
Ln 
= fe) 
& — 
pal 
— 
EQ: 
D & 
cS 
xy 
= Oo) 
-t 
om 
- —)- — 4 
oe) 
a 
D> 


mow3tm ONT CN 


(2) ANjesAadwas 491VM 


| 
11 


OCEANOGRAPHICAL CONDITIONS OF THE SEA IN PACIFIC OCEAN 795 


Pp aundiy 


SHL 


BvéEl YWsA 


V3 
NOW 


796 EIGHTH PACIFIC SCIENCE CONGRESS 


O {-0 2-0 3-0 4-0 5-0 “rn V 


FIGURE 5 


DISTRIBUTION OF COPPER AND ZINC IN SEA WATER (1) 


By YosHim1 Morita 
Chemical Institute, Faculty of Science 
Nagoya University, Japan 


The contents of copper and zinc in the sea water have been repeat- 
edly determined by many investigators. However, many of the data 
so far obtained are unfortunately unreliable, owing partly to defects 
in the methods and their application and partly to contamination from 
the metallic sampler used and often from insufficient care in handling 
collected samples. 

Previously the author developed a procedure in which such defects 
and contamination can be avoided. He examined 21 samples of the 
surface waters from Tokyo Bay and Ise Bay (1). 

Although these waters looked to be contaminated more or less by 
land drainage, their contents in copper and zinc were found far smaller 
than the values ever reported. Also it was noticed that their values 
decreased from the head of the bay towards its mouth, seemingly in 
parallel with contamination. 

Naturally we are forced to expect that the far distant waters, free 
from the effect of land, will give smallest values and the copper value 
will drop probably below 1 yg/I. 

Thus the study was extended along this line. First, the surface 
waters of the “Kuroshio” area were examined in May, 1951 on board 
No. 5 Kaiyo-maru, a surveying boat of the Hydrographic Office, Mari- 
time Safety Agency, while at the second time the vertical distribution 
was determined in Sagami Bay and Suruga Bay in February, 1953, on 
board Umitaka-maru of the Tokyo University of Fisheries. 

For collecting surface water a glass sampler was used, which had 
previously been thoroughly cleaned with special care; while for deep 
water sampling an Eckmann type sampler, coated with acrylic resin, 
was devised, taking into consideration that the trials by previous inves- 
tigators, who used a metallic sampler, failed in getting a satisfactory 
result, due to probable contamination from the instrument. The deter- 
mination was carried out by mixed-colour colorimetric titration with 
dithizone (2). 


797 


798 EIGHTH PACIFIC SCIENCE CONGRESS 


The results, given in Tables I and II, show that 

1) The surface waters from Sagami Bay and Suruga Bay are richer 
in copper and zinc in comparison with those from the “Kuroshio” area, 
a fact indicating that the former are still affected by land drainage to 
any measurable extent. 

2) The vertical distribution, given in Table II, shows that this 
contamination is limited to the surface and that the contents of the 
elements decrease in layers below. 

3) Their contents, once decreased, rise up again from 200 m. or 
thereabout downwards. At the present stage of study it is difficult to 
decide what is the main factor determining the rise-up observed. How- 
ever, at least it may be said that here setting free of these elements 
from dead organisms by decomposition in the course of falling down, 
contributes to the enrichment in the deeper waters, which is usually 
the case with other nutrient salts such as phosphate. 

Unfortunately in the February cruise in 1953, the sampling from 
the “Kuroshio” area could not be done because of unfavourable condi- 
tions of the sea. The author is now planning, for the next step of 
study, an examination of samples from such an area as well as from 
other bays. Also the study will be extended to far deeper layers than 
ever examined and further to the seasonal variation of the elements. 
Efforts are also being made to improve the sampler by which the dura- 
bility of acrylic resin coating is expected to increase. 

Deepest thanks are due to Professor K. Sugawara for his guidance 
and to Dr. K. Suda, Director of Hydrographic Office, Maritime Safety 
Agency, and Professor M. Uda, the Tokyo University of Fisheries, by 
whose courtesy the author took advantage of participating in the sur- 
veying cruises. Also a sincerest condolence must be expressed to the 
late experts and crewmen of No. 5 Kaiyo-maru who missed, with the 
ship, the voyage for the exploration of Myojin Reef, which appeared 
last September because of undersea eruption, in recollecting the warmest 
help offered by them during my stay on board. 


TABLE I 


CorpPpeR AND ZINC IN THE SURFACE WATERS FROM THE ““KUROSHIO” AREA 


LOocATION DATE Cu peg/) Zn ug/l 
Sis Bh BYP OG? ING, IBIS ORY 1a May 1, 1951 0.5 1.5 
Sin Gh ene CO aie aise all! 33) May 2, 1951 0.6 1.8 
St. 4, 38° 16.5’ N, 138° 13.5’ E May 2, 1951 0.7 —_ 


DISTRIBUTION OF COPPER AND ZINC IN SEA WATER 


TABLE II 


VERTICAL DISTRIBUTION OF COPPER AND ZINC 


799 


SAGAMI BAY 


SURUGA BAY 


(1) Y. Morita, J. Chem. Soc. Japan 71, 246 (1950). 
(2) Y. Morita, J. Chem. Soc. Japan 69, 174 (1948). 


Location: 35° 03.8’ N, 139° 21.8’ E Location: 35° 00’ N, 188° 39.1’ E 
Date: Feb. 12, 1953 Date: Feb. 15, 1953 
DEPTH Cu Zn DEPTH Cu Zn 
m ug/l ug/l ™m ug/l ug/l] 
0 0.9 ee 0 0.8 2.3 
50 0.6 1.8 50 — — 
80 0.8 2.0 80 -= — 
100 — — 100 0.6 1.8 
200 0.8 2.4 200 0.6 1.9 
400 0.9 2.8 400 0.5 4.4 
600 0.9 3.0 600 1.0 eaae 
1,000 15) 4.2 1,000 —- — 
REFERENCES 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL 
CURRENT 


By ERWIN SCHWEIGGER 
Compania Administradora del Guano 
Lima, Peru 


The fact that the Peruvian Coast has a temperate and dry climate, 
although geographically situated in tropical latitude, is known since 
the Spanish conquest of Peru and northern Chile. The phenomenon 
of rainless years, especially rainless summers is due to the effects of the 
cool Peruvian Current which flows slowly along the greater part of the 
Chilean and almost the whole length of the Peruvian coasts, in the 
direction to the Equator. It was first explained by Alexander von 
Humboldt, who believed that this current was derived from the cold 
polar waters in the Antarctic. Modern investigation, however, proved 
that the low surface temperatures along that part of the West coast of 
South America are produced by “upwelling” of water from depths at 
more or less 130 m. below the surface. (Schott, 1931; Gunther, 1936). 

In this zone, as in any other place, the most interesting phenomena 
are brought forth by anomalies which in the Peruvian Current are also 
observed from time to time. The basis of our knowledge regarding 
these abnormalities is laid by the description of the occurrences in 1891 
and 1925, made by Schott in 1931. They have their origin in changes 
of the course of the Equatorial Countercurrent in combination with 
the displacement of the zone of convergence of the trade-winds of the 
northern and the southern hemisphere, and of the situation of the baro- 
metric low-pressure-area. Although very little is known regarding the 
mechanism which originates these changes, we are well informed of the 
effects it has on the Peruvian Coast. Thunderstorms and heavy rain- 
falls accompany the change of the hydrographic conditions as far as 
about 9°S. Further south the coastal plain and the western slopes 
of the Andes are soaked by rains producing great landslides and destruc- 
tion of arable soil. Together with such meteorological and hydro- 
graphic anomalies goes a deep change in the ecologic conditions in the 
Peruvian Current which leads eventually to a complete destruction of 
the habitual life in the current. 

The last of these great catastrophes occurred in 1925, and since 
then the system of the current and life depending upon its normal con- 


801 


802 EIGHTH PACIFIC SCIENCE CONGRESS 


ditions were repeatedly subject to invasions of the Equatorial Counter- 
current with some of its consequences but never in such a degree as 
reported for the summer of 1925. The author presented to the Sixth 
Pacific Science Congress in 1939 a paper regarding the hydrographic 
anomalies observed in that same year and by coincidence he wishes to 
relate to the same Congress to be held in November 1953 about other, 
and perhaps even greater, disturbances of the normal conditions in the 
summer of 1953. 

It must be said that nearly all reports contained in the oceano- 
graphic literature about destructive biological changes in the Peruvian 
Current are extremely exaggerated and generalize the extraordinary 
events which have been observed only twice during the last 62 years. 
Some abnormal situations, marked by the emigration of the guano-birds, 
are recorded for November-December 1912, March 1917, March and 
June 1923, but only for 1923 is the death in greater extension of fishes 
mentioned (Lavalle 1917, 1924). Later perturbances occurred in 1932, 
1939, 1941, 1951 and the last one just recently in 1953, this, however, 
without any biological consequences. ‘These are characterized by the 
emigration of almost all or at least an appreciable part of the guano- 
birds which occupy the small islands off the Peruvian shores. Nothing 
has been heard or seen since 1938 of a widespread mortality of fish, 
except some rare occurrences when fishes still alive were washed ashore 
(1941), perhaps poisoned or suffocated by lack of oxygen. However, 
oceanographic perturbances have taken place in all these years and in 
a lesser degree also in 1949. If it were not for the behavior of the 
guano-birds, which are carefully watched in view of their importance 
as producers of guano, one source of Peru's great wealth, the abnormal 
conditions in the sea would not be noticed. Abnormalities can only 
be detected by careful hydrographic observations. 

It is not the intention of this paper to enter into details about the 
biological changes which take place in years of greater hydrographic 
perturbances, but only to show the abnormal features of the summer 
of 1953 in comparison with those of some other years, and to discuss 
some hydrographic phenomena connected with these disturbances. 

All the data used for the original charts reproduced herewith are 
based in their greater part on observations made by the author on board 
ships of the Guano-Company (Compania Administradora del Guano, 
Lima), in sailing ships in 1939 and 1941 and complemented by data 
obtained from merchant vessels navigating along the Peruvian Coast. 
The data collected are kept in special oceanographic archives of that 
same Company. It must be stated here that the great merit of the 
Guano Company, besides the absolute and well planned protection 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 803 


given to the guano-birds, consists since the first years of its existence 
in having initiated and supported scientific investigations related not 
only to the birds, but also to the whole ecological and hydrological 
complex in which they live and upon which depends their well-being. 

Selected from the representation of abnormal situations are the 
years 1939, 1941 and 1953. Maps concerning the year 1947 which might 
be looked at as an abnormal year have been inserted. It has been in- 
cluded only because it shows for the month of March an ample review 
of the conditions in the outer limits of the Gulf of Guayaquil. All 
available data have been sampled and averaged in squares of half a 
degree of geographical latitude and half a degree of geographical longi- 
tude, and according to the averages thus obtained isotherms were 
traced. For all the above mentioned years drafted charts are presented 
for the months of March and April, although in some cases maps refer- 
ring to February would already show some major anomalies; these, how- 
ever, have been left out, in order to avoid undue length of this paper. 

The number of observations on which these maps are based is as 
follows: 

19395) March 131) April 157 


1941 4% 619 ‘3 293 
1947 ‘ 855 i 681 
1953 cf 380 rs 780 


An isothermic chart for normal conditions in the Peruvian Coastal 
Current (Fig. 1) shows the isotherms running parallel with the conti- 
nental coast, whilst abnormal situations originated by an invasion of 
the Equatorial Countercurrent in 1891 and 1925 are represented by the 
almost perpendicular course of the isotherms to the shoreline (Figs. 2 
and 3). On the other hand, both of these maps show along the whole 
Peruvian littoral as far south as Callao (Fig. 2) or a little further than 
10° S, temperatures of 26°C, although perhaps in the immediate vici- 
nity of the coast, lower temperatures may have been present. 

None of our charts (Figs. 4-7) shows something similar, running 
all the isotherms more or less parallel to the coast. The highest inshore 
temperatures have been observed in 1941, but the highest temperatures 
in the outer part of the Gulf of Guayaquil and also off the southern- 
most part of Peru were observed in 1953. March 1939 (Fig. 4) shows 
the nearest approach of a 27° isotherm to the Peruvian coast at 8°S 
and that of the 26° isotherm at 10°S. The extension of the hydro- 
graphic perturbance brought forth by the warm waters which evidently 
came from the north is easily seen by comparing the maps for March 
1939, 1941 and 1953 (Figs. 4, 5 and 7), with March 1947 (Fig. 6), where 


S04 EIGHTH PACIFIC SCIENCE CONGRESS 


the outer limits of the Gulf of Guayaquil are completely under the 
influence of the very far northward reaching outlet of the Peruvian 
Current, whilst only the inner parts of the Gulf indicate higher tem- 
peratures belonging to waters which may be able at any moment to 
form the “real Nifio Current” (Schweigger, 1945). 

The maps for April (Figs. 8-11) contrast strongly with those for 
March. It is evident, in all of them, the depression of the sea-surface- 
temperatures as compared with March. Only in 1953 (Fig. 11) the 26° 
isotherm was observed nearer to shore than in March of the same year. 
The diminution of the surface temperatures is especially visible in the 
southernmost part of the Peruvian littoral and also in the Gulf of Gua- 
yaquil where all temperatures are reduced. Unfortunately, data are 
missing for April 1941 north of 9°S and south of 14°30’S, and it is 
just this year which seems to have shown the greatest anomaly of all 
the years since 1925. The extended voyage of the author to the region 
W of Pisco (12°-14°S) allowed him to trace the isotherms over a great 
area in the open sea, and it must be deduced from the distribution of 
the hourly observed surface-temperatures that in April 1941 the iso- 
therms for 26°, 25° and 24°C had a course nearly perpendicular to 
the continental coast, at least from a certain distance on, being space 
left for lower temperatures along the Peruvian shore. 

Three parts of the coast deserve our greatest interest: The Gulf 
of Guayaquil, the area included by the latitudes 9° and 10°S and the 
region between Atico-Ilo-Arica. The position of the isotherms in the 
Gulf of Guayaquil for March and April 1953 (Figs. 7 & 11) leaves no 
room to doubt that the high sea temperatures are derived from the 
NW, which can only mean an advance of the Equatorial Countercur- 
rent, corroborated also by low salinities. In March 1939, as in March 
and April 1947 (Figs. 4, 6 and 10), the highest temperatures in this 
zone belong without doubt to the interior parts of the Gulf and extend 
from there to the W and SW. The conditions in April 1939 and in 
March 1941 (Figs. 8 and 9) cannot be determined satisfactorily in view 
that observations are available only for one route of navigation, al- 
though in March 1941 the highest sea temperature (27.5°C) was observed 
E of 81°W whilst in the half-degree-square just W of that meridian 
the surface temperature was found half a degree lower (27.0°C). The 
warm waters south of Cabo Blanco, and especially those southwest of 
Aguja Point, must be brought in connection with the open ocean, but 
not with certainty with the Equatorial Countercurrent, although in 
March 1941 very low salinity was observed between 8° and 6°30/’S 
which induced one to believe that these waters had come from the 
Equatorial Countercurrent. But as these titrations of salinity had to 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 805 


be made without control by standard-seawater, their true oceanographic 
value cannot be emphasized. 

The revision of the charts regarding the region between 3° and 
4°S leads to distinguish two different movements of warm water north, 
northwest and northeast of Cabo Blanco. Figures 4, 6, 10 and perhaps 
also Figure 5 show the expansion of warm waters from the inner part 
of the Gulf of Guayaquil. These surround frequently Cabo Blanco in 
a southerly direction and are then identifiable as far as 5°S, sometimes 
even further, to the south by higher temperatures, lower salinity and 
a different fauna (especially fishes) (Schweigger, 1943, 1945), but are 
without any climatic influence on the northern territories of Peru (Zo- 
rell 1928). Such a southerly flow of warm water is not only produced 
in summer months, it may happen in any month of the year. 

Contrasting with these features are the maps for 1953 (Figs. 7 and 
11) in which the warm water without any doubt is coming from the 
northwest. Such a direction of the flow is also indicated in Figure 2 
(1891) and this is evidently also the meaning of the charts in Figure 
3 (1925). Such a situation seems to be characteristic for the major 
disturbances in the outer parts of the Gulf of Guayaquil with the conse- 
quent production of climatic abnormalities at least in the northern 
parts of Peru. 

A rapid fall of surface temperatures near Cabo Blanco and south 
of it indicates the presence of warm water derived from the interior of 
the Gulf of Guayaquil, whilst on the other side high inshore tempera- 
tures between Cabo Blanco and Aguja Point are connected with the 
inrush of warm water from the northwest, which comes from the open 
South Pacific Ocean or the Equatorial Countercurrent. Following this 
differentiation, it seems possible to attribute the high temperatures 
between 4° and 6°S shown for March 1941 (Fig. 5) to the influence 
from northwestern areas. 

The second interesting feature in these maps is the pressure of 
warm water against the coastline between 9° and 10° and sometimes 
11°S. This is most impressively represented in April 1953 (Fig. 11) 
but can be deduced to a greater or lesser extent from many of our maps 
and even so from Figure 3. An elevation of the surface temperatures 
at the south or the southwest of Chimbote is observed almost regularly 
throughout the year. The zone of warm water seems to be connected 
with a countercurrent which spreads out south and southeastward in 
coastal areas and is known by all navigators by its accelerating effect 
when sailing from Huarmey on a southerly course. Repeated observa- 
tions have shown that the water entering there is of higher salinity 
than the normal inshore water, so that it seems justified to consider 


£06 EIGHTH PACIFIC SCIENCE CONGRESS 


the space S and SW of Chimbote, or W of Huarmey as one of the most 
susceptible zones for the entrance of warm oceanic waters with the 
tendency to spread out, not only in the direction of the flow of the 
Peruvian Current, but also in the opposite direction (sometimes with 
a wide-reaching influence on fisheries). 

The presence of warm water in this part near the coast is also shown 
in the isophletic diagram published by Schott (1931) for the abnormal 
period of March 1925. The diagram reveals that the ships passing 
between 8° and 10°S registered in almost all voyages higher tempera- 
tures than those observed further north. This held true in April 1953 
(Fig. 11) when temperatures of 26.5°C west of Chimbote were higher 
than the temperature found about 3 days later off Cabo Blanco. The 
possible heating influence of this zone upon the southward warm water 
flow, recorded in 1925, has been mentioned by the author in an earlier 
paper (Schweigger, 1949). 

According to his own repeated experiences and the frequent obser- 
vations made by merchant ships in all months of the year in this zone, 
the author came to the conclusion that the advance of the warm waters 
must be directed to the northeast as it is also suggested by Figures 4, 
6 and 11. But nearly every one of our maps referring to summer months 
shows at the NW or at the west of Chimbote the curvature of the iso- 
therms, especially of those for 27° and 26° and 25° with its axis directed 
to the SE, as if the warm water were rushing in from NW (see also 
Fig. 3 for comparison). ‘This, however, is a problem whose discussion 
may be taken up later. 

Perhaps more interesting still is the region in the extreme south 
of the Peruvian littoral which could be circumscribed as situated between 
Atico-Ilo-Arica and Iquique (see Fig. 12). The center of this zone seems 
to be the area off Ilo, from where the warm water makes its appearance 
and then disperses partly in direction N and NW (together with the 
Current) and partly to the southeast, turning outside Arica southward 
and making itself discernible as far as the latitude of Iquique in the 
form of a “tongue” of warm water keeping always at a certain distance 
off shore. 

The author has been able to corroborate such a distribution of 
surface-temperatures in different opportunities travelling between Iqui- 
que and Peruvian ports mostly during winter months, when tempera- 
tures in this “tongue” were not so high to make it difficult to correlate 
them with other temperatures in more northerly zones of the Peruvian 
coast. But although this paper is really not so much concerned with 
the southerly flow of warm water in northern Chile, it may not be 
superfluous to illustrate such a situation by means of Figure 12, which at 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 807 


the same time serves to underline the difficulty to understand the move- 
ments which bring these high temperatures to the zone between Ho 
and Arica. 

Figure 12 differs from the other charts in so far as it combines the 
observations of only two ships which sailed the whole Peruvian and 
part of the Chilean coast from Talara to Iquique during 20 days (16th 
of February to 8th of March 1948). The map contains also some earlier 
observations made by the northbound vessel off Cabo Blanco and in 
the interior of the Gulf of Guayaquil (8/9 of February) in order to 
represent a typical distribution of high sea temperatures in the zone of 
Cabo Blanco and northeast of it. Both these ships passed, according 
to a previous understanding, a zone situated 80-90 miles W of Pisco 
in order to obtain information about the conditions there at this time 
of the year. The comparison between the observations registered W 
of the northern part of the Peruvian shore (4°-6°S) and those made 
while sailing from Talara to Callao, suggests that a very strong inva- 
sion of warm water must have taken place in the 8 days between 9th 
and 17th of February which shoved the 24° isotherm more or less 90 
miles to the SE. The most interesting feature of Figure 12 is the appear- 
ance of the temperature of 26.2°C off Arica (27th of February) whilst 
neither the first boat passing the zone W of Pisco (16th of February) 
nor the second one (7th of March) observed more than 25.3°C. Between 
these dates the warm water off Pisco had expanded, but it cannot be 
said if its extension found on the 7th of March was already diminished 
after having reached a culmination in the foregone days or if the ex- 
pansion was a steady one during all the time. The high temperatures 
off Arica place before us the following problem: If they are connected 
and how far with the invasion of warm water in 6°-7°S, or the other 
one in 13°-14°S. That the temperature registered off Arica was a 
recent one, can be concluded from the fact that data obtained in the 
same half-degree-squares before and after the sailing from Iquique prove 
that the water was cooler between the 22nd and 24th than between the 
26th and 27th of February. 

It seems undeniable that such a “tongue” of warm water as showr: 
in Figure 12 and which is also confirmed by a series of maps in a recent 
paper by Bini (1952) must have its origin in the region situated between 
Ilo and Arica. It seems difficult, however, to trace back the warm 
water and connect it with waters still warmer in further northern parts 
of the Ocean. It seems possible to draw the isotherms for 25°C in 17° 
and 18°S (Figs. 4, 7 and 12) in such a manner that they join the iso- 
therms for the same temperatures at the N or NW of Callao. The 
author does not feel that such a course might be considered correct. 


808 EIGHTH PACIFIC SCIENCE CONGRESS 


April 1941 (Fig. 9) shows for example that the isotherms for 26°, 
25° and 24° at the peak of the invasion of the warm waters must have 
had a direction from approximately WSW-ENE. It seems improbable 
that they turn further offshore to the direction NW-ES in order to 
show up again off Ilo and Arica. Should we believe that the high 
temperatures reach this region as consequence of the invasion of warm 
waters from the NW and are curtailed when the invasion reaches the 
culminating point (isotherms stressed out WSW-ENE), or is there a 
steady flux of new warm water from another source? We must also take 
in account that the elevation of temperature off Mollendo-Arica is 
practically a constant phenomenon, although the amplitude of the varia- 
tion of temperature is less in winter time. 

On the other hand, according to the map published by Schott and 
Schu, (quoted from Gunther, 1936), surface temperatures of 22°-20° 
are traced as belonging to the latitudes 17°-20°S in the open ocean 
far away from the Continental Coast, deflected, however, some 1200 
miles offshore in the NE direction, by the northerly movement of the 
waters along the coast of South America. Their position during March 
1891 and 1925, makes us look with awe at the overwhelming forces of 
the Equatorial Countercurrent, which stemmed back these isotherms to 
their position in the outer ocean over an area of nearly 1200 miles wide 
in those latitudes. We see now that none of the perturbances of 1939, 
1941 and 1953 can be compared with the catastrophes of 1891 and 1925, 
which for their part restituted for a short time the hydrographical and 
meteorological situation corresponding to the geographical latitudes of 
the coast involved, where the cool water of the Peruvian Current has 
created a thermic anomaly of such a magnitude. 

None of our maps entitles us to draw the isotherms in the zone off 
Ilo-Arica-Iquique in the same manner as for 1891 and 1925. The iso- 
therm for 25° situated there has therefore been left open without sug- 
gesting any solution of our problem. 

Nevertheless, it might be possible to look for an explanation of 
this phenomenon off Ilo and Arica, and the other one, created by the 
warm water off Chimbote, in the hypothesis of Gunther (1936). He 
supposes the existence of two different countercurrents, “warm wedges’, 
off the Peruvian Coast which flow in a southeasterly direction, one start- 
ing more or less off Aguja Point and reaching as far as the latitude of 
Callao and the other one coming out of a region WSW of Pisco and 
entering near the coast just off the bay of Arica. Both these counter- 
currents transport, according to the view of Gunther, warm water from 
the NW to the SE. The author of this paper has objected (1943) 
against the existence of these two “warm wedges’, because Gunther cor- 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 809 


relates observations which are too far apart, not only in space but also 
in time by many days and even by weeks. This is a procedure which 
does not seem advisable in a current system exposed to so many and so 
sudden changes, as Gunther himself had to admit. During all his nu- 
merous voyages in the Peruvian Current, the author only once came 
across a situation which could induce him to accept the idea of 
Gunther (1943, p. 242). 

On the other hand the fact must not be overlooked that Gunther 
made his investigations in the Peruvian Current in the winter of 1931 
between the warm summer of that same year and the still warmer one 
of the year 1932, so that the countercurrents appeared to be the result 
of some unstable situation in the Current, an idea which might be sup- 
ported by our maps which show that in all of the abnormal years the 
warm temperatures advanced more or less in the same sense as proposed 
by Gunther (the line of the least resistance?). The northerly axis of 
these “warm wedges” runs parallel with the axis of the bend of the iso- 
therms for the high temperatures which according to our maps seem 
to advance in direction to Chimbote, Huarmey or even Callao; there 
is only a slight difference insofar as the main axis of Gunthers counter- 
current lies a bit further to the south and west than ours. It should, 
however, be taken into account that Gunther’s observations have been 
made during winter months, whilst our figures are all referring to sum- 
mer time. 

The southerly countercurrent constructed by Gunther does not co- 
incide, as well as the northerly one does, with the apparent movements 
of warm water to the SE; but it would be possible to accept this theory 
of Gunther’s as a working hypothesis. The author must repeat that 
the Peruvian reconnaissance could not yet be widened so far out at sea 
as to prove or deny for any time of the year the existence of such 
countercurrents, and it must be borne in mind that the Guano Company 
has to make great sacrifices for all the research work done. ‘The voyages 
made by the author took place during the routine travelling of the ships 
of the Guano Company, which allowed their captains, with a fine under- 
standing of the scientific requirements, to take different courses from 
the normal ones, according to the wishes of the author in order to 
make hydrographic investigations, mostly in correlation with the more 
important biological factors. 

But even if we accept the warm wedges of Gunther, the problem 
is not yet resolved because the same Gunther has not been able to 
answer exactly the questions as to where these countercurrents are 
coming from. As his view of the conditions was limited to the winter 
months, it seems possible that for the summer time the origin of these 


&10 EIGHTH PACIFIC SCIENCE CONGRESS 


countercurrents may lay further off shore and to the north, as he indi- 
cates, so that at least the northerly one might perhaps be brought in 
contact under still unknown conditions with the Equatorial Counter- 
current. But as for the southerly one, there seems to be no other ex- 
planations as a bending of the isotherms in the open ocean from their 
run SW-NE to the course NW-SE. ‘These problems must be left open 
to further investigations. 


PUBLICATIONS CITED 


Bint, G. 1952. Osservazioni sulla fauna marina delle coste del Chile e del 
Peru con speciale riguarde alle specie ittiche in generale ed al Tonni in 
particolare. Bol. di Pesca, Piscicoltura e Idrobiologia. Ato XXVIII, 
Vol. VII (n-s.), pp. 3-52. 

GUNTHER, E. R. 1936. A Report on Oceanographical Investigations in the 
Peru Coastal Current. Discovery Reports, Vol. XIII, pp. 107-276 

DE LAVALLE, J. A. 1917. Informe preliminar sobre la causa de la mortali- 
dad de aves ocurrida en el mes de marzo del presente ano. Mem. Comp. 
Adm. Guano, VIII, pp. 61-84. 

1924. Estudio de la emigracién de las aves guaneras ocurrida 
en los meses de mayo y junio del ano 1923. Mem. Com. Adm. Guano, 
XV, pp. 94-107. 

SCHWEIGGER, E. 1939. Studies of the Peru Coastal Current with reference 
to the extraordinary summer of 1939. Proc. 6th Pac. Scie. Cong. III, 
pp. 177-195. 

1943. Pesqueria y Oceanografia del Pert. Lima. 

———-—— 1945. La “Legitima Corriente del Nino”. Bol. Com. Adm. Guano, 
Vol. XXI, pp. 225-296. 

1949. Der Perustrom nach zwoelfjaehrigen Beobachtungen. 
Erdkunde, Bd. III, pp. 121-132, 229-241. 

ScHoTT, G. 1931. Der Peru Strom ... Ann. Hydr., pp. 161-169, 200- 
213, 240-252. 

ZORELL, F. 1928. Der “El Nino-Strom” im Jahre 1925. Ann. Hydr., LVI, 
pp. 166-175. 


—-—_ 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 811 


TOI eae 
ae an ans « 
ACES AS IN 
PE Ag 


(From Bini) 


FIGURE 1 


20° 


rz + b00b. Stromrichtung 


Jim Stérungsjahr 1891 -..erganzte = 


(From Schott) 
FIGURE 2 


Si2 EIGHTH PACIFIC SCIENCE CONGRESS 


a 
NCSC ESO 
a OEP rT 


FIGURE 3 


toe aie eB a © 
eee 
Ce 
ONS ie ee 
es ee eos 
Bn Ce ae 
eee 
one, Reems 
Pena emma 
EE Gee 


FIGURE 4 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 813 


Q TUADI ST 


G aUNDILT 


EIGHTH PACIFIC SCIENCE CONGRESS 


Cin. Zac Re. 
rie ch eee 


es Crk He Ee 
NCAA 


FIGURE 8 


FIGURE 7 


ABNORMAL SUMMERS IN THE PERUVIAN COASTAL CURRENT 815 


y i=) 


a LAG 


~ = = ! 
Ay J BY a4 & 


_ = 
Ea | ie 


FIGURE 10 


816 


EIGHTH PACIFIC SCIENCE CONGRESS 


SAQA 
Vas 


FIGURE 12 


FIGURE 11 


QUANTITATIVE DETERMINATION OF TUNGSTEN AND 
MOLYBDENUM IN SEA WATER 


By MasayosuH1 IsHiBaAsHI, TSUNEBOBU SHIGEMATSU 
and YASUHARU NAKAGAWA 
Kyoto University, Japan 


As an amount of molybdenum in sea water, the values obtained 
by Ernst et al.(1), Bardet et al.(2) and Ishibashi et al. (3) are about 
0.3, 3 and 10 pg per kg. of sea water respectively. 

Tungsten has been detected in sea water, but the amount of it is 
not yet quantified. From the regularities of the amount of elements 
dissolving in sea water (4), Ishibashi and Shigematsu calculated and pre- 
sumed the amounts of molybdenum and tungsten dissolved in sea water 
as about 10 »g Mo/1. and 0.4 pg W/1. 

We determined the amounts of molybdenum and tungsten in sea 
water and found that the amount of molybdenum was almost same as 
that previously obtained by our thiocyanate method (3), and the amount 
-of tungsten was about 0.1 »g per |. of sea water. 


]. COLORIMETRIC DETERMINATION OF [TUNGSTEN AND MOLYBDENUM 


We studied on the colorimetric procedure for trace amounts of 
tungsten and molybdenum by dithiol (toluene-3,4-dithiol) and estab- 
lished the conditions necessary and satisfactory to obtain accurate results. 


Reagents: 


Dithiol solution; dissolved 0.2 g. of dithiol in 100 ml. of N-NaOH, 
freshly prepared, or stored under H, atmosphere. ‘The solution is stable 
for 2 months under H,. 

Standard tungstate solution; 10 »g W/ml. and 10.0 pg W/ml. 

Standard molybdate solution; 10 »g Mo/m1l. and 10.0 »g Mo/ml. 


Procedure: 


The solution containing molybdenum and tungsten was diluted to 
50.0 ml. The 25.0 ml. aliquot of the solution was acidified with 2 ml. 
cf N-HCI, then 1 ml. of dithiol solution was added to it, and heated 
on boiling water for about 10 minutes. After cooling, the resultant 
dithiol complexes were extracted with 10 ml. of butylacetate. The color 
intensity of butylacetate solution (Extinction E,) was measured by using 
Pulfrich Photometer, the cell length 2 cm., the filter S661. To the 


817 


818 EIGHTH PACIFIC SCIENCE CONGRESS 


other 25 ml. aliquot, 1 ml. of 10% citric acid solution and 2 ml. of 
N-HCI were added, then 1 ml. of dithiol solution and heated on boiling 
water for 10 minutes. And the molybdenum complex was extracted 
with 10 ml. of butylacetate. The color intensity (Extinction E,) was 
measured as above. 
The amounts of tungsten and molybdenum were calculated from 
the following equations: 
pe W =.58.8 x (E, — E,) 
pg Mo = 83.0 X (E, — 0.040) 
It was found that through this procedure 1-40, of molybdenum 
and tungsten can be determined within £0.5y ‘of error, and this meas- 
urements are only interfered by the presence of iron and copper. 


2. CONCENTRATION OF MOLYBDENUM AND TUNGSTEN IN SEA WATER 

For the purpose of separating and concentrating the molybdenum 
and tungsten in sea water, we utilize the coprecipitation method as 
follows: 

To 0.5-15 1. of artificial sea water (5), 1-3 ml. of HNO, and 200 mg. 
of ferric iron as ferric nitrate solution were added. Then 50-100 ml. 
of 1M hexamethylenetetramine solution was added, and allowed to 
stand overnight to settle the precipitate. The precipitate was filtered, 
dried and ashed in platinum crucible at low temperature lower than 
500°C. ‘The residue was fused with small amounts of the fusing mix- 
ture (Na,CO, + K.CO, 1:1). The fused mass was_taken up with 
10-20 ml. of hot water, and filtered. The filtrate was just neutralized 
with 4N-H,SO, to litmus.* 

The results obtained are shown in Table I, nos. 1-9. 

Determination of tungsten in the presence of large amounts of 
molybdenum: In the presence of large amounts of molybdenum 
(>10 x W), tungsten was determined inaccurately by the above proce- 
dure. In sea water, the amount of molybdenum may be about 30 times 
larger than that of tungsten (4), so molybdenum was separated as sul- 
fide from tungsten as follows: To the neutral solution *, 1 ml. of 50% 
citric acid solution and 5 drops of 4N-H.SO, were added, and H,S bub- 
bled vigorously for a few minutes. The sulfide was filtered through a 
small filter, and washed with H,S water. The filtrate was evaporated 
to a few ml., filtered again through the filter, if necessary, and washed 
with hot water; and the solution was dried up in a platinum crucible. 
The residue was ashed with a small amount of sodium carbonate and 
fused. ‘The mass was taken up in hot water and just neutralized with 
H.SO,. ‘The solution was diluted to 50.0 ml., and the amount of tungs- 
ten and residual molybdenum was determined as above. 


* Residual molybdenum. 


DETERMINATION OF TUNGSTEN AND MOLYBDENUM IN SEA WATER 819 


The results obtained are shown in Table I, Nos. 10--16 


TABLE I 
RECOVERY OF Mo AND W 

No | “W Appr (ue) Mo ApbpED (pe) W Founp (ug) | Mo Founp (ug) 

1 0.0 | 0.0 0.0 0.0 

2 30.0 | 0.0 29.1 | 0.0 

3 0.0 30.0 0.0 99.3 

4 5.0 10.0 4.9 9.3 

Sita 10.0 | 10.0 | 8.9 | 2.0 

Gal 10.0 | 20.0 12.5 18.3 

vi 10.0 30.0 Bol 28.0 

Ss 20.0 20.0 18.5 18.3 

Diep 30.0 30.0 28.0 26.9 
NOat aa 0.0 1000 | <0.2 13.2 * 
11 20.0 | 1000 18.0 7.1 * 
12 30.0 1000 30.6 3.5 * 
13 30.0 1000 O71 10.6 * 
14 30.0 1000 28 | 6.8 * 
15 30.0 1000 26.8 10.8 * 
16 30.0 1000 26.4 | 10.6 * 


* Residual molybdenum. 


The recoveries of molybdenum and tungsten in this procedure are 
both about 90%. 


3. DETERMINATION OF MOLYBDENUM AND TUNGSTEN IN SEA WATER 

About 50 1. of the sample water was taken, and acidified with 6 ml. 
of nitric acid; 400 mg. of ferric iron was added as ferric nitrate and 
thoroughly mixed. To the solution, 200 ml. of hexamine nitrate was 
added and thoroughly mixed. To the solution, 200 ml. of hexamine 
solution (containing 100 gr. of hexamine) was treated as above men- 
tioned, and the amounts of tungsten and residual molybdenum were 
determined. 

Molybdenum sulfide in the filter was ashed at low temperature and 
dissolved in sodium hydroxide. Then the amount of molybdenum was 
colorimetrically determined by the dithiol method. 

The results obtained are shown in Table II. 


TABLE II 
tee | Mo Founpb 
SEA WATER TAKEN | W FOUND 
| Residual | Sulfide Sum 
ug | ug | ug ug 
40 1. | sro ts Nl tG 340 351.6 
60 1. ee 90. MRE ISS) lol. 3598 651.6 
| | 


4014+ 5.0u¢ W | 8.97 


$20 EIGHTH PACIFIC SCIENCE CONGRESS 


The sea water was sampled on June 13th, 1952, offshore at Shira- 
hama, Wakayama prefecture, Japan. 

As seen from Table II, the molybdenum content of the sampled 
tungsten content is 0.10, 0.15 and 0.11 »g/1., in the average 0.12 pg/1. 

We wish to thank Dr. T. Tokioka, of the Seto Marine Research, 
Kyoto University, for his help in sampling the sea water. 


LITERATURE CITED 


(1) Ernst, HorMANN. Brit. Chem. Abst., I. A. 99 (1938). 

(2) BARDET, TCHAKIRIAN et LAGRAGE. Compt. rend., 206, 450 (1938). 

(3) ISHIBASHI, SHIGEMATSU and NAKAGAWA. (In press.) 

(4) ISHIBASHI and SHIGEMATSU. Bull. Inst. Chem. Res., Kyoto Univ., 27, 42 
(1951). 

(5) LYMAN and FLEMING. J. Marine Research, 3, 134 (1940). 


A STUDY ON ‘TEMPERATURE AND SALINITY OF 
THE SURROUNDING WATERS OF TAIWAN 


By Cuu Tsu-yao 


Taiwan Weather Bureau, Taipei, Taiwan 


I. INTRODUCTION 

Taiwan lies 150 km. off the coast of Fukien and is now a province 
of China. It consists of a main island and many small ones. The main 
island, widely known as Formosa, resembles a spindle extending from 
north to south with a coast line about 1500 km. The Penghu or Pes- 
cadores is a group of islands in the middle of the Taiwan Channel. 
Other small islands such as Penkiayu, Lanyu, Lotao, etc. are found in 
the vicinities along the north and east coasts of the main island. 

The main island of Taiwan stands on the edge of the continental 
shelf of Asia and some of the small islands are of volcanic origin. The 
depths of the surrounding waters are, therefore, strictly different be- 
tween the east and west sides of the island. In the Pacific ocean off the 
east coast, the slope of the bottom is very steep and the deep water 
reaches close to the island. At some places such as Hwalien and Tai- 
tung, the bathymetric line of 3000 meters is within 100 km. from the 
coast. On the other hand, the water in the Taiwan Channel is very 
shallow and in most parts of it the depths are below 100 meters. The 
topography of the bottom is very irregular and numerous rocks, reefs 
and banks rise from the bottom and some of them are exposed to the 
open air during the time of low tide. In the East China Sea off the 
north coast of the island, the depths are also less than 200 meters. It 
is much deeper in the South China Sea where we can find the deep 
water over 3000 meters. 

Taiwan is located in the subtropical zone of the West Pacific where 
the North Equatorial Current turns northward and becomes the source 
region of the “Kuroshio” with properties of warm current. The main 
{low of the Kuroshio passes along the east coast of Taiwan and curves 
eradually northeastward far to the coast of Japan. A small part of the 
Kuroshio runs westward through the Bashi Channel and, after passing 
it, divides to two branches. One enters into the South China Sea while 
the other runs northward around the west coast of the island and re- 
joins the main flow of the Kuroshio in the East China Sea. Along the 
coast of Fukien province, there is a different system of current running 
from north to south. It has the name of China Coastal Current, and 


821 


822 EIGHTH PACIFIC SCIENCE CONGRESS 


it originates from the coast of North China and is reimforced by the 
outflows from the Chinese mainland. ‘The properties of this current 
vary in different seasons. The water temperature is much higher dur- 
ing the summer time and cooler in the winter time. 

The climate of Taiwan is mild with a small seasonal variation of 
air temperature, but the distribution of rainfall is variable at different 
places. During the rainy season there are great outflows from the 
island which influence greatly both the water temperature and salinity 
along the coast. 

With the vast area of outstretching waters surrounding the island, 
Taiwan is a suitable place to serve as a base ground for oceanographical 
investigations. Owing to the shortage of funds and technical experts, 
research works have not been conveniently carried out during the past 
few years. The writer can only make a brief study on the distribution 
and seasonal variation of water temperature and salinity of the sur- 
rounding waters of Taiwan with all the data available. 


II. SuRFACE WATER TEMPERATURE AND SALINITY ALONG THE COAST 


Coastal observations of water temperature and salinity are made at 
nine stations situated all around the island as shown in Figure 1. The 
average monthly values of each station are listed in Tables I and I, 
which have been prepared from records covering more than ten years. 

At the station of Penkiayu, which is situated at the coast of a 
small island some 100 km. off the north coast of the island, the water 
temperature is similar to the open seas. It reaches its minimum in 
February and maximum in July with a yearly mean of 23.2°C. and a 
small annual range of 7.5°C. The seasonal variation of salinity is also 
small and the yearly mean is 33.86 °/ 9. 

The stations of Fukuikiao, Keelung and Bidiukiao are all found 
on the north coast of the main island. At these places the water tem- 
peratures are influenced by the outflows from the island. Their annual 
ranges are greater than Penkiayu, 1., 12.2°C. for Fukuikiao, 10.9°C. 
for Keelung and 10.0°C. for Bidiukiao. The minimum and maximum 
water temperatures are also found in February and July respectively. 
Mean values of salinity are little lower than Penkiayu; they are also 
influenced by outflows from the island. 

Along the east coast of the island, there are two stations, Hwalien 
and Singkang. These two stations approach more to the south and the 
warm current of Kuroshio comes very near to the coast. It makes the 
water temperatures a little higher and the annual ranges are 5.8°C. for 
Hwalien and 4.9°C. for Singkang. The salinity of Hwalien is 32.34 °/o, 
and that of Singkang is 34.07 °/ 0. 


TEMPERATURE AND SALINITY—WATERS OF TAIWAN $23 


The station of Ngulerbei is situated at the south tip of the island 
stretching into the Bashi Channel. The water temperature is high and 
the annual range is small, that is 25.5°C. and 6.0°C. respectively. The 
mean salinity is 33.89 °/,, with a small seasonal variation. 

Kiaoshiung is a station along the southwest coast of the island 
facing the Taiwan Channel. The yearly mean of water temperature 
of 25.7°C. is the highest value among all the stations, and its annual 
range of 8.0°C. is also higher than the stations along the east coast. 
The seasonal variation of salinity is very much pronounced as it 
reaches its maximum of 33.82°/,, in December and falls even to 
24.07 °/,. in August. ‘The reason is that at the southwest part of the 
island, it is very dry during the winter time and there are almost no 
cutflows at all. But during the summer time the rainfall is quite 
heavy. 

Peitao is a small island of the Pescadores located in the middle 
part of the Taiwan Channel. At that station, the yearly mean water 
temperature is 23.3°C., lower than at the southern stations of the 
main island. ‘The annual range of 8.9°C. is little higher. ‘This district 
is the most dry region of Taiwan, rainfall is very scarce during all sea- 
sons. ‘Therefore it shows a higher monthly salinity and has a mean 
salinity Of 33.82 °/ oo. 


III. SuRFACE WATER TEMPERATURE AND SALINITY OF THE OPEN SEAS 


As the oceanographical investigations of the surrounding waters 
of Taiwan were interrupted, from the beginning of World War II, 
we can only find some records of surface water temperature and salinity 
observations made before the War. The writer has made an exami- 
nation of these data and gives a brief discussion below. 

The surface water temperature of the surrounding waters of Tai- 
wan is greatly influenced by the Pacific warm current of the Kuroshio 
and by the China Coastal Current. During the winter time, the tem- 
perature of the coastal current is much lower than that of the Furoshio, 
and very close isotherms are arranged from the coast of Chinese main- 
land to the southeast. In summer, the water temperature of the coastal 
current is warmed almost up to the same level as the Kuroshio. There 
are only a few lines of isotherms which make the distribution very 
simple. 

In Figure 2, showing the distribution of water temperature in 
February, we can see the lowest temperature of 10°C. along the north 
part of the China coast. It increases gradually southeastward and 
reaches the maximum temperature of 26°C. off the southeast coast of 
the island. At the south entrance of the Taiwan Channel, isotherms 


824 EIGHTH PACIFIC SCIENCE CONGRESS 


curve to the north near the coast of Taiwan, which shows the warm 
water entering into the Channel. At the north entrance of the Chan- 
nel, the isotherms curve to the west. It also shows the influence of warm 
current but there are still outflows from the Channel close along the 
north coast of the island. 

The water temperature of the China Coastal Current in May is 
warmed up and we can find the lowest temperature of 20°C. along the 
north part of the coast (Fig. 3). It increases gradually southeastward 
and reaches its maximum of 28°C. In the Taiwan Channel the iso- 
therms are parallel to the China Coast, but they turn gradually to pa- 
rallel with the latitudes off the south and east coast of the island. From 
this distribution of water temperature we can find out that there are 
still inflows of warm current at the south entrance of the Taiwan Chan- 
nel along the west coast of the island. But at the north entrance of 
the Channel the China Coastal Current seems more intense and the 
warm current leaves farther to the east. 

The distribution of surface water temperature in August, which 
is shown in Figure 4, looks very simple. ‘There are only two lines of 
isotherm in the figure. The isotherm of 27°C. is along the north part 
of the China Coast, while that of 28°C. separates the coast of the is- 
land of Taiwan. ‘They all run from southwest to northeast. In this 
month, the water temperatures of both the China Coastal Current and 
the Kuroshio reach their maximum, but the former, coming from the 
higher latitudes, is comparatively cooler than the latter, which comes 
from the lower latitudes. 

In the month of November, the surface water temperature along 
the north part of the China Coast drops down to 20°C. It increases 
gradually to the southeast, as shown in Figure 5, in which we can 
find that the isotherm of 26°C. is very close to the south and east coast 
of the island. But the isotherm of 27°C. is far to the southeast, leaving 
a great space to the isotherm of 26°C. From this manner of distribu- 
tion it may be considered that the temperature of the main flow of the 
Kuroshio is around 27°C. and is mixed with the cooler water in the 
Taiwan Channel and the East China Sea. 

The seasonal variation of salinity of surface water in surrounding 
waters of ‘Taiwan is not so great as that of temperature. ‘The writer 
gives two sketches here to show the distributions of salinity in Febru- 
ary and August. In Figure 6, showing the distribution of salinity in 
February, we can find that in the east and south of ‘Taiwan the salinity 
is more than 34.5 °/,), which coincides with the salinity of the Kuro- 
shio. In the Taiwan Channel, the salinity decreases gradually toward 


TEMPERATURE AND SALINITY—WATERS OF TAIWAN 825 


the coast of the mainland of China, reaching a lowest salinity of 
30.0 °/o9, which is influenced by coastal waters. 

The salinity off the east and south coast of the island in August 
is a little lower than in February. The iso aline of 34.5 °/,, leaves farth- 
er to the east, as shown in Figure 7. ‘The lowering of salinity at that 
region is contributed to the plentifulness of rainfall during that season. 
Very close to the coast of the island of ‘Taiwan we find still lower sa- 
linity below 32.0°/,, and 33.0°/,,. It may be contributed to the effect 
of outflows from the island. In the Taiwan Channel, the salinity de- 
creases toward the coast of the Chinese mainland, where we find the 
lowest salinity of 31.5°/,,. This value is a little higher than in Feb- 
ruary. It is, perhaps, the result of intense evaporation effected by the 
high water temperature. 


IV. CONCLUSION 


From the above discussion, we can see the general feature of the 
seasonal distribution of surface water temperature and salinity in sur- 
rounding waters of Taiwan. It is clear that these variations are greatly 
influenced by the properties of different systems of currents. Unfor- 
tunately, we can not get enough data to find out the vertical distribu- 
tion of these two elements and, therefore, it is impossible to form a 
whole idea about the nature of the currents. It needs more data of 
observation and further investigations to solve the problem. 


68 6&6 8°61 T'&3 GSS G96 L°9G GLE 696 9'VG V'GG L°06 661 S81 OB}IOG — 


0°9 G'a¢ G66 SVS 9°96 0°86 0°86 G86 T'86 L°96 S'S GEG T'636 GZS oqteNSN *) 
6 VSG 6°66 8G V'9G LS VLG LL} OLS 6 9G L'VG LSS GES 8'2Z 49 suUBYSUIS “9 
8S V'G¢ 8°96 G6 T'96 ILS VLS SLE GLE L°G6 CVG 66S V'GS 0°66 UoTTeMH “GS 
TOT PGS GrS ilies ae Lak CVG P'9G 6°96 LG G96 GEG 0°06 st Sa OST = CVI pla 7 
6 0T 666 G'8T OTS 8°86 696 GLE SLs 6°96 O'S G06 ILI 6°9T Salt sun[eey “g 
ool GGG 81 GIG CVG P96 GLE V'86 GLE V'¥G 6°06 681 GOT SLE OvBIyinyny % 

ui! 


8 
Gh G&G $93 CLG 196 6°66 S16 60% 6°61 G06 ndelyuod 


SONVY NVI ‘oad “AON ‘LOO ‘Lads ‘DAW A1N¢ aNQae AVIN Wd VIAL aa ‘NVE NOMVLS NOILLVIS 
40 ANVN 40 ‘ON 


EIGHTH PACIFIC SCIENCE CONGRESS 


AIOLVAGING], WLVM DOvANAS JO SANIVA NVA 


I AITaViL 


827 


TEMPERATURE AND SALINITY—WATERS OF TAIWAN 


OETOd = 16 
suntysoery ‘8 
foqtaynsN  *L 
BUBYySUIG “9 
usTjean 6g 


OBNIplg © 


oRIyIMyN, 


v 
sunjeey “es 
G 
nAviyusg ‘T 


G8°SE 9L'SS OPE B8LE 6Veo e yase Skés = STS? 9EVS PETS VEPs “Shs ose 
T&0& 28es LOSE 82S G966 LOVS IMLS I9686 BLIE PEOCE YECE BETE 69°E 
68°SE 9G°7E 8688 SSE GLE passe Ease PGES ESHPS SSPE 69VE PEPE LIVE 
LOVE crprs ere sess egse LOSS B88SE OPE PEPE YEVE BPVVE ITIVE OIE 
VEss osss 0228 L80S PPIS LETS GCE OFCE G6ECE CECE YOEE B80SE IEEs 
V9'SE 6oVS 9LEE | CPyse =Voce. OOS OSS) GES “99S. SLES JOSS Vaicce Sos 
6T SS 6Tes 9OFSS PSS STSE Gees SasSE PVVEE BEE GEE ICE LOGE ITGEE 
6G && SL’'es 68°88 PES ZO'ES LL PAE CECE PVHESE G6CE B88CE TOEE GLEE 
98°SE espe pes ug9ee 9988 TESS OFS PLES G6BSE ELVES T8rE ETE GLE 
NVSIN ‘oad “AON ‘LWO "Laas ony = XIN aNof AVIA ‘Udy aI aa NVE 


NOILVLS NOILVLS 
40 GWYN 40 ‘ON 


ALINITVS dO SANIVA NVA 


Il ATaV iL 


UBB: 


Pet ok ct Alt =e = EpEEY. yf d ak NRT ED te vat Gy : : = eae Seana Spat 2 ey 


a. a a 


is 


829 


TEMPERATURE AND SALINITY—WATERS OF TAIWAN 


ot el ot el orl 81) 


| 
TINNVHO |IHSVE 


oeytag ° 
Buntysoeyy ° 
IS oy 


6 
g 
BueyButs °9 
uayTeMy °S 
oepinipla “F 
Bunyaoy °C 
oeyyynyng °2 
nheyyuag *T 


IOF7BIS JO sweN 


dO 
GNVINIVA 


VIS VNIHD LSVF | jo weaeon, “18a 
4 | S | 


oP e/ ott/ 90e/ 


EIGHTH PACIFIC SCIENCE CONGRESS 


OO 


WNIHO 


dO 
ONVINIVW 


Aieniqay uy 
ainzeraduay 19484 IezAINS 


JO uotinat4ystq *Z “bry 


OF TAIWAN 831 


WATERS 


TEMPERATURE AND SALINITY 


or e/ 


“92 


VIS-YMI1EV: 


ova of @s 


pane ae 008? Sattar & °8// 


| O8F 


VNIHO 
JO 
ONV INIVA 


fey uy 
einzeladway 13,24 sezans 


yo uozyngyiystq “¢ “Bty 


EIGHTH PACIFIC SCIENCE CONGRESS 


832 


ONVINIVW 


ysnbny uy ainjesed 


Way 133BmM BezJINc Jo 


uorynqy4aisiq “p “bry 


835 


TAIWAN 


OF 


SALINITY-—WATERS 


TEMPERATURE AND 


ok f/ o%e/ Pk 2A o8// 


ote 


oh 


QNVINIVA 


Taquaaoy uy 


oft CF 
4 einzeiadway 12384 eezang 


jo uoyingyaystq °S “bry 


oft/ ote 9027 


\ote 


EIGHTH PACIFIC SCIENCE CONGRESS 


eee) Ro _ 0€&/ e0f/ 


a 


| ’ 


é 
TINNVHD JAHSVE 


¢ 


& 


ote 
o88 
obZ 
4O 
ONVINIVIN 
It 


Azeniqag uz Aypuryes 


Jo UOT{nqyI}stq “9 ‘Bey 


ot 2/ o%Z/ 


TAIWAN 835 


WATERS OF 


TEMPERATURE AND SALINITY 


ote 


eh 


09% 


er ES 


VIS VM (2 sB09/ i 


oer 


Ke 


ot es oOZ/ 


73NN vo I 


? ae 918 


Say 


oee/ 


o 


: svg Ae 


o’ee 


Fo uopynqT43stq 


VNIHO 
dO 


ONV INIA 


qsnBny uz Agyuypes 


as 


ak 
a 
eine 


fagureee 


ent 


aN 
ial 


A 


chy 
da wil ied 
Pr sid 

is Sine 


n 
hy 
Laine 


Biro: 
cn 


ON THE FLUCTUATION OF THE KUROSIWO 
AND THE OYASTIWO 


By ‘Tosio NAN’NITI 
Meteorological Research Institute, Tokyo, Japan 


ABSTRACT 
Using the area occupied by the oceanic current in a fixed section, 
the author represents on a graph the intensity of the Kurosiwo and the 
Oyasiwo as mentioned in his previous paper. The occupied area has 
one or two maxima a year. The period is about seven to nine months 
as shown in accompanying figure. 


1. INTRODUCTION 

To represent the intensity of the Kurosiwo and the Oyasiwo nu- 
merically, the author adopted substitute quantities which are easily 
calculated; they are the ratios of the area occupied by the Kurosiwo or 
the Oyasiwo to the whole observation area in the fixed section on the 
parallel of 38°18’N. In the case of the Kurosiwo the calculation is 
limited to 300m depth, and in the case of the Oyasiwo to 600m 
depth.t The author will copy the values published by the Central Me- 
teorological Observatory for the sea conditions, and will compare these 
with his quantities, the ratios of the Kurosiwo and the Oyasiwo. 


2. COMPARISON OF THE RESULTS OBTAINED BY THE AUTHOR’s METHOD 
WITH THE ACTUAL OCEANOGRAPHICAL CONDITIONS 

The results obtained for the ratios of the Kurosiwo and the Oya- 
siwo are shown in the following figure. If these values correspond to 
the actual oceanographical conditions with small differences, we would 
have an important means to represent and forecast oceanographical 
conditions. 

The actual oceanographical conditions quoted here were inves- 
tigated by the usual method using the distribution patterns of tempera- 
ture, chlorinity, etc. 

We observed that the intensity of the Kurosiwo was less in 1949 
than in the preceding year. In 1948 the Oyasiwo was somewhat strong- 
er in early summer and late autumn, but it was weaker in other months. 
On the other hand, the Kurosiwo was stronger, especially in summer, 
and the warmer anomaly of the surface water temperature was largest 
in August.2 The ratio shows that the Kurosiwo’s area was large in late 


837 


&38 EIGHTH PACIFIC SCIENCE CONGRESS 


September and in October. Perhaps the ratio in August can be con- 
jectured to be large from the tendency of the figure, but observations 
were not done before September. 

In 1949 the Kurosiwo had average or somewhat stronger intensity 
in summer, and the warmer anomaly of surface water temperature was 
largest 1n October. ‘The figure shows that the ratio of the Kurosiwo 
had maxima in June and July, and that their value was usual 
for summer maxima. Another maximal value appeared in Septem- 
ber, after the rainy season. This was smaller than that of the preced- 
ing year. This fact indicates that the Kurosiwo was weaker than in 
the preceding year. In these years, the available data were scanty due 
to the imperfection of our equipment. 

In 1950 the Kurosiwo became stronger rapidly from April, with an 
extremely warm surface temperature in summer. The warmer anomaly 
of surface temperature, which was largest in May and August, was 
limited to the somewhat upper layers in summer. ‘The Oyasiwo be- 
came stronger rapidly in April, weakening from middle August and 
growing stronger again in September. But it was still warmer in the 
warm current region and colder in the cold current region than in the 
average year. ‘The ratio of the Kurosiwo grew larger from April and 
May, and it was very lage in August and September, growing smaller 
rapidly in October and tending to zero in December. The ratio of the 
Oyasiwo was large in spring and in early summer also, but it was small 
in summer, growing large again from September, and reaching a maxi- 
nium in December. 

In 1951 the Kurosiwo became stronger rapidly from April, but 
weakened from middle June to July; the temperature anomaly was low- 
er than the average. But its temperature became higher again from 
late July to August. It stopped to rise, maintaining the average or 
somewhat lower value in September and October. But it became strong- 
er from November especially and kept the intensity till February 1952; 
so the warmer anomaly of temperature, warmer than those of 1950 and 
1951, was observed in February, and this vigorous Kurosiwo weakened 
in March and April. The Oyasiwo had iess intensity than that in the 
preceding year in early Spring, but it became stronger in early July, 
weakening in August and again becoming stronger in September, then 
weakening from October till February.® The ratio of the Kurosiwo 
grew large rapidly from April and was largest in June, growing smaller 
trom July but larger again from November, becoming largest in Feb- 
ruary, 1952.The ratio of the Oyasiwo had a maximum in December, 
1950, and alter that it grew small and was smaller than in the preced- 


ON THE FLUCTUATION OF THE KUROSIW) AND THE OYASIWO 839 


ing year. It was large in July, September and late October, and small 
again from November till February. 

In 1952 the Kurosiwo was strong from the last decade of Novem- 
ber till February and became strong again in early April along the 
meridians 143°E and 149°E, reaching the average intensity in June 
and July, but the warm current stopped spreading northwards in Aug- 
ust at a lower anomaly of temperature. But it grew warmer again and 
reached the average temperature in September. After that it had the 
average intensity. The Oyasiwo was strong along the meridians 142°E 
and 147°E in March and April. In August, the Oyasiwo ran south- 
wards strongly along the 145°E meridian. The ratio of the Kurosiwo 
became smaller from February and was generally small all year with a 
maximum in September, which is of the average value in summer. The 
ratio of the Oyasiwo had maxima in April, July and September. 

The ratio of the Kurosiwo seems to vary periodically. If there 
were a maximum in February, 1950, though it was not observed owing 
to bad weather condition, the maxima of the Kurosiwo’s ratio have the 
following time series: Oct. W9285.9; stl SIS OR -os web. e950) 7-5; Sept: 
1950, 8.5; June NG ORS ECD A952 y/-osgocpt 9a. 

The period is about seven—nine months. On the other hand, the 
period of the wind stress shear is about six-eight months.’ The periods 
of the oceanic current and the wind do not coincide with each other, 
and the reason why the current’s period is lengthened will be found in 
a complex combination of the wind-driven, thermo-haline circulation, 
etc. 

3. CONCLUSION 

By the comparison mentioned in the above section, we can recog- 
nize that the area occupied by the oceanic current is an important meas- 
ure to represent numerically the intensity of the current or the oceanic 
state, and the period of the Kurosiwo’s fluctuation is about seven—nine 
months. Though we may have to make further investigation of the 
difference in the periods between the Kurosiwo and the wind, it is cer- 
tain that we have made a step toward the forecast of oceanic conditions. 


(2) 


(3) 
(4) 


(5) 
(6) 
(7) 


FIGHTH PACIFIC SCIENCE CONGRESS 


REFERENCES 


NAN’NITI, T., 1951:On the Fluctuation of the Kurosiwo and the Oya- 
siwo. Papers in Mteorology and Geophysics MRI 2, (1) p. 102. 
Report on the State of the Sea adjacent to Japan, Central Meteorological 
Observatory, 1949 (in Japanese). 

WOE Cit 4 (2) 4 L950: 

Report on the Oceanographical Investigation and Study on the Long- 
range Forecasting in Japan, Centr. Met. Obs. 1951 (in Japanese). 

loci cuts (4) 9 a28 

Letter from Mr. J. Fukuoka (Centr. Met. Obs.). 

NAN’NITI, T., 1952: On the Fluctuation of the Kurosiwo and the 
‘Wind. Journal of the Oceanographical Society of Japan, 8, (1) p. 


9 
DEB 


ON THE FLUCTUATION OF THE KUROSIWO AND THE OYASIWO 841 


© “he Oyasun 
fe} O +e Kuresvo 
es oni fore) 
fo) 
© OC 0600 © © 09 60 
© 6 © O e) 
© 0 9 M004 we) 


nas 


A REPORT ON THE OCEANOGRAPHICAL OBSERVATIONS 
IN THE ANTARCTIC OCEAN CARRIED OUT 
ON BOARD THE JAPANESE WHALING 
FLEET DURING THE YEARS 
1946-1952 


By Masao HAnzawa and TakrEo TsucHIDA 
Oceanographical Section, Central Meteorological Observatory 
Tokyo, Japan 


ABSTRACT 


The chief characteristics of the oceanographical conditions of the 
Antarctic Ocean given in the present treatise are founded on the obser- 
vations taken on board the Japanese whaling fleet during the years 1946 
to 1952. Among many interesting facts found by the Japanese Fleet, 
we may mention these significant points. 

1) In the Antarctic Ocean, the temperature and chlorinity graph 
of the sea surface increases in the shape of a parabola as the 
distance from the pack-ice line increases. 

2) Ocean currents computed from dynamic calculation near Scott 
Island in 1949 show eastward flow to the north of 67°S, and 
southward flow along the 180° line to the south of 67°S. 

3) The insignificance of the Antarctic circumpolar water is due 
to bottom topography and to small clockwise circulations. 

4) The boundary of two currents is a good whaling ground, even 
in the Antarctic Ocean; and in the homogeneous water area 
good whaling is not expected. 


845 


A NEW JAPANESE G.E.K. 


By K. Supa, Kuropa-Masao, D. SHoji and SAWAYANAGI-FUMIWO 
Hydrographic Office, Tokyo, Japan 


(1) INTRODUCTION 

An insulated conductor is drifted along the ocean current flows, 
cutting the geomagnetism; then there must occur an electric motive 
force by Faraday’s electro-magnetic induction law. If this e.m.f. can be 
picked up, the velocity of the conductor, which is the same as that of 
the current, may be known, as the distribution of the geomagnetism 
is already known all over the world. Electromotive force will be in- 
duced in the current too, but it is dropped as negligible, because the 
sea water is conductive and its volume is immensely large, even in the 
superficial part, as Stommel proved. If both ends are shortened to 
the sea water, an electric current flows through the wire and sea water. 

We utilise this e.m.f. for measuring the velocity of the current as 
above mentioned. 

In practice, there remain the following difficulties: 

1. Sea water is an electrolytic solution, so a contact of metal intro- 
duces an ionization potential and the measuring is disturbed very much. 
We conquered this trouble by using a special electrode of silver-silver 
chloride. 

2. The resistance of these electrodes is very high and the electric 
current decays them even as small as less than 0.1 micro-ampere. These 
problems have been easily solved since the electronic potentiometer was 
produced in Japan. 

We composed a system of measuring apparatus from a couple of 
specially designed electrodes, an electronic potentiometer, a set of lead- 
ing cable made by special order, and a switch pannel having switches, 
electric condensers, etc. 

Some confirming experiments were done very cautiously on the 
characteristics of the electrodes on the temperature effect, density effect 
of salt water and some points of handling for practica! uses. 


(2) PracricaL MeTHop oF MrAsuREMENT 
The electrodes are connected directly to the pannel board of the 
potentiometer by two lines of the specially made cord of a single core. 
The length of the cord is 200 m. and 100 m. respectively for the elec- 


845 


846 EIGHTH PACIFIC SCIENCE CONGRESS 


trodes, i.e. the latter is 100 m. distant from the former. ‘Then they are 
driven into sea and the cord is tied to the ship as the shorter electrode 
stays about 100 m. from the stern of the ship. 

These works are conducted when the ship is running. When all 
have been prepared well, measurements are begun. 

At first and at last, the zero point confirmed by the longer cord 
is shortened till the length becomes the same as that of the shorter one, 
i.e. the two electrodes lie side by side. We got the constancy of the 
zero point in the range of 0.2 mV or less, which corresponds to about 
0.1 kt of the current velocity. 

After confirmation of zero point, we prolong the longer cord to 
full length. Then the meter indicates some millivolt, which shows 
the e.m.f. produced by the component of the ocean current perpendt- 
cular to the direction of the ship course. Then we turn the course to 
another direction, preferably near right angle. When the needle of 
the meter sets in the new direction, it indicates the e.m.f. of the com- 
ponent perpendicular to the new direction. Under the assumption that 
the current is constant during the turning of direction, or the two com- 
ponents can be considered to be those of the same vector of the current 
velocity, we can compose the total velocity from the two components of 
velocity and the direction of the course of the ship, which is known by 
the compass. 

The composition of these vectors 1s, however, a litle different from 
the ordinary method. We draw the respective vectors of the compo- 
nents, from the same point in the middle of turning. The scalor 
amount is given from the reading of the potentiometer and the direc- 
tion must have been informed from the bridge of the ship, whenever 
the reading is taken. Then, the intersection of the two perpendiculars 
from the respective points of the component vectors must be the top of 
the composed vector, drawn from the same origin. 

In such a way, we can measure easily the vectorial velocity of the 
ocean current from the moving ship. For the check of these values, we 
compared the values of the amount of the drift of a ship by the cur- 
rent measured by our method and by calculation from the positions 
of the ship at the beginning and the end. ‘The position of the ship 
was confirmed by triangular survey by a sextant. 


(3) PRACTICAL MEASUREMENT OF OCEAN CURRENT 
1. Off the point Nojima-zaki. 
Nojima-zaki is situated at the south edge of the Bohsoh Peninsula, 
Chiba prefecture, Japan. The warm current “Kuroshio” flows along 


A NEW JAPANESE G.E.K. 847 


the south side of the main island of Japan and passes through the row 
of Iz islands to Nojima-zaki. We attemped the first experiment of the 
measurement on Kuroshio, off the Point Nojima-zaki. 

Three square courses and two zig-zag courses were made as shown 
in Figure 1. At every point of turning, the measurement was tried. 
The velocities measured by our method are shown in the following 
table. The points of survey stand in four rows, so the values may be 
ciassified into four series. The series 4 farthest right is considered 
to be near the edge of the current. 


VELOCITY OF KUROSHIO OFF THE POINT NOJIMA-ZAKI 


POSITION No. oF SERIES VELOCITY KT MEAN KT 

left (north) 1 Ne, IB. a8} 1.37 

middle 2 sy! ELS ey : 
right (south) 3 ‘otmoudts eto eo 1.34 3 
edge 4 0.8, Om 0.85 


On the other hand, we found the amount of drift of the ship from 
the difference between the positions, surveyed by the triangular method 
to land, and those calculated from ship velocity, time duration and 
direction. 

At every drift is 1.1 kt, 1.3 kt and 1.4 kt, and the vectorial mean 
is 1.26 kt. Comparing these values of drift of the boat with the former 
values 1.37 kt, difference was found to be only 0.1 kt and the direction 
coincided with the accuracy of the compass, 5°. 

In conclusion, the accuracy of triangular survey by the sextan meth- 
od is rough as known generally, but the two values coincided well. 
Furthermore, the mean values of the three series of the G.E.K. method 
coincide with each other very well. The individual values differ from 
the mean values of the 1.37 kt, with the range of error as +0.25 kt 
This accuracy has not been confirmed till now with more accurate meth- 
ods, yet the statistical values will explain well about the accuracy. 

2. Along Iz Isiand. 

In the south of the Iv Peninsula, Shizoka Prefecture, there lies a 
row of islands from north to south. We call them Iz 7 Islands. The 
warm current Kuroshio flows through this row of islands from west to 
east. For the second experiments, we surveyed Kuroshio around this 
row of islands between two peninsulas, Bohsoh Peninsula and Iz Penin- 
sula as shown in Figure 2. Figure 3 shows the recording chart. The nu- 
merical figures show the time; those between arrows in middle circle 


$48 EIGHTH PACIFIC SCIENCE CONGRESS 


are the millivolt produced in the cord. 1.74 millivolt corresponds to 1 

knot around this district. In this experiment, we found many new facts. 
1) Kuroshio flows from S.S.W. to the nose of Iz Peninsula and 

changes its direction to N.E.E. with a velocity of 1.7 kt to 1.3 kt. 

2) Though we missed to survey well, it can be said from our 
other results that this current collides against Ohshima Island of Iz 7 
Islands and separates into two ways. 

One tlows N.E. and reflects at the Sagami Bay to S.E. Another 
one flows E. and passes through the south side of Ohshima, and changes 
its direction to S.E. into the center of Pacific Ocean. 

3) The former passes through between Ohshima and Nojima-zaki 
to S.E. with velocity 1.3 kt. 

4) It is imagined that a still part exists behind Ohshima Island, 
as a center of vortex. 

5) A part of the two flows shown in 1) miay join after this vor- 

tex and flows N.E.E. to some point off Nojima-zaki, which was sur- 
veyed in the first attempt. 
6) We found a current which flows S.E. with velocity over 3.5 kt 
at a point about 34°20'N., 139°40’E. “This current comes, perhaps, 
from a branch of the current through the south side of Ohshima shown 
in 2). Details of this current are shown in Figure 4. 


(4) CONCLUSION 

1. We constructed a new G.E.K. with special silver-silver chloride 
electrode, an electronic potentiometer, special cord made to order, and 
other accessories. 

2. The calibration shows that this has a good accuracy compared 
with the drift method, surveying land points by a sextan to confirm the 
ieal position of the ship. 

3. Three series of the measured value by G.E.K. off the Point No- 
jima-zaki show the same mean value 1.37 kt from observations of over 
one dozen, and the individual values deviate +0.25 kt from the mean 
value. 

4. Survey with G.E.K. along Iz Islands showed many details about 
the construction of Kuroshio. 


A NEW JAPANESE G.E.K. 3549 


Lidl 
ON Nie Ore Sun aie ou 


ACIS INISE 


FIGURE 1 


Je YB, 


we Bohson P. 


Onsfhima ab 
es 


©  § 10 215 20 
hee od 


FIGURE 2 


EIGHTH PACIFIC SCIENCE CONGRESS 


850 


f GUND YT 


Nae = ce tO 


oV2 YAEL ae ay) © 7H 
| 

gee NWS cases) Wis 

\ ‘| gos - Na 
ae 
a 
2. 
Nk 


@ DUA 


og Hake 


ree 


AT A 


a 


Senne 
i. sae 8 
“ae REIN 


= E. 


ou: 


5 = 


AUTHOR INDEX 


BADER, RICHARD G. ........ Sipe {val 
BARNES, CLIFFORD A. ...... 585, 686 
BOHUKE ANMIES) Wn sc. acne ss 183 
BOUIN RAROLE eae aecinine @ atak os 373 
BRUUINEEAINTOND Rs eins ieee: 365 
BUEN, FERNANDO DE .........-. 266 
WAR TERA OINTAT Mig 3 au elle haere 200 
CWREMENS HY Wie Ag) 3) 2505 ess os 121 
DIAWISONG Hin YATE) Sle yee oe a: 489 
TD YEAET op, ol neg RGAE oe toe ne en Le ee 499 
DOU Me ePAR SG tector tid, ny Sates ens 571 
IDOIMIAINIDAY JOSE GS) oy. oon) 417 
VERRAN OE phe ycean oy. cco yeas 685 
ETCHEVERRY-DAZA, HECTOR .... 246 
UAW OKA ris Sit = sitniets ac tvece sees 787 
GUARINIER nD inn eee tie oe ee ie 743 
COSEINES  WEELIAM YAU a. 20: 347 
GRAHAM, HiRBERT W. ........ 673 
CGUREEERMPdissss ce ees ke eee 208 
IsDAg, AUNDNSIGON 6604s cone ae 493 
ELAS THAD: eSRUCKO Wie ta... na 321 
IREAINIZAWIAN IMIASIAO) Ges ce oe 843 
ELAR DENBERGS ie De iy eae 457 
AD Melissa ara cconce Una reac oe 314 
LIVARKCAS, SOS ns ee ws HUG). 
ELRYAINWAN YOOSIENIO! Su eis es se Aas 165 
EL OUETSTER td Ie us piers Ae Sic ie 705 
ISHIBASHI, MASAYOSHI ........ 817 
JOHNSON, MARTIN Wi .....2-.. 379 
JCA IMD Gol aati cool ilaieeo aie bearers 781 
ICA AAIVIO TIO IN. eG naling a oets aoe PPXY) 
KAWAMOTO, TAKEO ........... lacae 
IISA, (Ile soocpoecconoc 3038 
LCTSUAINIE iON) (ied Re este neha ape ene ee 189 
TROND, GC cea Pe 403 
OEZUIMT SIME. Eiegayirs sist cishe: a,evanacee 787 
GR OONAWAN GELS ie wy cial cee hls 331 
KeURODAWLOKUBEL anaes ce 4938 
TRQGROIOA, MUSING) Gocccunnccedoe 845 
ILINCOitiN, Ou 18k, soesssoeeae 686 
ILRAVIAN, MOEN aoococoocoouone 609 
WUAIOVA, JeoxOssete oookcoccsaoeue 234 
WEARRS ROHN GC. suicuc ues sse ne 1838 


NATSU Ie VOSHDICET =. 55 seers 225 
MUN ANDAR, SSHSUUAOO) “BOS Ea vege oc 391 
MiEWER ROBERT Osl.540 5588 126 
MiIVADT DENZABURO! 26) 52505 493 
VEDA IASC OMe air ce ni as Aco 781 
MIYAZAKI, MASAMORI ......... lio 
VOR TWA (OSU TIS teers ee nee Ot 
NAKAGAWA, YASUHARU ....... 817 
NAKAMURA, HIROSHI .......... 165 
INPAUCAYN Os VIB flee Se erate vas maa i 787 
INVAIN NIT Tepe waee nets nse dhcp casei 837 
OKADA GAT OHIRO! ee sa! ae 391 
OSORTO=APAR ATT Bea as aie oe 253 
JEYNINIECRONG, UINIG IK 5 Sen poke aueds 294 
PAQUETTE, ROBERT G. ......... 585 
IPERTERSSON, HIANS =... .552 4... 637 
IPOWLSENASETR Gp Vike ys eis ee 241 
TERON GADD Gp ANG NYG 1 Bio ie Gveteqees tonesteaen 359 
TVATER AY, 2 Jie VEAURICH yn seer 686 
REVEROS-ZUNIGA, FRANCISCO ... 280 
ROCHEORD AD idl aaenvc a2 ahs slat 745 
SAWAYANIG'-FUMIWO ......... 845 
SCHAERER, MUlmNERS IBS 2.50. -5e 149 
SCHUDIZS IEBONARD Pa. saee are: 4138 
SCHWEIGGER, ERWIN .......... 801 
Swinney, IDs Ibs sos edesocobs ae 461 
SELTES OS OAR BH paracrine 131 
SHEPARD] SHRAINCISm b> 6 cian sn.) 743 
SHIGEMATSU, TSUNEBOBU ...... 817 
OIETO UIT ais heroes ttre seees Shey 619, 845 
SUD IAP Kerra errs ch raeun een! a 619, 845 
SUGIURAM INGE Mp hae 8 oka cls Sc 781 
HIVAUNGT Tt KG sare nrenrcn msc ovS ia ssn iene 215 
THOMPSON, THOMAS G. ....... 3 
SU CHTD Apo IVAUCEO) 2 Ss ye cteeeoee 843 
SU RNEN ON CHIWiet vey ae earn or 821 
IMMHING, HORI 1, Gacoocspcccc 3, 643 
WIA, WGeoneGHW NN Sooo ooaeooue 663 
VIALARD-GOUDOU, A. .......... 208 
WOLSKY, ALEXANDER .......... 505 
WOOSTER, WARREN S§. ......... 679 
WAINIAGAW Ala tli iiarener ney! inj so aoe « 215. 
NGAINIE:Z/ mle ARI MIBINIDO Ateneo). 287 


CORRIGENDA 


Page 369—last line, for “Colloqgium” read “Colloquium” 
Page 431—line 27, for “fuscopuntata”’ read “fuscopunctata.” 
Page 446—line 3, for “Kehler” read “Koehler.” 


vi 


wee 


Hn 
ht 


ek K 

x i 

; ak 
uu 


7 


eee 


ae 


nt 


pF 


ro